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Abstract—Due to its low latency and high data rates support,
mmWave communication has been an important player for vehic-
ular communication. However, this carries some disadvantages
such as lower transmission distances and inability to transmit
through obstacles. This work presents a Contextual Multi-Armed
Bandit Algorithm based beam selection to improve connection
stability in next generation communications for vehicular net-
works. The algorithm, through machine learning (ML), learns
about the mobility contexts of the vehicles (location and route)
and helps the base station make decisions on which of its beam
sectors will provide connection to a vehicle. In addition, the
proposed algorithm also smartly extends, via relay vehicles, beam
coverage to outage vehicles which are either in NLOS condition
due to blockages or not served any available beam. Through a set
of experiments on the city map, the effectiveness of the algorithm
is demonstrated, and the best possible solution is presented.

Index Terms—beam allocation, mmWave networks, V2X.

I. INTRODUCTION

Since the 1970s, vehicular communication networks, which
enable vehicles to communicate with roadside units or other
vehicles, have been the subject of extensive research [1]. These
technologies began with basic implementations that guided
drivers through routes using simple messages indicating turns
and maneuvers. Over time, they evolved into automotive
navigation systems in the 1990s that included maps of the
surroundings of the vehicle as well as visible route calculations
[2]. With the development of faster transmission technologies,
autonomous driving has become more feasible, and many ve-
hicles now include features such as assisted parking, braking,
and steering. The development of 5G communications has
made fully autonomous traffic a realistic possibility in the
future.

5G communications have become an integral part of the
communications industry, with millimeter wave (mmWave)
becoming the standard due to its high carrier frequencies com-
pared to the sub-6Hz band, which allows for high bandwidth
and high transmission quality [3]. In the automotive industry,

higher connection speeds could help design safer and more
effective autonomous driving vehicles with increased control
and visibility [4]. However, mmWave communications also
have inherent disadvantages, such as severe signal attenuation,
easily blocked signals, and limited coverage due to their short
wavelengths [3]. As stated in [5], numerous efforts have been
made by academia and industry to overcome the challenges of
applying mmWave bands in 5G communications, especially
in vehicular scenarios. Addressing these issues is crucial to
fully realize the advantages of mmWave communication for
connected autonomous vehicles.

In order to mitigate the drawbacks of mmWave-based vehic-
ular communication, the benefits of vehicle-to-vehicle (V2V)
relaying assisted vehicle-to-infrastructure (V2I) communica-
tion has manifolds. The use of V2V relaying can lead to
improved connectivity and extended coverage for mmWave
V2I communication by forwarding data to the destination,
ensuring that vehicular networks function properly even in the
presence of frequent blockages [5]-[8]. In [6], the authors pro-
pose the use of relays to mitigate the impact of blockages and
demonstrate the positive effects of these relays by analyzing
blockage probability, average blockage duration, and signal-to-
interference-noise ratio (SINR) distribution. They also discuss
the possibility of using a multi-hop relaying scheme, which
allows relays to forward traffic to another relay to improve
the range of mmWave signals and reduce the need for a
high number of roadside units. However, the effectiveness
of relays located far from a vehicle is limited due to higher
blockage probability compared to close relays. Additionally,
the reliability and latency performance of mmWave vehicular
communication can be improved with provided multiple paths
for data transmission via cooperative relaying, which is im-
portant for safety-critical applications in vehicular networks.
Note that, the trade-off between latency and reliability shall
be carefully optimized as multi-hop V2V communications can
improve the reliability of mmWave signal transmission due to



reduced propagation loss and high probability of LOS at the
possible cost of increased transmission latency due to the in-
creased number of communication hops [9]. Furthermore, due
to coverage blindness in directional beams in mmWave, V2V
relaying can also help with the reduction of data interruptions
during handovers. In [5], a V2V communication-assisted soft
V2I handover scheme is proposed. This scheme utilizes V2V
communication to forward handover preparation information
over an actively served vehicle by the next predicted mmWave
BS which is determined using machine learning.

One the other hand, the dynamic mobility of vehicular
networks leads to frequent relay selection and beam alignment,
which can cause high signaling overhead and significant data
interruptions. To address this, relaying vehicle and beam
selection shall be jointly selected to support end-to-end stable
connection [7], [8]. Machine learning (ML) is increasingly
gaining attention in the design and optimization of wireless
communication systems, especially in vehicular networks with
high mobility, heterogeneous connectivity, and diverse QoS
requirements [10]. Utilizing data available in V2X networks
such as vehicle kinetics, road conditions, and traffic flows,
ML can be applied to various operational aspects of V2X
for making the investigation of ML’s applicability for relay
selection and beam management in mmWave V2X networks
[71, [8], [11]. In this regard, [7], [8] proposed deep rein-
forcement learning (DRL) based joint relay selection and
beam management. The work proposed by [7] efficiently
finds unblocked relays and maintains high spectral efficiency
under fast-varying channels. The work also considers beam
management overhead to account for beam alignment due to
relay (re)selection. Similarly, via joint selection, the proposed
scheme in [8] improves overall communication capacity where
an imposed capacity threshold constraint ensures each user
receives a satisfactory level of service.

Note that, the proposed schemes in [7], [8] have not
been tested for realistic vehicular environments. In addition,
[7] has only considered relaying for V2V communication,
and blockage is only considered between mmWave BS and
relaying vehicle in [8]. In this paper, we have Context-aware
Multi-Arm Bandit (C-MAB) based relay-aided communication
by incorporating vehicle mobility context under a realistic
vehicular mobility environment. The aim is to establish long-
lasting connections, unlike signal strength-based approaches
for end-to-end V2I and V2V communication. The remainder
of the paper is organized as follows: Section II describes the
considered scenario and formulation of the beam allocation
problem. In Section III, the proposed beam selection algorithm
based on C-MAB is elaborated. The experimental results are
explained in Section IV to show the effectiveness of our
proposed algorithm. Finally, we draw important conclusions
in Section V.

II. SCENARIO SETUP AND PROBLEM FORMULATION

In this work, we assume a mmWave small cell which is
deployed to enhance the data transfer rates and boost the

network capacity. The considered small cell base station com-
prises an array of antennas pointing towards predetermined
directions, with fewer radio frequency (RF) chains installed
than antennas. Each antenna is potentially composed of a set
of antenna elements that produce a beam directed towards a
particular direction. As defined in [12], the coverage area of a
beam is referred to as a beam sector, where beams are ideally
spatially separated. Owing to the limited number of RF chains,
only a subset of antennas may be activated simultaneously for
downlink transmission.

The depicted scenario setting is shown in Fig. 1. The
mmWave base station (mmBS) is positioned in an area of
Guildford town center located in the UK, consisting of a total
of 12 antennas that are oriented towards distinct directions in
order to provide comprehensive coverage of the surrounding
environment. Due to the limited number of radio frequency
(RF) chains, the mmBS is only capable of activating four
beams simultaneously, enabling it to serve up to four vehicles
at any given time. It is worth noting that the sector areas
represented in the illustration are merely indicative of the
coverage areas, and the actual coverage of the service region
may vary depending on the particular channel model and
antenna settings employed.

We consider the pathloss model for the 28 GHz mmWave
channel as given by [13]. The model is expressed as

PL(d) = PL(dy) + 10nlog,y(d/do) + Xy, (1)

where d is the distance between the transmitter and receiver
antennas in meters, X, describes the channel fading (which we
do not include in our analysis), and PL(dy) is the free space
path loss (FSPL) in dB. The FSPL is a function of the carrier
frequency f., given by 10log,,((4mdo f./c)?), with dy = 1 m.
We assume an antenna height difference of 5 m between the
base station and the vehicle, and thus the distance d between
the two nodes is related to d as d = v/ d2 + 52.

We assume that the vehicles involved in the communication
have access to steerable beam antennas that can track and
adjust their orientation towards the base station during the
communication. With the aforementioned setup, the signal-
to-noise ratio (SNR) of a given vehicle being served can be
calculated as follows:

SNR = py — PL(d) + Gz + Gry — N, )

where Gy, and G, are the transmitter and receiver antenna
gains, respectively, [V is the noise, including thermal noise and
the receiver noise figure.

The utilization of mmWave small cells for vehicle-to-
everything (V2X) communication presents a distinctive chal-
lenge whereby a narrow beam must be utilized to serve fast-
moving vehicles. The short duration of a moving vehicle’s
presence within a narrow beam results in frequent handovers
and signaling overheads. Moreover, the channel state is highly
volatile owing to user mobility, thus a conservative approach
involving the use of the most robust modulation scheme
instead of an adaptive modulation scheme may be more
appropriate. Consequently, to optimize the transmission of data



Fig. 1. A scenario of beam selection (max 4 beams out of 12 beams) for
area of Guildford, UK.

between the small cell and the vehicles it serves, the radio
resource allocation strategy for this particular arrangement
should endeavor to serve vehicles that remain within a beam
for the longest possible duration.

In the context of reliability, it is assumed that an adaptive
modulation scheme is not employed. Instead, the base station
utilizes the most resilient modulation scheme for communi-
cation irrespective of the reporting SNR. Let R denote the
corresponding fixed data rate assigned to all beams when
serving a vehicle situated within its beam sector. However,
vehicles that traverse out of the beam service area experience a
zero rate. Consider a set of beams B belonging to the mmWave
small cell base station, wherein n is the maximum number of
beams that can be actively deployed by the base station at any
given time. Furthermore, let /3;(t) represent the transmission
rate of beam ¢ at time ¢. Specifically, 3;(¢) is equal to R if
beam 7 is serving a vehicle at time ¢, and §;(¢t) = 0 if it
is either undergoing a handover procedure, awaiting data to
be resumed from the macro base station, or is inactive, or
no vehicle is present within its beam sector for service. The
proposed radio resource allocation strategy aims to maximize
the overall data transmission from all beams over a specified
period T', which is given by:

T
max Z/ Bi(t)dt | . 3)
ieB 0

Each handover event incurs a data interruption time in j3;(t) =
0 during the event, the maximization of the above expression
can also be achieved by minimizing the number of handover
events since the data rate remains constant during a vehicle’s
service. Thus, the duration for which a vehicle remains within
a beam sector, also referred to as the vehicle sojourn time,
should be maximized to minimize the frequency of handovers.
In order to maximize its total transmission time, the mmBS
employs all active beams for transmission. Upon a serving
vehicle’s departure from a beam sector, the beam previously

Fig. 2. Relay-assisted beam communication under blockages

serving the vehicle becomes inactive, and the base station can
activate a beam from all available beams to serve another
vehicle. The base station may opt to serve a vehicle in its
beam sector in an unbiased manner or select the vehicle
with the highest SNR to pair with the available beam for
service. However, as we will demonstrate later, the traditional
approach of selecting the highest SNR may not be suitable for
mmWave vehicular networks owing to the narrow beamwidth.
Due to the constrained mobility of vehicles within the local
street layout, we propose utilizing mobility information of
vehicles which can serve as an indirect measure of the local
street layout. In this regard, we establish vehicle profiles
based on their mobility information and utilize such profiles
as contextual inputs for pairing vehicles with beams. The
mobility information used as context may include vehicle
orientation, location, and distance from the mm, which can be
derived from the location or measured through timing advance.

III. PROPOSED CONTEXTUAL MULTI-ARMED BANDIT
LEARNING DESIGN

In our previous work [14], the effectiveness of the contextual
multi-armed bandit algorithm for beam-level communication
in mmWave vehicular networks has been shown. In this work,
a more complex road layout scenario with roundabouts and
permanent blockages due to buildings is considered. Due to
different road layout and connection disruptions by blockages,
context information should be carefully selected in order to
capture different features about vehicular environment. In this
case, adding the relevant context to the decision-making will
improve the performance [14], [15]. In this work, we use the
mobility information of the vehicle as a feature, specifically
the travelling routes of the vehicles which start their trips
from one of the twelve parking spots with ending at another
parking spot. We also include the distance between the vehicle
and the BS as a feature. It is classified into three levels,
namely Near, Middle and Far. In addition, to mitigate the
impact of the blockages, connected vehicles are used as relay
nodes to extend the coverage to those deprived vehicles using
V2V communications as shown in Fig. 2. The proposed C-
MAB algorithm is designed also to consider the availability
of second-hop vehicles around the relay vehicle in order to
improve the coverage while making beam allocation.



Let C be a set containing all contexts, and (b,c) be an
ordered pair of beam b and context c¢. The reward is recorded
for all combinations of beams and contexts. We denote R¢ =
{r,e)|b € B, c € C} to be the set containing all rewards. Once
a beam b; is initiated for transmission at time ¢, an instant
context ¢;(t) will be observed. After serving the vehicle for
a duration of At, the reward r;(¢t + At) associated with the
current context is measured and used to update the average
reward value of the context ¢;(t) using the following formula:

Te, () < ke, (t) + ri(t + Al)
ke, (t) +1 ’

where k., (t) represents the number of times the current
context has been observed in the past.

The Alg.1 provides the steps for the contextual learning
algorithm. Similar to [15], the contexts summarize both vehicle
profiles (as user features) and beam sector (as arms). The
objective of the ML agent is to establish the relationship
between contexts and rewards, and develop a policy to derive
the best arm given a context. Unlike [15], we make no
assumption on the relationship between contexts and rewards.
For the learning strategy, we apply exploration-first strategy.
During the exploration time (30% of the simulation) the arms
that can serve a vehicle are selected randomly from a set of
available arms. The vehicle, say v, stays connected until it
loses connection due to a blockage or leaves the sector. While
being connected, another vehicle say z that is outside of the BS
coverage but near vehicle v can be served by the BS sector
via transmission relaying through vehicle v. We shall focus
on the connection time as the main key performance indicator
(KPI), and thus the reward derives directly from this KPIL
The reward is measured by the overall service time of both
vehicles v and z when they are connected to the mmBS sector
directly or indirectly. Once vehicle v lost its connection to the
mmBS sector, the reward is computed and associated with the
context that encapsulates the arm and the feature vectors of
vehicles v and z. After the exploration time has finished, the
algorithm changes to exploitation for the rest of the simulation.
During this period, the context of the vehicles within each
available beam is checked. The corresponding rewards of each
context are ranked and the vehicle associated with the highest
reward profile will immediately receive service from the beam
after the decision is made. The beam service continues until
the connection is lost due to blockage or the vehicle leaving
the sector. Once the connection is lost, rewards are updated
for each context and beam pair. This guarantees that the
best context-beam pair is always selected, improving the
connection times in the long run.

e, (t + At) = “)

IV. RESULT DISCUSSION

In the section, we present experimental results for the
proposed C-MAB machine learning based beam selection. The
scenario for considered experiment is presented in Fig. 1. In
this scenario, we consider a standalone single mmBS with
12 beams. At one time, the base station can only activate 4
beams for service. Vehicles are created and absorbed at certain

Algorithm 1 Contextual MAB for Beam and Relay Vehicle
Selection
Input (for exploitation):
A set of available beams, B.
Output (for exploitation):
Selected (beam,vehicle) pair, or None.

1: procedure EXPLORATION

2 while B # ) do

3 Randomly select a beam b from B

4: if No vehicle is available in beam b then

5 B+ B\ {b}

6 else

7 Randomly select a vehicle v in b

8 if No available vehicle nearby v then

9: return (b, v)

10: else

11: Randomly select a nearby vehicle z by
using vehicle v as relay

12: return (b, v, 2)

13: end if

14: end if

15: end while

16: return None

17: end procedure

18:

19:

20: procedure EXPLOITATION
21: Rc + {T(b,c>|b €B,ce C}
22: while R¢ # 0 do

23: (b, c) + argmax R¢

24: if No vehicle is associated to ¢ in beam b then

25: Rc + Rc¢ \ {T<b,c)}

26: else

27: Randomly select a vehicle v in b with ¢

28: Randomly select a nearby vehicle z by using
vehicle v as relay

29: return (b, v, z)

30: end if

31: end while

32: return None

33: end procedure

34:

35: procedure UPDATEREWARD(beam b, context ¢, reward r)
36: T(be) < W D 7(p,cy is set to O initially
37: k(b,c) — k(b,c)7+ 1 > k'(b,c) is set to O initially

38: end procedure
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Fig. 3. Average beam sojourn time of twelve beams with C-MAB

locations on the map. Those locations are the main entrance
point to the city and the exit point from the city. Besides, we
also included several main parking spots in the city as vehicle
creation and absorption locations. A pair of vehicle creation
and absorption locations is used to create a route simulating a
vehicle either passing through the city, entering to or exiting
from the city. We use A-STAR path finding algorithm [16] to
establish the route for vehicles. We assume that each of these
vehicles requires downlink data service when entering the
small cell. Experiments are conducted via our own developed
Python Mobility Simulation Platform (PyMoSim').

In our simulation, there are 50 vehicles which continuously
travel on the map. We simulate 20 hours of operation where
the base station begins with full exploration for learning, and
then it switches to full exploitation after the first 30% of
the simulation time. As Explore-First strategy stops triggering
exploration after the learning phase, this enables us to focus on
the study of learning effectiveness acquired during the learning
phase.

TABLE I
SIMULATION PARAMETERS

Parameter Value

Number of beams per mmBS (N,) 12

Carrier Frequency (f¢) 28 GHz

Transmit power 30 dBm for BS/ 23 dBm for vehicles
Path loss exponent (LOS/NLOS) 1.9/38

Noise power -90dBm

Vehicle Speed 20 m/s

Simulation time 20 hrs

Sampling time slot 0.1sec.

Simulation area 800 m x 450 m

In Fig. 3, the beam sojourn time performance of the
proposed C-MAB is shown for all beams. After the exploration
time, there is an increase in the mean beam sojourn time of

IWe plan to release the full source code of PyMoSim and our scenario
setup code in the near future.
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Fig. 5. Average beam beam sojourn time performance of different beam
selection schemes

most of the beams once the algorithm switches to exploration
phase. This can be explained as beams are utilised more for
specific context due to longer beam sojourn time observed in
the learning phase. For example, among others Beam-7, Beam-
5 and Beam-12, Beam-9, Beam-11 achieved higher mean beam
sojourn time. It can be observed in the scenario depicted by
Fig. 1, the shaded area for these beams have mostly the longest
road coverages and higher LOS case due to less blockages.
A similar pattern is depicted in Fig. 4 which shows total
utilisation ratio of each beam during the whole simulation.
Therefore we can state that the proposed C-MAB efficiently
learns the environmental and mobility dynamics to pair a given
context with an available beam with highest reward.

We also compare C-MAB algorithm with classical MAB,
Best-SNR and random beam selection schemes in terms of
average beam sojourn time. In best SNR, the base station
greedily selects a vehicle that reports the strongest received
signal strength. For our C-MAB, we use vehicle travelling
route and distance from the small cell to form a context.
For the travelling route, we profile a vehicle into start and
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end points of its travelling route, and for the distance, we
propose the base station to use timing advance to profile a
vehicle into one of the three ranges (Near, Middle, Far) with
approximately same length for each range. Fig. 5 is provided
for comparison of the beam sojourn time performance of the
considered schemes. After the exploration time, there is a steep
increase in the mean beam sojourn time for C-MAB and MAB
once the algorithm switches to exploration phase. However,
as C-MAB utilizes context information to make decision, it
outperforms MAB by about 7%. This improvement can be
high as 10% when it is compared to Best-SNR and random
selection schemes.

To also evaluate the performance of C-MAB based relay-
aided communication, Fig. 6 is given. For relaying, we assume
that once a vehicle connected to a beam it can relay this to
one nearby vehicle which has no service by any beam. Thus,
outage time is nearly halved via relaying as more vehicles
gain access even they are out of coverage serving beam or
have a very weak signal to establish a communication link
with a transmission point. The proposed C-MAB have also
reduced the outage time in w/o and with relay cases by 53%
and 63% respectively. The reason for the additional gain in
with relay case obtained by proposed C-MAB is that it also
takes the second-hop vehicle route context to achieve better
decision making. In other words, if a second-hop vehicle have
a opposite direction with the relay vehicle it is likely that the
V2V link will be interrupted shortly. Thus, C-MAB can also
learn long-lasting V2V link contact times between relay and
second-hop vehicles to avoid frequent V2V link changes.

V. CONCLUSION

In this paper, we develop a C-MAB based beam selection
and relay-aided communication to improve the connectivity
robustness by enabling long-lasting V2I beam communication
and V2V connections. The street layouts in real-world scenar-
ios make mobility prediction and communication robustness
a challenging task due to varying conditions, such as round-
abouts, curved paths and signal blockages at the corners which
need to be addressed. In such a complex scenario, due to its

ability to learn various dynamics of a considered vehicular
environment with appropriate context and relay selection, the
proposed contextual MAB outperformed the strongest received
signal-based selection and classical MAB in terms of longer
beam residence time.
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