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Abstract— In this paper, we propose an extended class of
unitary signal constellations for differential unitary space-time
modulation (DUSTM). We also derive an approximation of the
upper bound on the symbol error probability (SEP) as a general
criterion to find the optimum codes. This criterion is valid for
both group or non-group constellations. For asymptotically high
or low signal-to-noise ratio (SNR), signal-constellation parame-
ters are usually determined based on the rank-and-determinant
(diversity product) or the Euclidean distance (diversity sum)
criterion. Since both these criterion are SNR-independent, the
search results are not necessarily optimum parameters in medium
to low SNRs. Thus instead of using diversity sum or product,
we search for the constellation parameters to minimize the
union-bound based criterion, taking into account the number
of receive antenna and the operation SNR. Simulation results
show that the constellations optimized for the union-bound based
criterion outperform the previous codes resulting from rank-and-
determinant (diversity product) or Euclidean distance (diversity
sum).

I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) systems increase
the channel capacity significantly without the need to increase
the bandwidth or transmit power [1]. The predicted MIMO
capacity can be exploited by space-time (ST) codes [2],
[3]. ST codes are typically designed for the case that the
channel state information (CSI) is available at the receiver.
However, it is difficult to ensure the availability of CSI when
the channel changes rapidly. Moreover, channel estimation in
some cases is either costly or impractical, if not impossible.
Consequently, there are ST code designs that eliminate the
need for the CSI at both the transmitter and receiver. Unitary
space time modulation (USTM) [4] and differential USTM
(DUSTM) [5] are two such schemes; they only require that
the channel remains approximately constant over two block
time intervals. There are two types of signal constellations
(1) Group constellations (codes) [6], [7], every transmitted
signal is still a codeword in the group code. (2) Non-Group
Constellations, several of these codes have been discovered in
[8]–[10]. It is remarked that the constellation design of non-
group codes is much easier than group codes.

In [11], it is argued that when the number of receive
antennas is large, as a consequence low SNR at the receiver,
the minimum Euclidean distance (Diversity Sum) among code
words dominates the performance. Instead of maximizing
diversity product or diversity sum as a design criterion, Wang

et al. [11] optimized the codes such that the union bound on
the SEP is minimized for particular number of receive and
transmit antennas in specific operating SNR. However, it is
shown that optimum codes with minimum union bound in
a particular SNR outperforms the codes designed based on
diversity product or diversity sum for a wide range of SNRs.
They applied this new criterion to the cyclic group codes and
presented some simulations. In this work, we first introduce
an extended class of non-group constellation [10] and search
for the optimum codes to minimize the union bound on the
error probability.

Notation: (·)H denotes conjugate transpose. The trace, de-
terminant and the Frobenius norm of matrix A are trace(A),
det(A) and ‖A‖2

F = tr(AAH). A circularly complex Gaus-
sian variable with mean µ and variance σ2 is denoted by
z ∼ CN (µ, σ2). Matrix I denotes the Identity matrix.

II. SYSTEM MODEL AND DUSTM

We next present the channel model and summarize DUSTM.
Consider a system with M transmit and N receive antennas.
Let hi,j be the channel gain from the i-th transmit antenna
to the j-th receive antenna. We assume all the channel gains
to be independent and identically distributed (i.i.d.) CN (0, 1)
(Rayleigh fading) and remain constant for several symbol
intervals. At time t, complex symbols st,i are transmitted on
antennas i = 1, . . . , M and signal samples yt,j are received
on antennas j = 1, . . . , N . The input-output relation is given
by

yt,j =
√

ρ

M∑
i=1

hi,jst,i + wt,j t = 1, . . . , T. (1)

The additive noise terms vt,j at time t (t = 1, . . . , T ) and on
receiver antenna j (j = 1, . . . , N ) are i.i.d. CN (0, 1). ρ is the
average signal-to-noise ratio (SNR) per receive antenna. All
the samples in (1) can be rearranged in matrix form as

Yτ =
√

ρSτHτ + Wτ (2)

where τ is the block index, Yτ is the T ×N complex received
signal matrix, and Sτ is the T ×M complex transmitted signal
matrix (block). Entries of Hτ and Wτ are i.i.d. CN (0, 1).
The sum of the average signal powers at each time instant
is normalized to unity: tr(SτSH

τ )/T = 1. Suppose a data
sequence of integers d1, d2, . . . (dt ∈ {0, . . . , L − 1}) is to be
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transmitted. Each dt is mapped to a matrix Φdt
drawn from the

constellation set of unitary matrices S = {Φl|l = 0, . . . , L −
1}. The positive integer L ≥ 2 denotes the constellation
size; and L = 2RM where R is the transmission data rate
[bits/channel]. In differential systems, the signal matrix is
S0 = I is transmitted at the beginning. Thereafter, to send
the data symbol dτ , Φdτ

∈ S is differentially encoded to give
the following transmit signal matrix

Sτ = Φdτ
Sτ−1 τ = 1, 2, . . . . (3)

Assuming that the channel remains constant for at least two
block intervals (i.e., Hτ = Hτ−1), it is shown in [4] that the
maximum-likelihood decision rule at the receiver is

d̂τ = argmin
0≤l<L

||Yτ − ΦlYτ−1||2F . (4)

The exact pairwise probability of error (PEP) has been
derived in [4], [7]. By assuming all messages are equally likely
and T = M , we find that the exact PEP is given as [11]

Pll′ = p(Φl −→ Φl′) =
1
π

∫ π
2

0

M∏
i=1

(
1 +

γλi

4 sin2 θ

)−N

dθ

(5)
where γ = ρ2

1+2ρ and {λi} is the i-th eigenvalue of the matrix
∆ll′ = (Φl −Φl′)(Φl −Φl′)H . The Chernoff upper bound on
the PEP is derived in [4]:

Pll′ ≤ 1
2

M∏
m=1

[1 + γσm(Φl − Φl′)]−N (6)

where σm(Φl−Φl′) is the m-th singular values of (Φl−Φl′).
For asymptotically high SNR, it has been shown in [5] and [8]
that the design criterion that minimizes the PEP is to maximize
the diversity product:

ζll′ =
1
2

min
l �=l′

|det(Φl − Φl′)| 1
M

=
1
2

min
l �=l′

(
M∏

m=1

σm(Φl − Φl′)

) 1
M

.

(7)

On the other hand, for low SNR, the design criteria is to
maximize the trace product which is called diversity sum [11]:

ξ = min
l �=l′

||Φl − Φl′ ||2F . (8)

Recently, in [10], a new class of DUSTM constellations has
been introduced; For M transmit antennas, there are M + 1
parameters that characterize this class. Typically, computer
search is performed to find the optimal values of the param-
eters. An extended class of this constellation is proposed in
next section.

III. PROPOSED DUSTM CONSTELLATION

Consider a full-rotation matrix with rotation factors given
by

RFM (kθ) =

RF2(k1θ) . . . 0
...

. . .
0 . . . RF2(kM

2
θ)


M×M

(9)

where

RF2(kiθ) =
(

cos kiθ sin kiθ
− sin kiθ cos kiθ

)
and k = {k1, k2, . . . , kM

2
} is a set of different rotation factors.

Our proposed DUSTM constellation S = {Φl|l = 0, . . . , L −
1} consists of the following unitary matrices:

Φl =

ejθLµ1 . . . 0
...

. . .
...

0 . . . ejθLµM


l

.[RFM (kθL)]l (10)

where l = 0, . . . , L−1 and θL = 2π
L . Clearly, this constellation

is characterized by 3
2M parameters. When all ki’s are the

same, our proposed constellation reduces to the constellation
in [10]. Since our constellation has more parameters, we would
expect better performance than previous designs; for example,
our new constellation outperforms the previous codes in [10]
and [4] in terms of the maximum diversity product.

By substituting the proposed constellation in (7), we can
show that the diversity product is given by

ζll′ =
1
2
|det(Φl − Φl′)| 1

M

=
1
2

∏
i

|1 − (ej∆lΘLµi + ej∆lΘLµi+1) cos ki∆lΘL

+ ej∆lΘL(µi+µi+1)| 1
M

(11)

where 1 ≤ i ≤ M − 1, i is odd and ∆l = l′ − l.
The integers µ1, . . . , µM ∈ {0, . . . , L − 1} and

k1, . . . , kM
2
∈ {0, . . . , L − 1} are parameters to be determined

for the proposed constellation to yield the largest diversity
product or the smallest union bound (Section IV). Since to
the best of our knowledge there is no explicit solution to
this minimax problem, we use exhaustive computer search.
Candidates for the best set of u and k are exhaustively
generated, tested for performance (minimum diversity
product), and kept if they better the previously best candidate
set. To reduce the search complexity, we can use several
properties.

As (11) shows, ζll′ depends only on the difference between
l and l′. As a result, to determine the minimum of (11), there
is no need to consider all values of l and l′ between 0 and
L − 1. Due to the symmetric structure of ζ, it is sufficient
to find the minimum of ζ0l′ over l′ = 1, . . . , L

2 . One can
further reduce the computational complexity by applying the
following lemma.

Theorem 3.1: Due to L is always even number, µ and k
should be in either of the below forms,

1) all µi’s are even numbers while all ki’s are odd numbers
2) all µi’s are odd integers number and all ki’s are even

integer numbers.
Proof: See [10]. The same argument is applied here just

by taking into account the different rotation angles instead of
one angle in that specific structure.

As soon as the size of the constellation, L, increases above
16, the search is time consuming, and, in some cases, may even
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be practically impossible. Since the computational complexity
of finding optimum parameters grows exponentially with the
increase of M and R, following an idea from [10], we reduce
the number of independent parameters in (10), resulting in the
modified constellation

Φ̃l =

ejθLµ̃1 . . . 0
...

. . .
...

0 . . . ejθLµ̃M


l

.[RFM (kθL)]l (12)

where

µ̃k =

{
µ1 + 2(k − 1) 1 ≤ k ≤ M/2,

µ2 + 2k − M − 2 M/2 < k ≤ M.
(13)

The first matrix in constellation (12) depends on just two
parameters instead of M parameters in constellation (10).
Thus, the number of design parameters is reduced from M+M

2
to (2 + M

2 ) by this simplification. The modified constellation
doesn’t necessarily yield the maximum diversity product, but
we find that it greatly reduces the search and its final result
is quitely acceptable. The maximum diversity products of our
proposed codes, codes in [10] and cyclic codes are presented
in Table I. Our proposed constellation has equal or higher
diversity product relative to the other constellations.

Thus far, we have considered the diversity product as the
main design criterion, which is suitable for the high SNR
regime. It is also argued in [11] that for a large number of
receive antennas or low SNR scenarios, the Euclidean distance
criterion (diversity sum) is suitable for DUSTM codes. Thus
a question rises on the appropriateness of the design criteria
at medium range of SNR. In the next section, we introduce
a design criterion based on the union bound of the Symbol
Error Probability (SEP).

IV. UPPER BOUND OF SEP AND NEW CRITERIA

In differential modulation, the main target is usually to
minimize the block error probability, not the symbol error
probability (SEP). Because the code with optimum worst case
in PEP do not necessarily yield the optimum performance
in SEP, [11] minimized the union bound of SEP instead of
minimizing PEP. But it has been done only for the group con-
stellation. we consider our proposed non-group constellation.

Eq. (5) which is the exact PEP may be expressed in the
form

Pll′ =
1
π

∫ π
2

0

dθ

det[I + γ
4 sin2 θ

∆ll′ ]N
(14)

If sin θ = t, (13) becomes

Pll′ =
1
2π

∫ 1

−1

dt

det[I + γ
4t2 ∆ll′ ]N

1√
1 − t2

(15)

Using Chebyshev polynomials of first kind formula [12], the
pairwise error probability may be expressed in the form

Pll′ =
1
2n

n∑
i=1

1
det[I + γ

4x2
i
∆ll′ ]N

+ Rn (16)

M L ζ(proposed) ζ(in [10]) cyclic
16 0.5946 0.5946 0.5066

6 32 .5577 .5069 0.448
16 0.5946 0.5946 0.5623

10 32 .5655 .5137 0.5131

TABLE I

DIVERSITY PRODUCT OF THE OPTIMUM CODES WITH DIFFERENT

CONSTELLATION SCHEME IN SIZE OF CONSTELLATION L = 16, 32

Criterion µ k

Diversity Product maximizing [31, 33, 35, 19, 21, 23] [28, 28, 28]
Upper bound minimizing [31, 33, 35, 13, 15, 17] [20, 20, 20]

TABLE II

OPTIMUM CODES BASED ON THE CONSTELLATION WITH ONE ROTATION

FACTOR [10], M = 6, N = 1, L = 32

where xi = cos(2i − 1)π/2n and Rn is a reminder term.
If we take n = 9, the reminder term will be sufficiently
small to be ignored. In general, since the exact SEP is too
complex to analyze, we have to turn to the union bound on
the SEP. Based on equal priori probabilities assumption, the
union bound would be

PSEP ≤ PUB =
1
L

L−1∑
l=0

L−1∑
l �=l′

Pll′ (17)

With a good approximation PUB is equal to

PUB =
1

18L

L−1∑
l=0

L−1∑
l �=l′

9∑
i=1

1
det[I + γ

4x2
i
∆ll′ ]N

. (18)

Using MATLAB, the union bound in (18) is easy to
compute. We also note from (18) that PUB depends on
operation SNR and number of receive antennas as well as the
number of transmit antenna and type of constellation.
Without loss of generality, we focus here on designing
optimum DUST codes based on proposed constellation in
section (III) and non-group constellation in [10]. The same
procedure could be done for other types of constellations
(group or non-group) as well. For a given set of µ and k, the
union upper bound is expressed by (18). Therefore, a good
and reasonable design criteria could be to choose the sets µ
and k that minimize the PUB for a particular predetermined
M ,N and ρ. We resort to exhaustive computer searches
for optimal set µ and k since there is no explicit way to
determine the optimum values. However, By recalling some
restrictions in section (III) for choosing optimum parameters,
we can reduce our search space by assuming them.

It is found from simulation that the codes with the minimum
PUB at a specific SNR will also have near optimum union
bound within a range of SNR. Therefore, for a medium range
of SNR’s for example in range from 4 to 12 dB, which are
of our interest here, the optimum code would be the same for
this range of SNR. But, as we expect, for higher SNR’s the
codes that lead to minimum PUB would be different as well.

Some of the optimum codes based on two different criteri-
ons are presented in Table (II) and Table (III). To obtain those
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Criterion µ k

Diversity Product maximizing [31, 33, 35, 29, 31, 33] [20, 20, 30]
Upper bound minimizing [15, 17, 19, 13, 15, 17] [6, 6, 20]

TABLE III

OPTIMUM CODES BASED ON THE CONSTELLATION WITH THREE ROTATION

FACTORS M = 6, N = 1, L = 32

codes, we assumed M = 6 transmit antennas and N = 1
receive antenna with rate R = 5

6 .

V. SIMULATION RESULTS

We simulated codes in Table II and Table III and codes in [5]
and [11] and found that our proposed constellation performs
better than the previously proposed constellations.

Fig. 1 compares the upper bound on block error rate
performance of the codes represented in table (I). It also
shows the union bound for other codes in [5] and [11]. As we
mentioned in previous section, we assumed M = 6 transmit
antennas and N = 1 receive antenna and the size of the
constellation L = 32. Our constellation and the proposed
criterion can be applied in any number of receive and transmit
antennas and for any data rate. We can see that union bound
of our new code is smaller than that of the other codes.

Fig. 2 depicts the comparison between our new constellation
with different rotation angles and fixed rotation angles in
SEP from performance point of view. We have assumed
a slow channel with Jakes’ fading model with normalized
fade rates of fdTs = 1.5 × 10−3, where fd is the Doppler
frequency and Ts is a symbol duration. As we expect, the
proposed constellation with different rotation angles (3 rotation
angles for M = 6) performs significantly. Furthermore, we
observe that the union-bound based design generally has better
performance than the design based on the diversity product or
sum in both constellations.

5 6 7 8 9 10 11 12 13 14 15 16
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR

S
E

P

UB of codes in [9]
UB of new codes one rotantion angle
UB of new codes 3 rotation angles
UB of codes in [5]
UB of codes in [10]

Fig. 1. Upper Bound on SEP for different codes, M = 6, N = 1, L = 32.

VI. CONCLUSION

In this paper, we have introduced an extended unitary
signal constellation for DUSTM and presented a union-bound
based criterion of optimal codes. Thus the parameters of the
proposed constellation can be selected to optimize the diversity

5 6 7 8 9 10 11 12
10

−4

10
−3

10
−2

10
−1

10
0

SNR[db]

S
E

P

codes in [9]  based on new design criteria
 proposed codes one rotation angle(old criteria)
Proposed codes 3 rotation angles(old criteria)
Proposed codes 3 rotation angles(new criteria)

Fig. 2. The symbol Error Probability vs. SNR for 6 transmit antennas and
1 receive antenna and L = 32.

product or the union bound. The optimum parameters to
minimize the union bound are searched taking into account
the number of receive antenna and the operational SNR.
Simulation results showed that the resulting codes outperform
the previous codes based on the maximization of rank-and-
determinant (diversity product criterion) or Euclidean distance
(diversity sum criterion).

REFERENCES

[1] T. L. Marzetta and B. M. Hochwald, “Capacity of a mobile multiple-
antenna communication link in Rayleigh flat fading,” IEEE Trans.
Inform. Theory, vol. 45, pp. 139–157, Jan. 1999.

[2] E. Telatar, “Capacity of multi-antenna Gaussian channels,” Euro. Trans.
Telecommun., vol. 10, pp. 585 – 595, Nov. 1999.

[3] G. Foschini and M. Gans, “On limits of wireless communications
in a fading environment when using multiple antennas,” Wirel. Pers.
Commun. (Netherlands), vol. 6, no. 3, pp. 311 – 335, Mar. 1998.

[4] B. Hochwald and T. Marzetta, “Unitary space-time modulation for
multiple-antenna communications in Rayleigh flat fading,” IEEE Trans.
Inform. Theory, vol. 46, no. 2, pp. 543 – 564, Mar. 2000.

[5] B. Hochwald, T. Marzetta, T. Richardson, W. Sweldens, and R. Urbanke,
“Systematic design of unitary space-time constellations,” IEEE Trans.
Inform. Theory, vol. 46, no. 6, pp. 1962 – 1973, Sept. 2000.

[6] A. Shokrollahi, B. Hassibi, B. Hochwald, and W. Sweldens, “Represen-
tation theory for high-rate multiple-antenna code design,” IEEE Trans.
Inform. Theory, vol. 47, no. 6, pp. 2335 – 2367, Sept. 2001.

[7] B. Hughes, “Differential space-time modulation,” IEEE Transactions on
Information Theory, vol. 46, no. 7, pp. 2567–2578, 2000.

[8] X. Liang and X. Xia, “Unitary signal constellations for differential
spacetime modulation with two transmit antennas: Parametric codes,
optimal designs, and bounds,” IEEE Trans. Inform. Theory, vol. 48, pp.
2291 – 2322, Aug. 2002.

[9] T. P. Soh, C. S. Ng, and P. Y. Kam, “Improved signal constellations for
differential unitary space-time modulations with more than two transmit
antennas,” IEEE Commun. Lett., vol. 9, no. 1, pp. 7 – 9, 2005.

[10] C. Shan, A. Nallanathan, and P. Y. Kam, “A new class of signal
constellations for differential unitary space-time modulation (DUSTM),”
IEEE Commun. Lett., vol. 8, no. 1, pp. 1 – 3, 2004.

[11] J. Wang, M. Simon, and K. Yao, “On the optimum design of differ-
ential unitary space-time modulation,” GLOBECOM ’03. IEEE Global
Telecommunications Conference (IEEE Cat. No.03CH37489), vol. 4, pp.
1968 – 72, 2003.

[12] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables. New York: Dover,
1972.

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 21, 2009 at 18:06 from IEEE Xplore.  Restrictions apply. 


