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Abstract—Massive multiple-input multiple-output (MIMO)
precoders are typically designed by minimizing the transmit
power subject to a quality-of-service (QoS) constraint. However,
current sustainability goals incentivize more energy-efficient
solutions and thus it is of paramount importance to minimize
the consumed power directly. Minimizing the consumed power
of the power amplifier (PA), one of the most consuming com-
ponents, gives rise to a convex, non-differentiable optimization
problem, which has been solved in the past using conventional
convex solvers. Additionally, this problem can be solved using
a proximal gradient descent (PGD) algorithm, which suffers
from slow convergence. In this work, in order to overcome the
slow convergence, a deep unfolded version of the algorithm is
proposed, which can achieve close-to-optimal solutions in only
20 iterations as compared to the 3500 plus iterations needed
by the PGD algorithm. Results indicate that the deep unfolding
algorithm is three orders of magnitude faster than a conventional
convex solver and four orders of magnitude faster than the PGD.

Index Terms—deep unfolding, massive MIMO, PA efficiency,
precoders, proximal gradient descent

I. INTRODUCTION

A. Problem Formulation

Reducing carbon emissions and energy consumption is more
than ever a priority, as it is currently put forward by both
Europe’s Green Deal [1] and the United Nations Sustainable
Development Goals [2]. Nevertheless, the estimated electricity
consumption and carbon footprint of the wireless communi-
cations sector continues to rise [3]. As such, when looking at
the development of 6G, energy-reducing techniques are of the
utmost importance. In current 5G networks, massive MIMO
is one of the key enablers [4]. Massive MIMO uses clever
precoding schemes to spatially multiplex many users, leading
to higher spectral efficiency [5]. These precoders are typically
obtained by minimizing the transmit power subject to a QoS
constraint (e.g., a per-user signal-to-interference-plus-noise
ratio (SINR) constraint). However, it is known that the power
consumed by the PAs, one of the most consuming components,
does not scale linearly with the transmit power [6], [7]. As
such, minimizing the PAs consumed power, rather than the
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transmit power, can lead to significant energy savings [8].
Moreover, [9] and [8] have shown, for single-user and multi-
user systems respectively, that this typically leads to sparse
solutions in the number of activated antennas. This can further
be exploited by deactivating the RF chains of the unused
antennas. Additionally, from [8], [9], it is clear that minimizing
the consumed power leads to a convex optimization problem,
with the objective function being a composite of a convex, dif-
ferentiable function and a convex, non-differentiable function.
In [8], this problem is solved for a multi-user system using
convex solvers. However, when aiming at real-time operation,
faster algorithms are required. Given the form of the objective
function, a proximal gradient descent (PGD) algorithm can
be used to find the global optimum. Unfortunately, PGD suf-
fers from slow convergence, requiring many iterations, which
makes the use for real-time applications such as precoding
difficult. Therefore, in this work, a deep unfolded version of
the PGD algorithm is proposed, which drastically speeds up
the optimization, delivering close-to-optimal approximations,
in only 20 iterations, as compared to the 5000 needed by PGD.

B. Deep Unfolding

In recent years, algorithm unrolling, also known as deep
unfolding, has provided many promising results in signal and
image processing [10]. For instance, the technique has been
successfully applied in compressed sensing, sparse coding,
image denoising, detection and channel decoding in massive
MIMO and many more application domains [10]–[12]. Deep
unfolding makes the connection between iterative algorithms
and deep neural networks. In this scheme, each iteration of
an iterative algorithm is represented as a layer in a neural
network. This is done for a fixed number of layers/iterations
to form a neural network of fixed size. Running the neural
network emulates the execution of the traditional algorithm
for a finite number of iterations. Furthermore, the main benefit
over the traditional algorithm is the fact that algorithm-specific
parameters are learned, using backpropagation and stochastic
gradient descent-based optimization, while for the traditional
algorithm these parameters need to be manually tuned. Learn-
ing these parameters in each layer/iteration, produces algo-
rithms that are highly optimized for the problem at hand,
and can as such provide faster convergence rates [11]. Many
precoding problems lead to iterative optimization algorithms.
Consequently, some works have proposed the use of deep
unfolding to solve these problems. For instance, in [13] a
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deep unfolding algorithm is proposed to solve the sum-rate
maximization problem in multi-user MIMO. Similarly, in [14],
a deep unfolding algorithm is proposed that maximizes the
sum-rate while being robust against channel estimation errors.
Both works consider a transmit power constraint, neglecting
the consumed power in their analysis. In this work, we
consider the consumed power and minimized it, which results
in a power consumption reduction.

C. Contributions

In this work, the design of a zero-forcing (ZF) precoder
under a realistic PA consumption model is studied. Hence, the
PAs consumed power is minimized, rather than the transmit
power. First, we show that this leads to a convex optimization
problem, with a composite objective function consisting of
a convex, differentiable and a convex, non-differentiable part.
Given the form of this cost function, the problem can be solved
using a PGD algorithm. To support real-time operations, a
deep unfolded version of the PGD algorithm is proposed. It
is shown that this unfolded algorithm converges to close-to-
optimal solutions, much faster than the traditional PGD.

Notations: Vectors and matrices are denoted by bold low-
ercase and bold uppercase letters respectively. Superscripts
(·)∗, (·)ᵀ and (·)H stand for the conjugate, transpose, and
Hermitian transpose operators respectively. Subscripts (·)m
and (·)k denote the antenna and user index. The expectation
is denoted by E {·}, while Da = diag (a) denotes a diagonal
matrix whose diagonal entries are equal to the vector a. The
element at location (i, j) in the matrix A is indicated as [A]i,j .
The symbols ‖·‖1, ‖·‖2, ‖·‖2,1 and ‖·‖F indicate the L1,
L2, L2,1 and Frobenius norms, respectively. A1/2 denotes the
positive square root of A, namely the only Hermitian positive
semidefinite matrix such that A = A1/2A1/2.

II. SYSTEM MODEL

A. Signal Model

Throughout this work, a massive MIMO base station (BS) is
considered, equipped with M transmit antennas and serving K
single-antenna users. The precoded symbol vector x ∈ CM×1

is given by

x = Wᵀs (1)

where W ∈ CK×M is the precoding matrix and s ∈ CK×1

are the transmit symbols, which are assumed to be zero mean,
uncorrelated and have unit power. The received signal r ∈
CK×1 is then

r = Hx+ ν (2)

where H ∈ CK×M is the channel matrix. The vector
ν ∈ CK×1 contains complex independently and identically
distributed (i.i.d.) additive white Gaussian noise (AWGN) with
zero mean and variance σν .

B. Power Consumption Model

Given that the transmit symbols are uncorrelated, the trans-
mit power at antenna m is

pm = E
{
|xm|2

}
=

K−1∑
k=0

|wk,m|2 (3)

where xm = [x]m is the precoded symbol at antenna m and
wk,m = [W]k,m is the precoding coefficient at antenna m for
user k. This gives a total transmit power

ptx =

M−1∑
m=0

K−1∑
k=0

|wk,m|2 = ‖W‖2F . (4)

When considering a realistic power consumption model, the
transmit power does not scale linearly with the consumed
power. In other words, the efficiency of the PA is not fixed
but varies with the transmit power, i.e., typically the closer
the PA operates to saturation, the higher the efficiency [7].
For instance, for class B amplifiers, the efficiency scales with
the square root of the transmit power [6], [9]

ηm = ηmax

√
pm
pmax

(5)

where ηm is the efficiency of the m-th PA, ηmax is the maximal
PA efficiency and pmax is the maximal output power of the
PA. The total consumed power by the PAs is then

pcons =

M−1∑
m=0

pm
ηm

=

√
pmax

ηmax︸ ︷︷ ︸
=α

M−1∑
m=0

√
pm

= α

M−1∑
m=0

√√√√ K∑
k=1

|wk,m|2 = α ‖W‖2,1 .

(6)

III. PROBLEM FORMULATION

Classical precoders such as ZF minimize the transmit power
under a QoS constraint (e.g., a per-user SINR constraint) [5].
However, when aiming to reduce the PAs’ consumed power,
one should minimize the consumed power given in (6) rather
than the transmit power in (4). As such, a ZF precoder under
the PA consumption model in (6) can be formulated as

min
W

α ‖W‖2,1

s.t. HWᵀ = σνD
1/2
γ

(7)

where Dγ = diag (γ0, . . . , γK−1) and γk is the target SINR
for user k. In this formulation, the consumed power by the PAs
is minimized under a SINR constraint per user. The precoder
design problem (7) has been analyzed in [8] and can be solved
by using convex optimization toolboxes (e.g., CVXPY [15]).
Problem (7) is equivalent to

min
W

α ‖W‖2,1

s.t.
∥∥∥HWᵀ − σνD1/2

γ

∥∥∥2

F
= 0.

(8)



This optimization problem can be reformulated using a La-
grangian function as follows

L = α ‖W‖2,1 + µ
∥∥∥HWᵀ − σνD1/2

γ

∥∥∥2

F

= µ

(
λ ‖W‖2,1 +

∥∥∥HWᵀ − σνD1/2
γ

∥∥∥2

F

) (9)

where λ = α/µ and µ is the Lagrange multiplier.

IV. PROXIMAL GRADIENT DESCENT

The Lagrangian function in (9) is of the form

L = λg(W) + f(W) (10)

with f(W) a convex, differentiable function and g(W) a con-
vex, non-differentiable function. Given this form, the problem
can be solved using PGD [16]. This algorithm first performs
a gradient update with respect to the differentiable function
f(W). Next, the proximal operator of λg(W) is computed
on the result of the gradient update. The general formulation
of the iterative proximal algorithm is given by

W(i+1) = proxληg

(
W(i) − η∇f(W(i))

)
(11)

where η is the gradient step size and proxληg(·) is the
proximal operator of the function λg(·). Since W is a complex
matrix, ∇f(W) is defined as ∇f(W) = ∂f(W)/∂W∗ =
WHᵀH∗ − σνD1/2

γ H∗. Additionally, the proximal operator
is only defined for real matrices, and consequently the real
and imaginary parts of the complex matrix are concatenated
in order to produce the following algorithm

V = W(i) − η
(
W(i)HᵀH∗ − σνD1/2

γ H∗
)

[
W

(i+1)
<

W
(i+1)
=

]
= proxλη‖·‖2,1

([
V<
V=

])
.

(12)

Here, λ is dependent on the Lagrange multiplier µ and
controls the trade-off between minimizing g(W) and f(W).
Furthermore, convergence is guaranteed if the step size for the
gradient update is η ≤ 1/L, where L is the Lipschitz constant
of ∇f(W(i)), which is equivalent to an upper bound on the
largest eigenvalue of HᵀH∗ [16].

In order to define the proximal operator of the L2,1 norm,
we use the fact that the L2,1 norm is a separable function,
as it can be expressed as the L1 norm over the column-wise
L2 norm. Hence, using the property of proximal operators for
separable functions [17], the proximal of the L2,1 norm simply
becomes a series of L2-proximals on each column of W. As
such, the proximal operator for column m of W (denoted as
wm) can be expressed as

proxλη‖·‖2,1(wm) =

(
1− λη

max(‖wm‖2 , λη)

)
wm ∀m

=

{(
1− λη

‖wm‖2

)
wm if ‖wm‖2 ≥ λη

0 if ‖wm‖2 < λη
.

(13)

V. DEEP UNFOLDED PROXIMAL GRADIENT DESCENT

The unfolded proximal gradient descent (UfPGD) algorithm
follows a similar structure as the algorithm in (12). The
algorithm is unrolled for a fixed number of iterations I . As
such, a neural network consisting of I layers is constructed,
with each layer performing the following operations

V = W(i) − η(i)
(
W(i)HᵀH∗ − σνD1/2

γ H∗
)

[
W

(i+1)
<

W
(i+1)
=

]
= proxλ(i)η(i)‖·‖2,1

([
V<
V=

])
.

(14)
The key difference between (14) and (12) is the fact that,
in the unfolded iteration, the parameters λ(i) and η(i) are
learned parameters that are optimized for each iteration/layer.
More specifically, the parameters λ(i) and η(i) are learned by
minimizing a certain cost function C(W(I)), where W(I) is
the output of the neural network (i.e., the result at the I-
th layer). For instance, this can be done by using stochastic
gradient descent in the following manner

λ(i)
new = λ(i) − β ∂C(W

(I))

∂λ(i)
∀i ∈ [1, 2, · · · , I] (15)

η(i)
new = η(i) − β ∂C(W

(I))

∂η(i)
∀i ∈ [1, 2, · · · , I] (16)

where ∂C(W(I))/∂η(i) and ∂C(W(I))/∂λ(i) can be com-
puted using backpropagation, and β is the learning rate.
The cost function can be defined in two ways, namely in
a supervised or unsupervised manner. When training in a
supervised way, the cost function is simply the mean square
error (MSE) between the output of the neural network W(I)

and the known ground truth label for the optimal precoding
matrix Wgt

C
(
W(I)

)
=
∥∥∥W(I) −Wgt

∥∥∥2

F
. (17)

The ground truth labels can be obtained using convex solvers
such as CVXPY [15]. When using the supervised learning
approach, the MSE acts as a surrogate for the real cost
function we want to optimize, which is the Lagrangian in (9).
Conversely, one can also train the network in an unsupervised
manner by replacing this surrogate loss function with the real
cost function which is defined as

C
(
W(I)

)
= λ

∥∥∥W(I)
∥∥∥

2,1
+
∥∥∥H(W(I)

)ᵀ
− σνD1/2

γ

∥∥∥2

F
.

(18)

Finally, in order to ensure stability during the training, the
values of λ(i) and η(i) are projected into their desired intervals.
First, λ(i) should be in [0,+∞], leading to the following
projection λ(i)

projected = max(0, λ(i)). Second, for the classical
PGD η(i) = 1/L, where L is an upper bound on the largest
eigenvalue of HᵀH∗. This upper bound can be approximated
by the upper limit of the support of the Marchenko-Pastur law,
which is (up to scaling) the asymptotic eigenvalue distribution
for matrices with i.i.d., zero mean and unit variance entries.
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Fig. 1: Sum rate and power consumption gain (PCG) convergence in function of the number of iterations/layers of PGD, unfolding with
supervised training and unfolding with unsupervised training. The results are averaged over 5000 channel realizations taken from the test
set. Note that the target Rsum and PCG (dashed) are obtained using CVXPY.

This approximation is given by L̃ = (
√
K +

√
M)2 [18].

This bound holds with probability one for sufficiently large
K and M . Hence, the value of η(i) is always projected into
the following interval [1/(2L̃), 1/L̃], where the projection is
defined as η(i)

projected = min(max(η(i), 1/(2L̃)), 1/L̃).

VI. SIMULATIONS

A. Training and Hyperparameters Selection

In this section, simulations are performed to compare the
performance of the unfolded and the classical PGD algorithm.
For the following simulations, the training set consists of 105

Rayleigh fading channels sampled from a complex normal
distribution with zero mean and variance one, i.e., [H]k,m ∼
CN (0, 1). The hyperparameters of the unfolding algorithm,
such as the learning rate, batch size, etc. were tuned on a
validation set of 5000 Rayleigh fading channels. Finally, all
simulation results were obtained on an independent test set
of 5000 Rayleigh fading channels. For training, the Adam
optimizer [19] is used with a batch size of 64 and a learning
rate of 0.001. The unfolded algorithm consists of I = 20
unfolded iterations/layers and was trained for 200 epochs, with
early stopping if the validation loss did not further decrease.

B. Performance Evaluation Metrics

To compare the performance of the unfolded and classical
algorithms, two metrics are considered. First, the sum rate

Rsum =

K−1∑
k=0

log2(1 + SINRk) (19)

where SINRk is the SINR of user k. Given a per-user SINR
constraint of 10 dB and K = 8 users, the target sum rate the
algorithm should achieve is 27.68 bits/symbol. Second, the
power consumption gain (PCG) is defined as

PCG =
pZF

cons

pZF−eff
cons

(20)

where pZF
cons is the consumed power of the ZF precoder, and

pZF−eff
cons is the consumed power of the proposed power efficient

precoder (7), the consumed power is computed using (6).

C. Simulation Results

To compare the convergence of PGD and UfPGD, the sum
rate and PCG are evaluated at each iteration/layer. This is done
for K = 8,M = 64, a target per-user SINR of γk = 10 dB
and a noise variance of σν = 1. Note that λ = 1/15 for
both the PGD algorithm and the unsupervised cost function.
Additionally, both PGD and UfPGD are initialized with the
conjugate of the channel, i.e., W(0) = H∗.

In Fig. 1a, the sum rate per iteration is plotted for PGD and
UfPGD with supervised and unsupervised training. From this
figure it is clear that both PGD and UfPGD with unsupervised
training can achieve the target sum rate of 27.68 bits/symbol.
When training in a supervised manner, the unfolded algorithm
is not able to achieve the goal sum rate. Given that for
supervised training the MSE acts as a surrogate for the actual
loss function, it is not able to capture the importance of achiev-
ing the SINR constraint. When using unsupervised training,
the real objective function is optimized, which enables the
algorithm to achieve the SINR constraint.

In Fig. 1b, the PCG per iteration is plotted for PGD and
UfPGD. This figure shows that after 20 iterations, the PGD
algorithm reaches a PCG of approximately one, indicating that
it consumes the same amount of energy as the classical ZF
precoder. It is widely known that PGD suffers from slow
convergence, as is illustrated in Fig. 2, where the PCG is
depicted when the algorithm is run for more iterations. Indeed,
from this figure, it is clear that PGD does eventually reach
the target PCG. However, it needs over 3500 iterations to
get close to the optimal solution. This highlights the benefit
of using the unfolded algorithm, as after 20 iterations it is
close to the optimal solution. This is depicted in Fig. 1b,
where after 20 iterations the unsupervised UfPGD algorithm
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Fig. 2: Power consumption gain (PCG) per iteration of PGD, versus
the target PCG of CVXPY. Averaged over 5000 channel realizations.

reaches a PCG = 1.0915, where the target value (obtained
with CVXPY) is PCG = 1.1160.

When comparing the execution time of UfPGD, PGD1 and
CVXPY in Fig. 3, it is clear that the unfolding algorithm has
the smallest execution time. This is expected as the unfolding
algorithm only needs 20 iterations compared to the 5000
needed by PGD. Additionally, it is clear that general-purpose
numerical solvers such as CVXPY cannot reach sufficiently
low execution times, as the execution times are three orders
of magnitude larger than the unfolding algorithm.

VII. CONCLUSION

In this work, a fast unfolded optimization algorithm is
developed, for a massive MIMO precoder that minimizes the
consumed power rather than the transmit power. It is shown
that the optimization problem gives rise to an objective func-
tion that consists of a convex, differentiable and a convex, non-
differentiable part. Given this form, the optimization problem
is solved using PGD. However, given the slow convergence
rate of the PGD algorithm, a deep unfolded version of the
algorithm is proposed. The proposed algorithm is highly op-
timized for the task at hand, which allows it to achieve close-
to-optimal solutions in only 20 iterations, as compared to the
3500 plus iterations needed by the PGD algorithm. Finally, the
execution time of the proposed algorithm is compared against a
conventional numerical convex solver (CVXPY), showing that
the proposed algorithm is three orders of magnitude faster.
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