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Abstract—The standard beam management procedure in 5G
requires the user equipment (UE) to periodically measure the
received signal reference power (RSRP) on each of a set of beams
proposed by the basestation (BS). It is prohibitively expensive to
measure the RSRP on all beams and so the BS should propose a
beamset that is large enough to allow a high-RSRP beam to be
identified, but small enough to prevent excessive reporting over-
head. Moreover, the beamset should evolve over time according to
UE mobility. We address this fundamental performance/overhead
trade-off via a Bayesian optimization technique that requires
no or little training on historical data and is rooted on a low
complexity algorithm for the beamset choice with theoretical
guarantees. We show the benefits of our approach on 3GPP
compliant simulation scenarios.

Index Terms—Beamforming, RSRP, Bayesian optimization,
beam tracking, overhead reduction

I. INTRODUCTION

Millimeter-wave (mmWave) frequencies are attractive for

next-generation wireless networks due to the large amount of

bandwidth available. One challenge with mmWave frequencies

is the high penetration loss but this can be mitigated by the

gains achievable with large antenna arrays [1]. At high fre-

quencies, antenna spacing can be smaller thus more antennas

can be packed into a specified space, which in turn lets us

use more directive beams to compensate for the penetration

loss. However, with a large antenna array it is prohibitively

expensive to have a separate radio chain controlling each

antenna. A common solution is the hybrid beamforming (HBF)

architecture [2] where analogue beams are created by phase-

shifters and digital precoding is performed on a set of radio

chains that is smaller than the total number of antennas.

In mmWave band 5G systems, the beam management is

usually based on the analogue beam domain and the system is

designed to be compatible with a hierarchical beam searching

structure [3]. In initial access (IA), the synchronized signal

block (SSB) can be transmitted with wide beams while in data

transmission, the channel state information reference signal

(CSI-RS) can be transmitted through refined beams with the

mainlobe contained within the selected wide beam from IA.

The base station (BS) will sweep all the possible wide

beams periodically for IA, and it may also sweep all the

possible refined beams periodically for high refined beam gain

tracking if it is serving a large number of users. Each user

equipment (UE) measures a subset of the beams and reports

back to the BS the Received Signal Reference Power (RSRP)

for each beam in the subset. From these measurements the

BS selects the “best” beam for the UE. We stress that this

architecture does not require any channel estimation, which

becomes a challenge as the number of antennas grows large.

After the analogue beam selection is complete, the BS then

performs scheduling, i.e., it chooses a set of UEs to receive

data. Lastly, digital precoding is performed by the radio chains

to minimize the interference across UEs.

In this work we focus on the selection of the analogue

beams for the downlink for which a specific UE must report

RSRP measurements to the BS. Our scheme can be applied

to both SSB and CSI-RS beams and so in the sequel we do

not make a distinction. The goal is to choose a beam for each

UE that maximizes the RSRP while limiting the UE reporting

overhead, i.e., we only want the UE to measure the RSRP on

a small subset of the available beams before each selection.

Scenario. We assume a BS with M antennas transmitting to a

UE with N antennas. Time is slotted and at slot t the channel

between the BS and the UE is represented by the matrix Ht ∈
CN×M . A set ΓBS ⊂ CM of transmit beams is available to

the BS and a fixed beam u ∈ CN is used by the UE1. If the

BS selects beam bt ∈ ΓBS and transmits symbol xt ∈ C with

power ρ at time t, then the signal received by the UE is,

yt =
√
ρu∗Htbtxt + u∗nt, (1)

where ·∗ and nt denote the conjugate transpose and the noise

term, respectively. Then, we wish to select the beam bt ∈
ΓBS for data transmission during the slot t so as to maximize

the RSRP |yt|2. If noise is circular Gaussian this amounts to

maximizing ρ|H̄tbt|2, where H̄t = u∗Ht is the channel that

the BS perceives, incorporating the UE’s beam u.

Ideally, one would want to estimate channel H̄t and find

the element of ΓBS that is closest to the principal eigenvector

of H̄∗
t H̄t. However, the feedback required for channel esti-

mation is prohibitive as the number of antennas increases. An

alternative is for the BS to choose a set Bt ⊂ ΓBS of beams

and ask the UE to measure the RSRP |u∗Htb|2 for all b ∈ Bt

and report back each value. Then, the beam bt ∈ ΓBS with

the highest RSRP is selected for data transmission by the UE

during the current slot. Yet, this procedure suffers from high

feedback overhead if the UE has to measure a large number of

beams. The goal of the beamtracking problem that we address

in this paper is to select the beam bt for data transmission

1The UE usually has a small number of receiving antennas so the con-
structed receiving beam has a large beam main lobe. Hence, choosing a fixed
received beam will not significantly affect the performance
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while trading off the achieved RSRP performance with the

overhead, i.e., how many beams the UE measures per slot.

In this work we show how to choose beam bt via Bayesian

Optimization (BO). The performance is evaluated according

to 1) the overhead |Bt|/|ΓBS|, 2) the average RSRP error

|u∗Htbt|2/maxb∈ΓBS
|u∗Htb|2 and 3) the accuracy, i.e., the

probability that |u∗Htbt|2 = maxb∈ΓBS
|u∗Htb|2.

A. Related work

The beamtracking literature can be categorized into i)

RSRP-based—which our contribution belongs to—where the

BS determines the best beam for the UE only based on UE

RSRP reports, ii) channel-based, where the BS is assumed to

be able to estimate the channel or at least its covariance matrix,

and iii) side-data assisted, where additional information is

required, such as the GPS position of the UE. Within the i)

RSRP-based research thread, the work in [4], inspired by [5],

relies on the assumption that UE mobility tends to follow

repeated patterns, and predicts the best beam for the next

slots from previous RSRP measurements via a long short-

term memory (LSTM) deep learning architecture. The main

bottleneck is the training phase, during which the BS collects

a large set of UE reports and trains an LSTM. References [6],

[7] predict the beam indexes with highest RSRP as well as

blockage events, via deep learning. Similarly to our contri-

bution, the work [8] uses Bayesian Optimization to estimate

the best transmit and receive beams. However, the temporal

aspect is not studied: once the user moves and/or the channel

varies, the optimization has to be repeated from scratch. The

ii) channel-based thread is arguably the best investigated. The

contributions in [9], [10] rely on the assumption that the angles

of arrival and departure of the channel evolve according to a

Gauss-Markov model, and use a Kalman filter to track the

main direction of the channel. The work [11] exploits the

ability of HBF transceivers to collect channel information

from multiple spatial directions simultaneously, and designs

two strategies (exhaustive beam search in a training phase

and probabilistic beam tracking) to rapidly estimate the most

suitable transmit/receive beams. For this scheme, the training

effort is non negligible though. A sub-thread focuses on the

assumption that, especially for mmWave, the channel has a

sparse representation in the angular domain, i.e., only few

scatterers exist. This is exploited by estimating the channel

via few linear measurements (which would in turn require the

UE to report the complex received signal, instead of the RSRP)

and then applying compressed sensing techniques, providing

the main angles of arrival and departure of the channel, as

in, e.g., [12] and [13]. The iii) side-data assisted methods

are more common in vehicular-to-infrastructure deployments,

where the GPS location of the UE can be used for beamtrack-

ing, as in [14], [15], or via computer vision as in [7].

B. DFT Beam Construction

The above problem was defined for an abstract beamset

ΓBS, but in practice ΓBS typically consists of an array of 2-

dimensional Discrete Fourier Transform (DFT) beams. In this

configuration the base station has a rectangular MH × MV

antenna array with spacing dH , dV in the horizontal and ver-

tical directions, respectively. The beamset ΓBS is a collection

of DFT beams, defined on a grid of evenly spaced azimuth

angles {θh}h=1,...,H and elevation angles {φv}v=1,...,V . The

beam bh,v is defined as the following MH ×MV matrix:

1√
MH

[1, e−j2π
dH
λ

sin φv cos θh , . . . , e
−j2π

dH
λ

(MH−1) sinφv cos θh ]T⊗
1√
MV

[1, e−j2π
dV
λ

cos φv , . . . , e
−j2π

dV
λ

(MV −1) cos φv ], (2)

where j =
√
−1, ⊗ denotes the Kronecker product and λ is

the wavelength. If beam bh,v is selected then the main lobe

points in the direction with azimuth/elevation angles θh, φv .

II. BAYESIAN OPTIMIZATION: PRELIMINARIES

Bayesian optimization (BO) is a black-box optimization

technique that maximizes an unknown function f : X → R,

where the domain X is a metric space, i.e., a (possibly

discrete) set endowed with a metric δ. At each iteration i, BO

chooses a value of the input variable xi, observes a (possibly)

noisy sample f̃(xi) (also called the reward) and updates its

estimate of f . BO is derivative-free since it is agnostic to

the gradient of f and does not attempt to estimate it. BO is

especially useful when a near-optimal point needs to be found

within a few iterations, due to the expense of evaluating f . We

refer to [16] for an in-depth overview of BO. Next we recall

its salient features.

Gaussian process. In order to infer the value of the function

f at unseen points, BO relies on a statistical model that is

typically a Gaussian Process (GP) [17]. Formally speaking, a

GP is a collection of random variables, any finite collection

of which has a multivariate Gaussian distribution. Hence, to

define a GP we require a function defining the mean of

each random variable and another function describing the

covariance between any pair of variables.

The mean of the GP at each point x is defined via the prior

mean function m(.) : X → R, which provides a reasonable

estimation of f(x), prior to any observation. By default, one

can set m(x) = constant for all x ∈ X . Yet, the choice of an

informative prior by, e.g., domain knowledge and/or simulation

helps BO to restrict the search region and avoid a cold start.

The covariance between any two elements of the GP is

defined via a kernel function k(x, x′) : X × X → R. Matérn

kernels [17] and the radial basis function (RBF) are classic

examples of kernel functions. For instance, the RBF kernel is:

kRBF
θ (x, x′) = θ1 exp

(
δ(x, x′)

θ22

)
, ∀x, x′ ∈ X (3)

where δ is a distance metric and θ = [θ1, θ2] is the vector of

hyper-parameters. The covariance between f(x) and f(x′) is

then computed as Σx,x′ = kθ(x, x
′) + σ21I(x = x′), where σ

is the standard deviation of the observation noise and 1I(.) is

the indicator function. The kernel determines the smoothness

of function f with respect to the metric δ.



BO is an iterative process with three main components. At

each iteration we first infer the reward at unmeasured points

via the GP model. Then, we pick a new point to measure.

Finally, we tune the kernel hyper-parameters.

Inference. Until iteration i − 1 we have chosen points

xi−1 = {x1, . . . , xi−1} and observed the corresponding re-

wards f̃i−1 := {f̃(x1), . . . , f̃(xi−1)}. At iteration i we want

to infer the reward f(x) for any point x. By definition of

a GP, the random variables f̃i−1, f(x) are jointly Gaussian;

moreover, their mean and covariance matrix can be obtained

via the prior mean and kernel function, as described above.

Therefore, we can infer f(x) from previous measurements via

the classic Gaussian posterior probability formula:

f(x) | f̃i−1,xi−1 ∼ N
(
µx +Σx,xi−1

Σ−1
xi−1

(r̃i − µxi−1
),

Σx − Σx,xi−1
Σ−1

xi−1
ΣT

x,xi−1

)
(4)

where µxi−1
= [m(x1), . . . ,m(xi−1)], Σx,xn

=
[Σx,xn

]1≤n<i, and Σxi
= [Σxn,xm

]1≤n,m<i.

Choice of next point. Choosing the next point xi is typically

done by maximizing an acquisition function a that addresses

the following exploration vs. exploitation dilemma. On the

one hand, we want to exploit the learnings from previous

observations and choose xi where the GP posterior mean is

high. On the other hand, to avoid getting stuck in local optima

we should explore uncharted regions of X where the GP

standard deviation is high. A well-studied acquisition function

is expected improvement aEI(x), computing the expectation of

the improvement of the reward upon selecting x with respect

to the highest expected reward:

aEI(x) = E

[
f(x)− max

x′∈X
E[f(x′)]

]+
, ∀x ∈ X (5)

where expectations are with respect to the GP posterior.

Hyper-parameters θ, σ can be learned on-the-fly, by maxi-

mizing the log-likelihood of the collected reward samples.

The cumulative regret of BO (with respect to the oracle

solution that chooses the optimal point at all times) grows

with the square root of the time horizon, as in [18].

III. BAYESIAN OPTIMIZATION FOR BEAMTRACKING

We now return to our beamtracking problem. We first

present our beamset design principles, that we address via BO.

A. Design principles

i) After a UE enters the cell, the BS wants to generate

beamsets that can track the high RSRP beams in as few time

slots as possible, since beams with low RSRP result in low

data rate transmissions for the UE.

ii) The reason we can hope to do effective beamtracking

without measuring all beams is that there are correlations in

RSRP across the different beams in ΓBS and across time.

In particular, as the angular spread of the beams decreases,

the RSRP function is increasingly smooth across ΓBS, and as

the time slot frequency increases with respect to the channel

coherence time, the RSRP function is smoother across time.

iii) The BS needs to determine how many beams should be

proposed to the UE at each iteration; as the uncertainty on

RSRP decreases, then fewer beams should be used.

Next we show how points i)-iii) can be addressed via BO.

B. Problem formulation via Bayesian optimization

We model the unknown RSRP function for a UE ft(b) :=
|u∗H(t)b|2 as a GP whose input variables are x := (t, b),
where t = 0, 1, . . . and b ∈ ΓBS. Here, time t = 0 denotes

the time that the UE enters the cell served by the BS. As new

RSRP measurements are collected over time, we can infer

the RSRP offered by a beam at the next iteration via a GP

surrogate model, analogous to (4). In particular, we can think

of one BO iteration per time slot and so in the sequel we shall

use the terms “iteration” and “time slot” interchangeably.

There exist a few twists to the vanilla BO model introduced

earlier. First, we have to deal with the augmented time variable

t, which we discuss in Section III-C. In particular, at a

given time t = t′ we can only request measurements of the

form ft′(b). Second, we are not simulataneously trying to

approximate ft(b) for all t, b. At time t we are most interested

in ft′(b) for t′ close to t. Third, we have the freedom to

choose multiple beams B ⊂ ΓBS in each time slot, while the

acquisition function framework in vanilla BO only caters for

a single function evaluation in each iteration. Fourth, we do

not simply want to maximize the performance of a beamset in

terms of RSRP, but we also wish to limit the associated beam

management reporting overhead.

Next we describe our BO approach for beamtracking. We

start by defining the kernels, then we construct the prior mean

for the GP. Finally, we show how to choose the beamset.

C. Gaussian Process kernel design

The smoothness properties of f , discussed in point ii) above,

are captured by the GP kernel k(·, ·). It is convenient [19] to

decouple the effect of beam and time variables and write the

kernel as the product of two independent kernels:

kθ
(
(t, b), (t′, b′)

)
:= ktime

θ (t, t′)× kbeamθ (b, b′). (6)

1) Time kernel: The time kernel ktime
θ (t, t′) describes the

correlation of two RSRP measurements taken at iterations t
and t′. We want our beamtracking method to be applicable

to any UE mobility pattern, which we do not even attempt to

infer. The most robust choice is then to assume that ktime
θ (t, t′)

fades as |t − t′| increases; hence, the time kernel effectively

decides the rate at which past samples are forgotten. Our

choice for ktime
θ is the RBF kernel (cf. Equation 3)

ktime
θ (t, t′) := θ1 exp

(
− t− t′

θ2

)2

, ∀ t, t′ ≥ 0. (7)

where 1/θ2 is the forgetting rate.

2) Beam kernel for DFT beams: To define the beam kernel

kbeamθ (b, b′) one has to first choose the metric δ describing

the distance between two beams. We propose here a natural

approach based on the definition of DFT beams in Section I-B.

Since beams pointing in similar directions are expected to



produce similar RSRP values, it is natural to define the kernel

distance δ between two DFT beams bh,v and bh′,v′ as the

weighted Euclidean distance between their indexes:

δbeamℓ (bh,v, bh′,v′) =
√
(h− h′)2/ℓH + (v − v′)2/ℓV (8)

where the weights ℓH , ℓV account for different spacing in

azimuth and elevation of the DFT angle grid. A classic kernel

choice [17] is the Matérn kernel kbeamθ (b, b′), that writes:

1

Γ(ν)2ν−1

(√
2ν δbeamℓ (b, b′)

)ν

κν

(√
2ν δbeamℓ (b, b′)

)
(9)

where the kernel hyper-parameters are θ = [ν, ℓH , ℓV ], κν is

the modified Bessel function of order ν and Γ denotes the

Gamma function. Importantly, the parameter ν controls the

smoothness of the learned function.

D. Gaussian process prior mean

We also wish to make use of historical RSRP measurements

to restrict the beam search for a new UE when it first connects

to the BS. A natural way is to compute the GP prior mean

mt(b) := m(b), ∀ t as the average of the RSRP measurements

reported by the UEs in the past to the same BS when beam

b ∈ ΓBS was deployed at the BS. This clearly gives a coarse

estimation of f , but it can bias the beam search and rule

out beams that never worked well in the past (e.g., beams

with high elevation degree for the BS in rural areas with UEs

located at low altitude). Else, if historical data is not available

at the BS, one can set mt(b) = constant for all t, b.

E. RSRP Inference

At time t, the BS infers the function ft(b) for all b ∈ ΓBS

via the GP posterior formula (4), where x := (t, b), with t
fixed and beam b ranging over ΓBS, and where past sampling

points are {(k, b′)}k=0,...,t−1,b′∈Bk
.

F. Beamset optimization via parallel acquisition function

Next, we discuss how the BS chooses the next beamset Bt

on which the UE is asked to report RSRP measurements to

the BS. First, we assume that the beam bt used by the UE for

data transmission during slot t is the one with highest RSRP

among the proposed beamset Bt. We then define accordingly:

ft(B) := max
b∈B

ft(b), ∀B ⊂ ΓBS, t = 0, 1, . . . (10)

As in the classic BO framework, we choose the expected im-

provement acquisition function (see Equation 5). However, to

disincentivize sampling the entire beam dictionary we include

a UE feedback overhead, modeled as a convex increasing

function h(.) of the beamset cardinality |B|, with h(0) = 0.

Then, the beamset Bt chosen by the BS at time t is given by:

Bt = argmax
B⊂ΓBS

E [ft(B) − f∗
t ]

+ − h(|B|), (11)

where f∗
t , as advocated in [19], is the highest RSRP that is

believed to be attainable across all beams at time slot t, i.e.,

f∗
t := max

b∈ΓBS

E[ft(b)]. (12)

The expression (11) is generally referred to as parallel BO

[20], where multiple evaluations of the unknown function

are possible. To solve the combinatorial problem efficiently a

number of approaches are available in the literature, but they

either rely on the assumption that observations are sequential

[21] (while they occur at adjacent transmission units in our

case, hence practically simultaneously from a computation

perspective) or that the GP domain X is continuous [22]

(while X is inherently discrete in our case). Moreover, such

approaches are particularly suited when the dimension of X
is large (whereas it is just 2 in the case of DFT beams).

Therefore, in the next section we derive an efficient method

tailored for our use case that approximates the optimal Bt with

low complexity and theoretical guarantees.

1) Greedy algorithm with theoretical guarantees: We now

design a method that approximates the optimal Bt with low

complexity and theoretical guarantees. Since our analysis

holds for any iteration t, we will omit subscript t.
Auxiliary problem. We focus first on a simplified version of

problem (11), where the beamset size is fixed and equal to n:

J∗(n) = max
B⊂ΓBS:|B|=n

J(B) := E [f(B)− f∗]
+
. (13)

We will prove that J(B) is a monotone and submodular

function of the beamset B. Monotonicity states that larger sets

bring higher rewards. Submodularity is analogous to concavity

and claims that the incremental reward of adding an element

to a certain initial set decreases as the initial set enlarges.

Definition 1. The set-valued function J is monotone if J(B) ≤
J(B′), for all B ⊂ B′.

Definition 2. The set-valued function J is submodular if, for

all B ⊂ B′ and b∗ /∈ B′, J(B∪b∗)−J(B) ≥ J(B′∪b∗)−J(B′).

Proposition 1. Function J(.) is monotone and submodular.

Proof: To prove monotonicity we have to show that

E [f(B)− f∗]
+ ≤ E [f(B′)− f∗]

+
, if B ⊂ B′ ⊂ ΓBS.

This simply stems from the fact that f(B) is the maximum

over a set of random variables {f(b)}b∈B′ that is strictly larger

than {f(b)}b∈B. To prove submodularity we observe that, if

B ⊂ B′ and b∗ /∈ B′,

[f(B ∪ b∗)− f∗]+ − [f(B)− f∗]+ (14)

= [f(b∗)−max{f∗, f(b) ∀ b ∈ B}]+ (15)

≥ [f(b∗)−max{f∗, f(b) ∀ b ∈ B′}]+ (16)

= [f(B′ ∪ b∗)− f∗]+ − [f(B′)− f∗]+. (17)

By taking the expectation of (14),(17) one obtains the sub-

modularity definition of J , q.e.d.

By exploiting a classic result in combinatorial analysis

[23] we can claim that a simple greedy algorithm that adds

iteratively the beam maximizing the incremental expected

improvement (Algorithm 1) achieves an optimality gap of e−1.

Theorem 1. [23] Let J = minb∈ΓBS
J({b}). Let J(Bg(n))

be the reward achieved by Algorithm 1. Since J is monotone



and submodular, then the optimality gap is bounded by e−1:

J∗(n)− J(Bg(n))

J∗(n)− J
≤ e−1 ≈ 0.37, ∀n ≥ 1. (18)

Algorithm 1: (Auxiliary) Fixed size beamset choice.

1 Initialization: Set Bg(0) := ∅.
2 for k = 1, . . . , n do
3 Compute

bg(k) := argmaxb∈ΓBS\B
g(k−1) J(B

g(k − 1) ∪ b)
4 Set Bg(k) := Bg(k − 1) ∪ bg(k)

5 return beamset Bg(n)

Optimized beamset. We can now finally address our original

problem in (11), where the beamset size is not fixed. In princi-

ple, one could run Algorithm 1 for all n’s and then choose the

beamset Bg(n̄) with highest objective J(Bg(n̄)) − h(n̄), for

some n̄ ≥ 1. Yet, recomputing the optimized beamset Bg(n)
from scratch for every n is redundant: the iterative nature of

greedy Algorithm 1 suggests that, once Bg(n) is computed,

one only has to add bg(n+1) to obtain Bg(n+1). Moreover,

it is not necessary to add beams indefinitely, but only until a

limited size. To show this, we first observe that J(Bg(n)) is

the discrete version of a concave increasing function.

Fact 1. The function J(Bg(n)) is increasing in n, while

its increments are decreasing in n, i.e., for all n > 1, i.e.,

J(Bg(n+ 1))− J(Bg(n)) ≤ J(Bg(n))− J(Bg(n− 1)).

The difference between a concave increasing function (J)

and a convex increasing function (h) has at most one inflection

point. Thus, to approximate the beamset selection problem

(11) it suffices to add beams iteratively as in greedy Algo-

rithm 1, until the objective function J(Bg(n)) − h(n) starts

decreasing. We recap this procedure in Algorithm 2, used by

the BS to compute at each time slot t the beamset Bt.

Algorithm 2: Choice of beamset Bt at time slot t ≥ 0

1 Goal: maximize expected improvement as in (11).
2 Initialization: Set Bg(1) := argmaxb∈ΓBS

J(b).
3 for n = 2, 3, . . . do
4 Compute

bg(n) = argmaxb∈ΓBS\B
g(n−1) J(B

g(n− 1) ∪ b)
5 Set Bg(n) := Bg(n− 1) ∪ bg(n)
6 if J(Bg(n))− h(n) ≤ J(Bg(n− 1))− h(n− 1) then
7 return beamset Bt = Bg(n− 1).

8 BS proposes beamset Bt to the UE at time slot t.

Practical implementation of Algorithm 2. A closed formula

for J(B) is only known for |B| = 1, 2 (see [17], [21],

respectively). Hence, in practice, J(B) should be estimated

via Monte-Carlo sampling from the GP posterior distribution

for |B| ≥ 3. To further reduce complexity, efficient sampling

methods with linear complexity in the number of observations

can be used, such as the one in [24].
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Fig. 1. Time history of a typical UE at time slots 0, 30. Top row: Acquisition
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crosses). Center row: Posterior mean with predicted best beam index (green
star) and path trace (green line) overlaid. Bottom row: True RSRP landscape
with true best beam (blue star) and path trace (blue line) overlaid.

Algorithm 3: BO for beamtracking

1 Initialization. Choose the kernel function kθ as the product
of beam and time kernels as in Sect. III-C;

2 BS computes the prior mean m as in Sect. III-D;
3 BS initializes the hyper-parameters θ, σ;
4 UE connects to BS at time t = 0.
5 for time slot t = 0, 1, . . . do
6 BS computes the beamset Bt via Algorithm 2;
7 UE reports the RSRP for each beam in Bt;
8 BS uses beam bt ∈ Bt with highest reported RSRP for

data transmission to the UE until next slot;
9 BS updates θ, σ via max-likelihood;

10 end

For the reader’s convenience, in Algorithm 3 we recap the

main steps of our BO algorithm for beamtracking. In Figure

1 we provide a typical UE time history visualizing the 2D

acquisition function, posterior distribution, and ground truth.

IV. NUMERICAL RESULTS

We evaluate our approach using a 5G NR 3GPP-compliant

system level simulator and benchmark its performance against

single-slot (spatial) algorithms that only use RSRP information

from the current timeslot and an LSTM-based multi-slot

(spatio-temporal) algorithm that (like BO) also utilizes past

measurements. In out BO setup we use a non-informative prior

mean function (i.e., mt(b) = 0 for all t, b ∈ ΓBS), mimicking

execution at the BS without any offline training or a priori

tuning. The simulation specifications are found in Table I.

We first compare our method to two spatial interpolation

approaches: a Scipy implementation of (rectilinear bivariate)

spline interpolation [25], and a Scikit-Learn implementation

of Gaussian process regression [26] with a Matérn 3/2 kernel.

For these interpolation methods, we first sample a subset

of beams Bφ ⊂ ΓBS where the subscript φ denotes the



TABLE I
SIMULATION CONFIGURATION PARAMETERS

Scenario 3D-UMi-street Canyon
Deployment Hexagonal grid, 7 BS sites, 21 cells,

BS antenna height 10m (downtilt 10◦)
ISD 100m
Carrier 28 GHz
Bandwidth 50 MHz
Spacing 120 kHz
Frame TDD, DL data frame only
gNB antenna (M, N, P, Mg, Ng) = (16, 16, 2, 1, 1)

dual-polarized panel arrays
gNB GoB 64 Tx beams: Tx Beam Azimuth (deg)

= −56.25 + 7.5n, n = 0, . . . , 15
Elevation (deg) = {0, 7.5, 15, 22.5}

UE antenna (M, N, P) = (2, 2, 2) per dual-polarized panel
UE orientation uniformly distributed

HARQ No retransmission
Traffic Models Traffic model: full buffer
UE distribution 10 UEs/sector, randomly distributed

100% of UEs outdoor
UE speed 30, 45, 60, 75, 90 km/h
Time slot 80ms
UE trajectory Straight with random direction
Channel 3GPP spatial consistency with proc. A

proportion of ΓBS, and choose the best beam bt according to

argmaxb∈Bφ
RSRP(b). We consider two sampling fractions:

φ ∈ {0.25, 0.5}. For our BO method, we consider two setups:

a high accuracy configuration prioritizing accuracy by allow-

ing for a larger sampling beamset cardinality and encouraging

more exploration by reducing the overhead penalty function

h(.); a low overhead configuration prioritizing overhead by

restricting the beamset cardinality to be at most 16 (i.e. 12.5%
of the 64 available beams in ΓBS) and increasing the penalty

function h(.), thereby making the sampling more greedy.

The performance of all schemes for 3 different UE speeds

is shown in Table II. Here, RSRP error is measured in

dB. Gaussian process regression (GPR) requires a sampling

fraction of 0.5 to achieve acceptable accuracy and RSRP error,

although this error is above 1 dB across all speeds even with a

sampling fraction of 0.5. Of these two interpolation methods,

spline interpolation performs the best across all three metrics,

which is notable since it has a lower computational complexity.

The high accuracy BO method achieves over 90% accuracy

and sub 1 dB RSRP error with an overhead around 20% across

all speeds tested. Only spline interpolation achieves marginally

higher accuracy and lower RSRP error at a UE speed of 90

km/h, albeit with over double the overhead. Even with an

overhead of only 12%, the low overhead BO method is able

to achieve approximately 90% accuracy and 1 dB RSRP error

at UE speeds lower than 60 km/h.

Finally, we compare our BO method for beamtracking to

a spatio-temporal algorithm described in [27] that utilizes a

reimplementation of PredRNN, a recurrent neural network for

predictive learning using Long Short-Term Memory (LSTM)

units [28]. PredRNN uses a so-called unified memory pool,

allowing the spatio-temporal LSTM units to extract both spa-

tial and temporal representations simultaneously. We refer to

[28] for full details. PredRNN [27] predicts the most probable
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Fig. 2. Left column: Bayesian optimization (low overhead configuration)
evolution of accuracy, overhead, and RSRP error for varying UE speeds. Right
column: PredRNN ((J,K) = (5, 15) configuration) evolution of accuracy,
overhead, and RSRP error for varying UE speeds.

length-K sequence of best beams b∗ given the previous length-

J sequence including the current observation:

b∗t+1, . . . , b
∗
t+K = argmax

bt+1,...,bt+K

p
(
bt+1, . . . bt+K |b∗t−J+1, . . . b

∗
t

)
.

Given that PredRNN requires noiseless inputs, we sample all

beam indexes for J time slots and then predict the next K
time slots, repeating this sampling/prediction cycle until the

UE has left the domain. In Table II we show performance for

(J,K) = (5, 5) (i.e., φ = 0.5) and for (J,K) = (5, 15) (i.e.,

φ = 0.25). PredRNN typically achieves high accuracy and

low RSRP error when the overhead is 0.5 (which is higher

overhead than for the BO methods), but the accuracy and

RSRP error deteriorate as we lower the overhead to 0.25.

Figure 2 shows the evolution of accuracy, overhead, and

RSRP error for both BO and PredRNN (left and right columns,

respectively). For our BO-based approach, accuracy and RSRP

error degrade with increasing UE speed, as seen in Table II.

Interestingly, the accuracy and RSRP error improve approxi-

mately monotonically, while there is a distinct undershoot in

the overhead metric near t ≈ 0.3 before converging towards

approximately 12.5% (or 20% for the high accuracy configu-

ration). We attribute this undershoot to the development of the

time kernel during the cold-start: without a priori knowledge

the RSRP landscape is initially treated as static (with a large

temporal length scale), but as RSRP measurements come in

temporal correlations become apparent, driving the temporal

length scale down. The shift from static to dynamic RSRP

landscape manifests itself in a broadening of the posterior,

promoting more exploration and an increase in the overhead.

For PredRNN, the overhead is at 100% during the training

phase and then comes down to 0% during the prediction phase.

The accuracy and RSRP error start to deteriorate as soon as we



TABLE II
PERFORMANCE OF SPATIAL AND SPATIO-TEMPORAL METHODS AT VARYING UE SPEEDS.

s = 30 km/h s = 60 km/h s = 90 km/h

Accuracy Overhead RSRP error Accuracy Overhead RSRP error Accuracy Overhead RSRP error

Spline φ = 0.25 0.804 0.25 2.36 0.781 0.25 2.35 0.770 0.25 2.37
φ = 0.5 0.934 0.5 0.653 0.926 0.5 0.639 0.916 0.5 0.669

GPR φ = 0.25 0.329 0.25 13.1 0.353 0.25 12.0 0.361 0.25 11.3
φ = 0.5 0.885 0.5 1.21 0.880 0.5 1.14 0.872 0.5 1.11

PredRNN (J,K) = (5, 5) 0.933 0.5 0.217 0.924 0.5 0.294 0.903 0.5 0.507
(J,K) = (5, 15) 0.891 0.25 0.465 0.873 0.25 0.705 0.815 0.25 1.66

BayesOpt low overhead 0.943 0.116 0.627 0.900 0.122 1.05 0.874 0.126 1.23
high accuracy 0.961 0.195 0.425 0.931 0.207 0.700 0.908 0.21 0.929

enter the prediction phase, especially for the higher UE speeds.

This is in contrast to our BO-based method, which after the

cold-start, displays consistent performance over the remaining

slots. A major difference between our BO-based method and

PredRNN is that the latter requires offline training whereas the

BO results in this section are obtained entirely online with no

pretraining–although in principle BO can leverage historical

data to train its prior mean, as discussed in Section III-D.

V. CONCLUSIONS

In this paper we have described how Bayesian Optimization

(BO) provides an effective paradigm for beamtracking so that

the UE can maintain connection to a high-RSRP beam by

measuring a limited set of beams in every time slot. There

are multiple ways in which this work can be extended. First,

if the beam dictionary is more exotic than classic DFT then

the kernel choice is less evident. One could use meta-learning

techniques [29] where the metric δ computing the distance

between points in X is defined by a neural network. Second,

one could extend our approach by concurrently scheduling

wide and narrow beams, to achieve increased flexibility and

reduced overhead with respect to the standard hierarchical

wide (SSB) and narrow (CSI-RS) beam selection in 5G.
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