Abstract:
This paper presents results from field measurements on a vehicle-to-vehicle communication system based on IEEE 802.11p. During the measurements the vehicles were moving a...Show MoreMetadata
Abstract:
This paper presents results from field measurements on a vehicle-to-vehicle communication system based on IEEE 802.11p. During the measurements the vehicles were moving and there were also moving obstacles located between the transmitting and receiving nodes creating a Non-Line-of-Sight environment. Distance, speed and type of obstacles were varied during the measurements. Both a highway and suburban environment was tested. The tests were focused on packet error rate and consecutive packet loss. The results of the measurements are compared with the communication requirements of a vehicle platooning application which is a novel intelligent transport system application. It implies multiple vehicles tightly following each other in a row. Performance of the application degrades with consecutive packet loss. It is shown that the platooning application is not adequately supported in all measurement scenarios.
Published in: 2012 IEEE Vehicular Technology Conference (VTC Fall)
Date of Conference: 03-06 September 2012
Date Added to IEEE Xplore: 31 December 2012
ISBN Information: