
ar
X

iv
:1

20
1.

08
30

v1
 [

cs
.IT

]
4

Ja
n

20
12

1

Wireless Network-Coded Accumulate-Compute and
Forward Two-Way Relaying

Srishti Shukla†, Vijayvaradharaj T Muralidharan# and B. Sundar Rajan†

Email: {srishti, tmvijay, bsrajan} @ece.iisc.ernet.in
†IISc Mathematics Initiative (IMI), Dept. of Mathematics and Dept. of Electrical Comm. Engg., IISc, Bangalore

Dept. of Electrical Comm. Engg., IISc, Bangalore

Abstract—The design of modulation schemes for the physi-
cal layer network-coded two way wireless relaying scenariois
considered. It was observed by Koike-Akino et al. [4] for the
two way relaying scenario, that adaptively changing the network
coding map used at the relay according to the channel conditions
greatly reduces the impact of multiple access interferencewhich
occurs at the relay during the MA Phase and all these network
coding maps should satisfy a requirement calledexclusive law. We
extend this approach to an Accumulate-Compute and Forward
protocol which employs two phases: Multiple Access (MA) phase
consisting of two channel uses with independent messages ineach
channel use, and Broadcast (BC) phase having one channel use.
Assuming that the two users transmit points from the same 4-
PSK constellation, every such network coding map that satisfies
the exclusive law can be represented by a Latin Square with
side 16, and conversely, this relationship can be used to getthe
network coding maps satisfying the exclusive law. Two methods
of obtaining this network coding map to be used at the relay are
discussed. Using the structural properties of the Latin Squares
for a given set of parameters, the problem of finding all the
required maps is reduced to finding a small set of maps. Having
obtained all the Latin Squares, the set of all possible channel
realizations is quantized, depending on which one of the Latin
Squares obtained optimizes the performance. The quantization
thus obtained, is shown to be the same as the one obtained in
[7] for the 2-stage bidirectional relaying.

I. BACKGROUND

The concept of physical layer network coding has
attracted a lot of attention in recent times. The idea of
physical layer network coding for the two way relay channel
was first introduced in [1], where the multiple access
interference occurring at the relay was exploited so that the
communication between the end nodes can be done using
a two stage protocol. Information theoretic studies for the
physical layer network coding scenario were reported in [2],
[3]. The design principles governing the choice of modulation
schemes to be used at the nodes for uncoded transmission
were studied in [4]. An extension for the case when the
nodes use convolutional codes was done in [5]. A multi-level
coding scheme for the two-way relaying was proposed in [6].

We consider the two-way wireless relaying scenario shown
in Fig. 1, where two-way data transfer takes place among the
nodes A and B with the help of the relay R. It is assumed
that the two nodes operate in half-duplex mode, i.e., they
cannot transmit and receive at the same time in the same
frequency band. The relaying protocol consists of two phases,

Fig. 1. A two-way ACF relay channel

multiple access(MA) phase, consisting of two channel uses
during which A and B transmit to R twice, two independent
messages in the two channel uses, with points from 4-PSK
constellation, andbroadcast(BC) phase, in which R transmits
to A and B. The relay node R accumulates the information
sent by the user nodes in the first and second channel use of
the MA phase, and transmits in the BC phase a message that
contains information about all the four messages received by
it in the MA phase. Network Coding is employed at R in such
a way that A(/B) can decode the two messages transmitted
by B(/A), given that A(/B) knows its own messages. We call
this strategy accumulate-compute and forward (ACF) protocol.

It was observed in [4] and [7] for 4-PSK, that for uncoded
transmission, the network coding map used at the relay
needs to be changed adaptively according to the channel fade
coefficient, in order to minimize the impact of multiple access
interference. In other words, the set of all possible channel
realizations is quantized into a finite number of regions, with
a specific network coding map giving the best performance
in a particular region. It is shown in [8] for any choice of
signal sets of equal cardinality used at the two users, that
every such network coding map that satisfies theexclusive
law is representable as a Latin Square and conversely, this
relationship can be used to get the network coding maps
satisfying the exclusive law.

Definition 1: A Latin Square of orderM is an M × M
array in which each cell contains a symbol from a set of t
different symbols such that each symbol occurs at most once
in each row and column [9].

Similar to the ACF protocol, a store-and-forward protocol
has been earlier studied in [10], for the two-way relaying
channel. In [10], the authors derive an upper bound on the
ergodic sum-capacity for the two-way relaying scenario when
delay tends to infinity, and propose two alternative awaiting
and broadcast (AAB) schemes which approach the new upper

http://arxiv.org/abs/1201.0830v1

2

Fig. 2. 4-PSK constellation

bound at high SNR. Using numerical results, they show that
the proposed AAB schemes significantly outperforms the
traditional physical layer network coding methods without
delay in terms of ergodic maximum sum rates. However,
modulation and physical layer network coding have not been
addressed in [10].

The remaining content is organized as follows: Section II
discusses the basic concepts, definitions and a summary of
the contributions of this paper. Section III demonstrates the
network code obtained using Cartesian Product that is utilized
at the relay for two-way ACF relaying which removes the
fade states associated with the channels. In Section IV, we
show how this network code can be obtained using Singularity
Removal Constraints. Section V gives results based on struc-
tural properties of Latin Squares. In Section VI the complex
plane is quantized depending on which one of the obtained
Latin Squares maximizes the minimum cluster distance and
Section VII gives the simulation results that demonstrate the
improvement in the performance using the suggested scheme.
Section VIII concludes the paper.

II. PRELIMINARIES

Let S denote the symmetric 4-PSK constellation{±1± i}
as shown in Fig. 2, used at A and B. Assume that
A(/B) wants to send two 2-bit binary tuples to B(/A).
Let µ : F2

2 → S denote the mapping from bits to
complex symbols used at A and B whereF2 = {0, 1}. Let
xA1 = µ (sA1) , xB1 = µ (sB1) ∈ S denote the complex
symbols transmitted by A and B at the first channel use
respectively, andxA2 = µ (sA2) , xB2 = µ (sB2) ∈ S denote
the complex symbols transmitted by A and B at the second
channel use respectively, wheresA1 , sB1 , sA2 , sB2 ∈ F2

2.

Multiple Access (MA) Phase:
It is assumed that the channel state information is not

available at the transmitting nodes A and B during the MA
phase. The received signal at R at first channel use is given
by

YR1 = HAxA1 +HBxB1 + ZR1 (1)

and the received signal at R at the second channel use,

YR2 = HAxA2 +HBxB2 + ZR2 (2)

whereHA andHB are the fading coefficients associated with
the A-R and B-R link respectively. Note that we are taking

HA and HB to be the same for the two channel uses. The
additive noiseZR1 andZR2 are assumed to beCN

(

0, σ2
)

,
whereCN

(

0, σ2
)

denotes the circularly symmetric complex
Gaussian random variable with varianceσ2. We assume a
block fading scenario, withz = γejθ = HB/HA, where
γ ∈ R

+ and−π ≤ θ ≤ π, is referred to as thefade statefor
the first and second transmission by A and B at the first and
second channel use, and for simplicity can also be denoted
by (γ, θ). Also, it is assumed thatz is distributed according
to a continuous probability distribution.

Let SR (γ, θ) denote the effective constellation seen at the
relay during the MA phase, i.e.,

SR (γ, θ) =
{

(xi + γejθyi, xj + γejθyj)|xi, yi, xj , yj ∈ S
}

.

The effective constellation remains the same over the two
channel uses, since we assumeHA and HB and hence the
ratio HB/HA = γejθ to be the same during the two channel
uses.

Let dmin

(

γejθ
)

denote the minimum distance between the
points in the constellationSR (γ, θ) during MA phase, as given
by (3) on the next page. From (3), it is clear that there exist
values ofγejθ, for which dmin

(

γejθ
)

= 0. Let,

H =
{

γejθ ∈ C|dmin

(

γejθ
)

= 0
}

.

The elements ofH are called singular fade states. For singular
fade states,|SR (γ, θ)| < 44.

Definition 2: A fade stateγejθ is defined to be asingular
fade statefor the ACF two-way relaying, if the cardinality of
the signal setSR (γ, θ) is less than44. Let H denote the set
of singular fade states for the two-way ACF relaying.

Let (x̂A1 , x̂B1) and (x̂A2 , x̂B2) ∈ S2 denote the Maximum
Likelihood (ML) estimate of(xA1 , xB1) and (xA2 , xB2) at
R based on the received complex numbersYR1 and YR2 at
the two channel uses, as given in (4).

Broadcast (BC) Phase:
Depending on the value ofγejθ, R chooses a map

Mγ,θ : S4 → S ′ whereS ′

is a complex signal set of size
between42 and44 used by R during theBC phase.

The received signals at A and B during the BC phase are
respectively given by,

YA = H ′
AXR + ZA andYB = H ′

BXR + ZB (10)

where XR = Mγ,θ ((x̂A1 , x̂B1) , (x̂A2 , x̂B2)) ∈ S ′ is the
complex number transmitted by R. The fading coefficients
corresponding to the R-A and R-B links are given byH ′

A

andH ′
B respectively and the additive noisesZA andZB are

CN
(

0, σ2
)

.

The elements inS4 which are mapped to the same signal
point in S ′ by the mapMγ,θ are said to form a cluster.
Let {L1,L2, ..,Ll} denote the set of all such clusters. The

3

d2min

(

γejθ
)

= min
((xA1

,xB1
),(xA2

,xB2
)),((x′

A1
,x′

B1
),(x′

A2
,x′

B2
))∈S4,

((xA1
,xB1

),(xA2
,xB2

)) 6=((x′
A1

,x′
B1

),(x′
A2

,x′
B2

))

{

∣

∣

∣

(

xA1
− x′

A1

)

+ γejθ
(

xB1
− x′

B1

)
∣

∣

∣

2
+

∣

∣

∣

(

xA2
− x′

A2

)

+ γejθ
(

xB2
− x′

B2

)
∣

∣

∣

2
}

(3)
(

(x̂A1
, x̂B1

), (x̂A2
, x̂B2

)
)

= arg min
((x′

A1
,x′

B1
),(x′

A2
,x′

B2
))∈S4

{

∣

∣

∣
YR1

−HAx′
A1

−HBx′
B1

∣

∣

∣

2
+

∣

∣

∣
YR2

−HAxA′
2
−HBx′

B2

∣

∣

∣

2
}

(4)

Mγ,θ
((

xA1
, xA2

)

,
(

xB1
, xB2

))

6= Mγ,θ
((

x′
A1

, x′
A2

)

,
(

xB1
, xB2

)

)

, whenever
(

xA1
, xA2

)

6=
(

x′
A1

, x′
A2

)

∀xB1
, xB2

∈ S (5)

Mγ,θ
((

xA1
, xA2

)

,
(

xB1
, xB2

))

6= Mγ,θ
(

(

xA1
, xA2

)

,
(

x′
B1

, x′
B2

))

, whenever
(

xB1
, xB2

)

6=
(

x′
B1

, x′
B2

)

∀xA1
, xA2

∈ S (6)
(

d
Li,Lj

min

(

γejθ
))2

= min
((xA1

,xB1
),(xA2

,xB2
))∈Li,

((x′
A1

,x′
B1

),(x′
A2

,x′
B2

))∈Lj

{

∣

∣

∣

(

xA1
− x′

A1

)

+ γejθ
(

xB1
− x′

B1

)
∣

∣

∣

2
+

∣

∣

∣

(

xA2
− x′

A2

)

+ γejθ
(

xB2
− x′

B2

)
∣

∣

∣

2
}

(7)

d2min

(

Cγ,θ
)

= min
((xA1

,xB1
),(xA2

,xB2
)),((x′

A1
,x′

B1
),(x′

A2
,x′

B2
))∈S4,

Mγ,θ((xA1
,xB1

),(xA2
,xB2

)) 6=Mγ,θ((x′
A1

,x′
B1

),(x′
A2

,x′
B2

))

{

∣

∣

∣

(

xA1
− x′

A1

)

+ γejθ
(

xB1
− x′

B1

)
∣

∣

∣

2
+

∣

∣

∣

(

xA2
− x′

A2

)

+ γejθ
(

xB2
− x′

B2

)
∣

∣

∣

2
}

(8)

d2min

(

Ch, γejθ
)

= min
((xA1

,xB1
),(xA2

,xB2
)),((x′

A1
,x′

B1
),(x′

A2
,x′

B2
))∈S4,

Mh((xA1
,xB1

),(xA2
,xB2

)) 6=Mh((x′
A1

,x′
B1

),(x′
A2

,x′
B2

))

{

∣

∣

∣

(

xA1
− x′

A1

)

+ γejθ
(

xB1
− x′

B1

)
∣

∣

∣

2
+

∣

∣

∣

(

xA2
− x′

A2

)

+ γejθ
(

xB2
− x′

B2

)
∣

∣

∣

2
}

.

(9)

formation of clusters is called clustering, denoted byCγejθ .

In order to ensure that A(/B) is able to decode B’s(/A’s)
messages, the clusteringCγejθ should satisfy the exclusive
law, as given in (5), (6) above.

Definition 3: The cluster distance between a pair of clusters
Li andLj is the minimum among all the distances calculated
between the points((xA1 , xB1) , (xA2 , xB2)) ∈ Li and
((

x′
A1

, x′
B1

)

,
(

x′
A2

, x′
B2

))

∈ Lj in the effective constellation
used by the relay node R, as given in (7) above.

Definition 4: The minimum cluster distanceof the
clustering Cγejθ is the minimum among all the cluster
distances, as given in (8) above.

The minimum cluster distance determines the performance
during the MA phase of relaying. The performance during
the BC phase is determined by the minimum distance of the
signal setS ′

. For values ofγejθ in the neighborhood of the
singular fade states, the value ofdmin

(

Cγejθ
)

is greatly
reduced, a phenomenon referred to asdistance shortening[4].
To avoid distance shortening, for each singular fade state,a
clustering needs to be chosen such that the minimum cluster
distance is non zero.

A clustering Ch is said to remove singular fade state
h ∈ H, if dmin

(

Ch
)

> 0. For a singular fade stateh ∈ H,
let Ch denote the clustering which removes the singular fade
stateh (if there are multiple clusterings which remove the
same singular fade stateh, choose any of the clusterings).
Let CH =

{

Ch : h ∈ H
}

denote the set of all such clusterings.

Definition 5: The minimum cluster distance of the cluster-
ing Ch, h ∈ H at the fade stateγejθ which is not necessarily
a singular fade state, denoted bydmin

(

Ch, γejθ
)

, is as given

in (9). Note that ifγejθ = h ∈ H, dmin

(

Ch, h
)

, reduces to
dmin

(

Ch
)

given in (8).
In general, the channel fade stateγejθ need not be a singular

fade state. In such a scenario, among all the clusterings
which remove the singular fade states, the one which has the
maximum value of the minimum cluster distance atγejθ is
chosen by the relay R. In other words, forγejθ /∈ H, the
clustering Cγ,θ is chosen to beCh by the relay R, which
satisfiesdmin

(

Ch, γejθ
)

≥ dmin

(

Ch′

, γejθ
)

, ∀h 6= h′ ∈ H.

Since the clusterings which remove the singular fade states
are known to all the three nodes and are finite in number, the
clustering used for a particular realization of the fade state can
be indicated by R to A and B using overhead bits.

In [8], such clusterings that remove singular fade states
for two-way 2-stage relaying scenario were obtained with the
help of Latin Squares.

The contributions of this paper are as follows:

• It is shown that if the users A and B transmit points from
the same 4-PSK constellation, the clusterings proposed in
[8] for two user case can be utilized to get clusterings for
this case for removing the singular fade states containing
either 16 or 25 points by introducing the notion of
Cartesian Product of Clusters. In other words, the16×16
Latin Squares representing the ACF relaying can be
obtained with the help of4×4 Latin Squares representing
the clusterings for two-way 2-stage relaying as given in
[8].

• Another clustering is proposed for the ACF protocol
in the two-way relay channel called Direct Clustering.
This clustering also removes the singular fade states and
reduces the number of clusters for some cases. Using this
clustering, the size of the resulting constellation used by
the relay node R in the BC phase is reduced to 20 for a
category of cases, as compared to the Cartesian Product
approach which results in the constellation size being 25

4

for these cases.
• The quantization of the complex plane that contains all

the possible fade states, depending on which one of
the obtained clusterings maximizes the minimum cluster
distance, is proven to be the same as for the two-way
2-stage relaying scenario as done in [7].

• Simulation results indicate that at high SNR, the schemes
based on the ACF protocol performs better than the
schemes proposed in [4], [8] based on two-stage two
way relaying. With 4-PSK signal set used at the end
nodes, the ACF protocol achieves a maximum sum
throughput of 8/3 bits/s/Hz, whereas it is 2 bits/s/Hz for
the schemes based on 2-stage two way relaying.

III. E XCLUSIVE LAW AND LATIN SQUARES

The nodes A and B transmit symbols from the same
constellation, viz., 4-PSK. Our aim is to find the map that the
relay node R should use in order to cluster the44 possibilities
of ((xA1 , xB1) , (xA2 , xB2)) such that the exclusive law given
by (5), (6) is satisfied. Consider the16× 16 array consisting
of the 16 possibilities of(xA1 , xA2) along the rows and the
16 possibilities of(xB1 , xB2) along the columns. We fill this
array with elements fromL = {L1,L2, ...,Lt} where each
symbol denotes a unique cluster. The constellation size used
by the relay in the BC phase, or the number of clusters has
to be at least 16, since each user needs 4 bit information
corresponding to the two messages sent by the other user
implying t ≥ 16. In order to keep (5) and (6) satisfied, a
symbol from L can occur at most once in each row and
column. So the16 × 16 array having(xA1 , xA2) along the
rows and (xB1 , xB2) along the columns must be a Latin
Square of side 16 (Definition 1). The equivalence between
the network code used by the relay in two-way relaying
scenario and Latin Squares has been previously discussed in
[7]. The clusters are obtained by putting together all those
((xA1 , xB1) , (xA2 , xB2)) for which the corresponding entry
((xA1 , xA2) , (xB1 , xB2)) in the array is the same.

From above, we can say that all the relay clusterings that
satisfy the mutually exclusive law forms Latin Squares of
order 16 with entries fromL with t ≥ 16, when the end
nodes use PSK constellations of size 4. It therefore suffices
to consider the network code used by the relay node in the
BC phase to be a16× 16 array with rows(/columns) indexed
by the 2-tuple consisting of the symbols sent by A(/B) during
the first and second channel use. The cells of the array must
be filled with elements ofL in such a way, that the resulting
array is a Latin Square of order 16 andt ≥ 16.

Removing Singular fade states and Constrained Latin
Squares

The relay can manage with constellations of size 16 in
BC phase, but it is observed that in some cases relay may
not be able to remove the singular fade states and results in
severe performance degradation in the MA phase. As stated
in Section II, that a clusteringCh is said to remove singular

fade stateh ∈ H, if dmin

(

Ch
)

> 0. Removing singular fade
states for a two-way ACF relay channel can also be defined
as follows:

Definition 6: A clustering Ch is said to remove
the singular fade state h ∈ H, if any two
possibilities of the messages sent by the users
((xA1 , xB1) , (xA2 , xB2)) ,

((

x′
A1

, x′
B1

)

,
(

x′
A2

, x′
B2

))

∈ S4

that satisfy

h =
x′
A1

− xA1

xB1 − x′
B1

=
x′
A2

− xA2

xB2 − x′
B2

,

are placed together in the same cluster byCh.

Definition 7: A set {((xA1 , xB1) , (xA2 , xB2))} ⊆ S4

consisting of all the possibilities of((xA1 , xB1), (xA2 , xB2))
that must be placed in the same cluster of the clustering
used at relay node R in the BC phase in order to remove the
singular fade stateh is referred to as aSingularity Removal
Constraint for the singular fade stateh in two-way ACF
relaying scenario.

As given in [4], a complex number γejθ is
defined to be a singular fade state for the two-
way 2-stage relaying scenario, if xA + γejθxB =
x′
A + γejθx′

B for some(xA, xB), (x
′
A, x

′
B) ∈ S2 and

the set
{

(xA, xB) | (xA, xB) ∈ S2
}

consisting of all the
possibilities of(xA, xB) ∈ S2 that must be placed in the same
cluster of the clustering that removes the fade stateγejθ for
the two-way 2-stage relaying scenario is the corresponding
set of singularity removal constraint for the singular fade
stateγejθ. As we show in the following lemma, the singular
fade state for the ACF two-way relaying are the same as the
singular fade state for the two-way 2-stage relaying scenario.

Lemma 1:The singular fade states for the ACF two-way
relaying scenario are the same as the 12 singular fade states
for two-way 2-stage relaying scenario as computed in [4].

Proof: Let γejθ be a singular fade state for
the ACF two-way relaying scenario. By definition,
∃((xA1 , xB1), (xA2 , xB2)), ((x

′
A1

, x′
B1

), (x′
A2

, x′
B2

)) ∈ S4

such that,

xA1 + γejθxB1 = x′
A1

+ γejθx′
B1

, and

xA2 + γejθxB2 = x′
A2

+ γejθx′
B2

.

wherexA1 , xB1 , xA2 , xB2 , x
′
A1

, x′
B1

, x′
A2

, x′
B2

∈ S.

Then, by definition,γejθ must be a singular fade state for
two-user 2-stage relaying.

Conversely, letγejθ be a singular fade state for two-user
2-stage relaying scenario. Then,∃(xA, xB), (x′

A, x
′
B) ∈ S2

such that,
xA + γejθxB = x′

A + γejθx′
B .

Then, since for any (x, y) ∈ S, x + γejθy =
x + γejθy, {((xA, xB), (x, y)), ((x′

A, x
′
B), (x, y))} is a

5

subset of a singularity removal constraint andγejθ is a
singular fade state for the ACF two-way relaying scenario.

Thus, the singular fade states for the ACF two-way relaying
scenario and the singular fade states for the two-way 2-stage
relaying scenario are the same.

Let γejθ be a fade state for the two-way ACF relaying
scenario. Thenγejθ can be viewed as a fade state for the
first and second channel use in the MA phase as shown in
Lemma 1. In [4] and [7], it is shown that for the two-way
2-stage relaying, the42 possible pairs of symbols from
4-PSK constellation sent by the two users in the MA phase,
can be clustered into a clustering dependent on a singular
fade coefficient, of size 4 or 5 in a manner so as to remove
this singular fade coefficient. In the case of two-way ACF
relaying, at the end of MA phase, relay receives two complex
numbers, given by (1) and (2). Instead of R transmitting a
point from the44 point constellation resulting from all the
possibilities of ((xA1 , xB1) , (xA2 , xB2)) the relay R can
choose to group these possibilities into clusters represented by
a smaller constellation. One such clustering for the case when
γejθ can be obtained by utilizing the clustering provided in
[7] for the two-way 2-stage problem in order to remove this
fade state. LetC[h] denote the clustering for the physical
network coded two-way relaying scenario that removes the
singular fade stateh ∈ C for the two-way 2-stage relaying
case as given in [7].

Definition 8: We define theCartesian Productof a cluster-
ing C[h] = {l1, l2, ..., lm} with itself denoted byD[h], where
for i = 1, 2, ...,m;

li =
{

(xi1 , yi1) , (xi2 , yi2) , ...,
(

xisi
, yisi

)}

with xip , yip ∈ Z4 ∀ p = 1, 2, ..., si as follows:

D[h] =
{

C{l1,l1}, ..., C{l1,lm}, ..., C{lm,l1}, ..., C{lm,lm}
}

where,

C{li,lj} =
{(

(xip , yip), (xjq , yjq)
)

| p = 1, 2, .., si andq = 1, 2, .., sj
}

.

Lemma 2:Let γejθ ∈ H. The clustering obtained by taking
the Cartesian ProductD[γejθ] of C[γejθ] with itself removes
the singular fade stateγejθ for the two-way ACF relaying
scenario.

Proof: Let C[γejθ] = {l1, l2, ..., lm},where for i =
1, 2, ...,m,

li =
{

(xi1 , yi1), (xi2 , yi2), ..., (xisi
, yisi)

}

Then,

D[γejθ] =
{

C{l1,l1}, ..., C{l1,lm}, ..., C{lm,l1}, ..., C{lm,lm}
}

where,

C{li,lj} =
{(

(xip , yip), (xjq , yjq)
)

| p = 1, 2, .., si andq = 1, 2, .., sj
}

.

By definition, a singularity removal constraint for the fade
stateγejθ in the case of two-way ACF relaying scenario is a

set{((xi, yi), (x
′
i, y

′
i)) | i = 1, 2, ..., t} such that∀1 ≤ i1, i2 ≤

t,

γejθ =
xi2 − xi1

yi1 − yi2
=

x′
i2
− x′

i1

y′i1 − y′i2

Now, γejθ =
xi2−xi1

yi1−yi2
⇒ (x1, y1) and (x2, y2) must belong

to the same cluster, sayli in C[γejθ] for it to remove the fade

stateγejθ. Similarly, γejθ =
x′
i2
−x′

i1

y′
i1
−y′

i2

⇒ (x′
1, y

′
1) and (x′

2, y
′
2)

must belong to the same cluster, saylj in C[γejθ]. This holds
∀1 ≤ i1, i2 ≤ t. Thus, the singularity removal constraint is,

{((xi, yi), (x
′
i, y

′
1)) | i = 1, 2, ..., t} ⊆ C{li,lj},

for some 1 ≤ i, j ≤ n. Therefore, the clusteringD[γejθ]

removes the singular fade stateγejθ.

It was studied in [4] by computer search, and then in [7]
analytically, that there are 12 possible singular fade states
in the complex plane for the case when two users transmit
points from 4-PSK constellation in the MA phase. Out of
these 12 fade states, 4 lie on the unit circle, 4 lie on a circle
of radius

√
2 and 4 lie on a circle of radius 1/

√
2. The size of

the constellation used at R in the BC phase for these cases is
either 4 or 5. For the two-user ACF scenario we are dealing
with, we have two channel uses in the MA phase, with A
and B transmitting a message each in the first channel and
second channel uses, with the two messages sent by each user
in the first and second channel use being possibly different.
Keeping in mind the three classes of fade states depending on
the radius of the circle it lies on, we consider the following
three cases:

Case 1:γejθ lies on the unit circle.

Case 2:γejθ lies on the circle of radius1/
√
2.

Case 3:γejθ lies on the circle of radius
√
2.

Case 1: γejθ lies on the unit circle.

Since both user nodes A and B require4 bits of information
from the other user, the size of the constellation that R uses
will be at least24 = 16. The Cartesian Product ofC[γejθ]
with itself consists of16 clusters since the clusteringC[γejθ]
has 4 clusters. We illustrate this case with the help of the
following example, the remaining instances of fade states that
lie on the unit circle can be obtained using this example, as
we show in Lemma 6 in Section V.

Example 1:Let the fade stateγejθ = j. The clusteringC[j]

for the case as given in [8] is given by,

C[j] = {l1, l2, l3, l4}where,

l1 = {(0, 0) , (1, 2) , (2, 1) , (3, 3)}
l2 = {(0, 3) , (1, 1) , (2, 2) , (3, 0)}
l3 = {(0, 1) , (1, 3) , (2, 0) , (3, 2)}
l4 = {(0, 2) , (1, 0) , (2, 3) , (3, 1)} .

6

The Cartesian Product of the above clustering given byD[j] =
{

C{li,lj} | i, j = 1, 2, 3, 4
}

contains exactly16 clusters:

C{l1,l1} = {((0, 0), (0, 0)), ((0, 0), (1, 2)), ((0, 0), (2, 1)), ((0, 0), (3, 3)),

((1, 2), (0, 0)), ((1, 2), (1, 2)), ((1, 2), (2, 1)), ((1, 2), (3, 3)),

((2, 1), (0, 0)), ((2, 1), (1, 2)), ((2, 1), (2, 1)), ((2, 1), (3, 3)),

((3, 3), (0, 0)), ((3, 3), (1, 2)), ((3, 3), (2, 1)), ((3, 3), (3, 3))}

C{l1,l2} = {((0, 0), (0, 3)), ((0, 0), (1, 1)), ((0, 0), (2, 2)), ((0, 0), (3, 0)),

((1, 2), (0, 3)), ((1, 2), (1, 1)), ((1, 2), (2, 2)), ((1, 2), (3, 0)),

((2, 1), (0, 3)), ((2, 1), (1, 1)), ((2, 1), (2, 2)), ((2, 1), (3, 0)),

((3, 3), (0, 3)), ((3, 3), (1, 1)), ((3, 3), (2, 2)), ((3, 3), (3, 0))}

C{l1,l3} = {((0, 0), (0, 1)), ((0, 0), (1, 3)), ((0, 0), (2, 0)), ((0, 0), (3, 2)),

((1, 2), (0, 1)), ((1, 2), (1, 3)), ((1, 2), (2, 0)), ((1, 2), (3, 2)),

((2, 1), (0, 1)), ((2, 1), (1, 3)), ((2, 1), (2, 0)), ((2, 1), (3, 2)),

((3, 3), (0, 1)), ((3, 3), (1, 3)), ((3, 3), (2, 0)), ((3, 3), (3, 2))}

C{l1,l4} = {((0, 0), (0, 2)), ((0, 0), (1, 0)), ((0, 0), (2, 3)), ((0, 0), (3, 1)),

((1, 2), (0, 2)), ((1, 2), (1, 0)), ((1, 2), (2, 3)), ((1, 2), (3, 1)),

((2, 1), (0, 2)), ((2, 1), (1, 0)), ((2, 1), (2, 3)), ((2, 1), (3, 1)),

((3, 3), (0, 2)), ((3, 3), (1, 0)), ((3, 3), (2, 3)), ((3, 3), (3, 1))}

C{l2,l1} = {((0, 3), (0, 0)), ((0, 3), (1, 2)), ((0, 3), (2, 1)), ((0, 3), (3, 3)),

((1, 1), (0, 0)), ((1, 1), (1, 2)), ((1, 1), (2, 1)), ((1, 1), (3, 3)),

((2, 2), (0, 0)), ((2, 2), (1, 2)), ((2, 2), (2, 1)), ((2, 2), (3, 3)),

((3, 0), (0, 0)), ((3, 0), (1, 2)), ((3, 0), (2, 1)), ((3, 0), (3, 3))}

C{l2,l2} = {((0, 3), (0, 3)), ((0, 3), (1, 1)), ((0, 3), (2, 2)), ((0, 3), (3, 0)),

((1, 1), (0, 3)), ((1, 1), (1, 1)), ((1, 1), (2, 2)), ((1, 1), (3, 0)),

((2, 2), (0, 3)), ((2, 2), (1, 1)), ((2, 2), (2, 2)), ((2, 2), (3, 0)),

((3, 0), (0, 3)), ((3, 0), (1, 1)), ((3, 0), (2, 2)), ((3, 0), (3, 0))}

C{l2,l3} = {((0, 3), (0, 1)), ((0, 3), (1, 3)), ((0, 3), (2, 0)), ((0, 3), (3, 2)),

((1, 1), (0, 1)), ((1, 1), (1, 3)), ((1, 1), (2, 0)), ((1, 1), (3, 2)),

((2, 2), (0, 1)), ((2, 2), (1, 3)), ((2, 2), (2, 0)), ((2, 2), (3, 2)),

((3, 0), (0, 1)), ((3, 0), (1, 3)), ((3, 0), (2, 0)), ((3, 0), (3, 2))}

C{l2,l4} = {((0, 3), (0, 2)), ((0, 3), (1, 0)), ((0, 3), (2, 3)), ((0, 3), (3, 1)),

((1, 1), (0, 2)), ((1, 1), (1, 0)), ((1, 1), (2, 3)), ((1, 1), (3, 1)),

((2, 2), (0, 2)), ((2, 2), (1, 0)), ((2, 2), (2, 3)), ((2, 2), (3, 1)),

((3, 0), (0, 2)), ((3, 0), (1, 0)), ((3, 0), (2, 3)), ((3, 0), (3, 1))}

C{l3,l1} = {((0, 1), (0, 0)), ((0, 1), (1, 2)), ((0, 1), (2, 1)), ((0, 1), (3, 3)),

((1, 3), (0, 0)), ((1, 3), (1, 2)), ((1, 3), (2, 1)), ((1, 3), (3, 3)),

((2, 0), (0, 0)), ((2, 0), (1, 2)), ((2, 0), (2, 1)), ((2, 0), (3, 3)),

((3, 2), (0, 0)), ((3, 2), (1, 2)), ((3, 2), (2, 1)), ((3, 2), (3, 3))}

C{l3,l2} = {((0, 1), (0, 3)), ((0, 1), (1, 1)), ((0, 1), (2, 2)), ((0, 1), (3, 0)),

((1, 3), (0, 3)), ((1, 3), (1, 1)), ((1, 3), (2, 2)), ((1, 3), (3, 0)),

((2, 0), (0, 3)), ((2, 0), (1, 1)), ((2, 0), (2, 2)), ((2, 0), (3, 0)),

((3, 2), (0, 3)), ((3, 2), (1, 1)), ((3, 2), (2, 2)), ((3, 2), (3, 0))}

C{l3,l3} = {((0, 1), (0, 1)), ((0, 1), (1, 3)), ((0, 1), (2, 0)), ((0, 1), (3, 2)),

((1, 3), (0, 1)), ((1, 3), (1, 3)), ((1, 3), (2, 0)), ((1, 3), (3, 2)),

((2, 0), (0, 1)), ((2, 0), (1, 3)), ((2, 0), (2, 0)), ((2, 0), (3, 2)),

((3, 2), (0, 1)), ((3, 2), (1, 3)), ((3, 2), (2, 0)), ((3, 2), (3, 2))}

C{l3,l4} = {((0, 1), (0, 2)), ((0, 1), (1, 0)), ((0, 1), (2, 3)), ((0, 1), (3, 1)),

((1, 3), (0, 2)), ((1, 3), (1, 0)), ((1, 3), (2, 3)), ((1, 3), (3, 1)),

((2, 0), (0, 2)), ((2, 0), (1, 0)), ((2, 0), (2, 3)), ((2, 0), (3, 1)),

((3, 2), (0, 2)), ((3, 2), (1, 0)), ((3, 2), (2, 3)), ((3, 2), (3, 1))}

C{l4,l1} = {((0, 2), (0, 0)), ((0, 2), (1, 2)), ((0, 2), (2, 1)), ((0, 2), (3, 3)),

((1, 0), (0, 0)), ((1, 0), (1, 2)), ((1, 0), (2, 1)), ((1, 0), (3, 3)),

((2, 3), (0, 0)), ((2, 3), (1, 2)), ((2, 3), (2, 1)), ((2, 3), (3, 3)),

((3, 1), (0, 0)), ((3, 1), (1, 2)), ((3, 1), (2, 1)), ((3, 1), (3, 3))}

C{l4,l2} = {((0, 2), (0, 3)), ((0, 2), (1, 1)), ((0, 2), (2, 2)), ((0, 2), (3, 0)),

((1, 0), (0, 3)), ((1, 0), (1, 1)), ((1, 0), (2, 2)), ((1, 0), (3, 0)),

((2, 3), (0, 3)), ((2, 3), (1, 1)), ((2, 3), (2, 2)), ((2, 3), (3, 0)),

((3, 1), (0, 3)), ((3, 1), (1, 1)), ((3, 1), (2, 2)), ((3, 1), (3, 0))}

C{l4,l3} = {((0, 2), (0, 1)), ((0, 2), (1, 3)), ((0, 2), (2, 0)), ((0, 2), (3, 2)),

((1, 0), (0, 1)), ((1, 0), (1, 3)), ((1, 0), (2, 0)), ((1, 0), (3, 2)),

((2, 3), (0, 1)), ((2, 3), (1, 3)), ((2, 3), (2, 0)), ((2, 3), (3, 2)),

((3, 1), (0, 1)), ((3, 1), (1, 3)), ((3, 1), (2, 0)), ((3, 1), (3, 2))}

C{l4,l4} = {((0, 2), (0, 2)), ((0, 2), (1, 0)), ((0, 2), (2, 3)), ((0, 2), (3, 1)),

((1, 0), (0, 2)), ((1, 0), (1, 0)), ((1, 0), (2, 3)), ((1, 0), (3, 1)),

((2, 3), (0, 2)), ((2, 3), (1, 0)), ((2, 3), (2, 3)), ((2, 3), (3, 1)),

((3, 1), (0, 2)), ((3, 1), (1, 0)), ((3, 1), (2, 3)), ((3, 1), (3, 1))}

The entries of the above clusters are of the form
((xA1 , xB1), (xA2 , xB2)), i.e., in the order A’s transmission
during the first channel use, B’s transmission during the first
channel use, A’s transmission during the second channel use,
B’s transmission during the second channel use. We now
represent these clusters by a Latin Square of side16, with
(xA1 , xA2) along the rows, and(xB1 , xB2) along the columns.
The ((xA1 , xA2), (xB1 , xB2)) entry of the Latin Square as
dictated by the clusters above are as follows:

L1 := {((0, 0), (0, 0)), ((0, 1), (0, 2)), ((0, 2), (0, 1)), ((0, 3), (0, 3)),

((1, 0), (2, 0)), ((1, 1), (2, 2)), ((1, 2), (2, 1)), ((1, 3), (2, 3)),

((2, 0), (1, 0)), ((2, 1), (1, 2)), ((2, 2), (1, 1)), ((2, 3), (1, 3)),

((3, 0), (3, 0)), ((3, 1), (3, 2)), ((3, 2), (3, 1)), ((3, 3), (3, 3))}

L2 := {((0, 0), (0, 3)), ((0, 1), (0, 1)), ((0, 2), (0, 2)), ((0, 3), (0, 0)),

((1, 0), (2, 3)), ((1, 1), (2, 1)), ((1, 2), (2, 2)), ((1, 3), (2, 0)),

((2, 0), (1, 3)), ((2, 1), (1, 1)), ((2, 2), (1, 2)), ((2, 3), (1, 0)),

((3, 0), (3, 3)), ((3, 1), (3, 1)), ((3, 2), (3, 2)), ((3, 3), (3, 0))}

L3 := {((0, 0), (0, 1)), ((0, 1), (0, 3)), ((0, 2), (0, 0)), ((0, 3), (0, 2)),

((1, 0), (2, 1)), ((1, 1), (2, 3)), ((1, 2), (2, 0)), ((1, 3), (2, 2)),

((2, 0), (1, 1)), ((2, 1), (1, 3)), ((2, 2), (1, 0)), ((2, 3), (1, 2)),

((3, 0), (3, 1)), ((3, 1), (3, 3)), ((3, 2), (3, 0)), ((3, 3), (3, 2))}

L4 := {((0, 0), (0, 2)), ((0, 1), (0, 0)), ((0, 2), (0, 3)), ((0, 3), (0, 1)),

((1, 0), (2, 2)), ((1, 1), (2, 0)), ((1, 2), (2, 3)), ((1, 3), (2, 1)),

((2, 0), (1, 2)), ((2, 1), (1, 0)), ((2, 2), (1, 3)), ((2, 3), (1, 1)),

((3, 0), (3, 2)), ((3, 1), (3, 0)), ((3, 2), (3, 3)), ((3, 3), (3, 1))}

L5 := {((0, 0), (3, 0)), ((0, 1), (3, 2)), ((0, 2), (3, 1)), ((0, 3), (3, 3)),

((1, 0), (1, 0)), ((1, 1), (1, 2)), ((1, 2), (1, 1)), ((1, 3), (1, 3)),

((2, 0), (2, 0)), ((2, 1), (2, 2)), ((2, 2), (2, 1)), ((2, 3), (2, 3)),

((3, 0), (0, 0)), ((3, 1), (0, 2)), ((3, 2), (0, 1)), ((3, 3), (0, 3))}

L6 := {((0, 0), (3, 3)), ((0, 1), (3, 1)), ((0, 2), (3, 2)), ((0, 3), (3, 0)),

((1, 0), (1, 3)), ((1, 1), (1, 1)), ((1, 2), (1, 2)), ((1, 3), (1, 0)),

((2, 0), (2, 3)), ((2, 1), (2, 1)), ((2, 2), (2, 2)), ((2, 3), (2, 0)),

((3, 0), (0, 3)), ((3, 1), (0, 1)), ((3, 2), (0, 2)), ((3, 3), (0, 0))}

L7 := {((0, 0), (3, 1)), ((0, 1), (3, 3)), ((0, 2), (3, 0)), ((0, 3), (3, 2)),

((1, 0), (1, 1)), ((1, 1), (1, 3)), ((1, 2), (1, 0)), ((1, 3), (1, 2)),

((2, 0), (2, 1)), ((2, 1), (2, 3)), ((2, 2), (2, 0)), ((2, 3), (2, 2)),

((3, 0), (0, 1)), ((3, 1), (0, 3)), ((3, 2), (0, 0)), ((3, 3), (0, 2))}

7

(0, 0) (0, 1) (0, 2) (0, 3) (1, 0) (1, 1) (1, 2) (1, 3) (2, 0) (2, 1) (2, 2) (2, 3) (3, 0) (3, 1) (3, 2) (3, 3)

(0, 0) L1 L3 L4 L2 L9 L11 L12 L10 L13 L15 L16 L14 L5 L7 L8 L6

(0, 1) L4 L2 L1 L3 L12 L10 L9 L11 L16 L14 L13 L15 L8 L6 L5 L7

(0, 2) L3 L1 L2 L4 L11 L9 L10 L12 L15 L13 L14 L16 L7 L5 L6 L8

(0, 3) L2 L4 L3 L1 L10 L12 L11 L9 L14 L16 L15 L13 L6 L8 L7 L5

(1, 0) L13 L15 L16 L14 L5 L7 L8 L6 L1 L3 L4 L2 L9 L11 L12 L10

(1, 1) L16 L14 L13 L15 L8 L6 L5 L7 L4 L2 L1 L3 L12 L10 L9 L11

(1, 2) L15 L13 L14 L16 L7 L5 L6 L8 L3 L1 L2 L4 L11 L9 L10 L12

(1, 3) L14 L16 L15 L13 L6 L8 L7 L5 L2 L4 L3 L1 L10 L12 L11 L9

(2, 0) L9 L11 L12 L10 L1 L3 L4 L2 L5 L7 L8 L6 L13 L15 L16 L14

(2, 1) L12 L10 L9 L11 L4 L2 L1 L3 L8 L6 L5 L7 L16 L14 L13 L15

(2, 2) L11 L9 L10 L12 L3 L1 L2 L4 L7 L5 L6 L8 L15 L13 L14 L16

(2, 3) L10 L12 L11 L9 L2 L4 L3 L1 L6 L8 L7 L5 L14 L16 L15 L13

(3, 0) L5 L7 L8 L6 L13 L15 L16 L14 L9 L11 L12 L10 L1 L3 L4 L2

(3, 1) L8 L6 L5 L7 L16 L14 L13 L15 L12 L10 L9 L11 L4 L2 L1 L3

(3, 2) L7 L5 L6 L8 L15 L13 L14 L16 L11 L9 L10 L12 L3 L1 L2 L4

(3, 3) L6 L8 L7 L5 L14 L16 L15 L13 L10 L12 L11 L9 L2 L4 L3 L1

Fig. 3. Latin Square L representing the clustering at the relay for the case γejθ = j, obtained using Cartesian Cluster
Product, with the 4-PSK symbols that A(B) sent in the first and second channel use along the rows(columns)

L8 := {((0, 0), (3, 2)), ((0, 1), (3, 0)), ((0, 2), (3, 3)), ((0, 3), (3, 1)),

((1, 0), (1, 2)), ((1, 1), (1, 0)), ((1, 2), (1, 3)), ((1, 3), (1, 1)),

((2, 0), (2, 2)), ((2, 1), (2, 0)), ((2, 2), (2, 3)), ((2, 3), (2, 1)),

((3, 0), (0, 2)), ((3, 1), (0, 0)), ((3, 2), (0, 3)), ((3, 3), (0, 1))}

L9 := {((0, 0), (1, 0)), ((0, 1), (1, 2)), ((0, 2), (1, 1)), ((0, 3), (1, 3)),

((1, 0), (3, 0)), ((1, 1), (3, 2)), ((1, 2), (3, 1)), ((1, 3), (3, 3)),

((2, 0), (0, 0)), ((2, 1), (0, 2)), ((2, 2), (0, 1)), ((2, 3), (0, 3)),

((3, 0), (2, 0)), ((3, 1), (2, 2)), ((3, 2), (2, 1)), ((3, 3), (2, 3))}

L10 := {((0, 0), (1, 3)), ((0, 1), (1, 1)), ((0, 2), (1, 2)), ((0, 3), (1, 0)),

((1, 0), (3, 3)), ((1, 1), (3, 1)), ((1, 2), (3, 2)), ((1, 3), (3, 0)),

((2, 0), (0, 3)), ((2, 1), (0, 1)), ((2, 2), (0, 2)), ((2, 3), (0, 0)),

((3, 0), (2, 3)), ((3, 1), (2, 1)), ((3, 2), (2, 2)), ((3, 3), (2, 0))}

L11 := {((0, 0), (1, 1)), ((0, 1), (1, 3)), ((0, 2), (1, 0)), ((0, 3), (1, 2)),

((1, 0), (3, 1)), ((1, 1), (3, 3)), ((1, 2), (3, 0)), ((1, 3), (3, 2)),

((2, 0), (0, 1)), ((2, 1), (0, 3)), ((2, 2), (0, 0)), ((2, 3), (0, 2)),

((3, 0), (2, 1)), ((3, 1), (2, 3)), ((3, 2), (2, 0)), ((3, 3), (2, 2))}

L12 := {((0, 0), (1, 2)), ((0, 1), (1, 0)), ((0, 2), (1, 3)), ((0, 3), (1, 1)),

((1, 0), (3, 2)), ((1, 1), (3, 0)), ((1, 2), (3, 3)), ((1, 3), (3, 1)),

((2, 0), (0, 2)), ((2, 1), (0, 0)), ((2, 2), (0, 3)), ((2, 3), (0, 1)),

((3, 0), (2, 2)), ((3, 1), (2, 0)), ((3, 2), (2, 3)), ((3, 3), (2, 1))}

L13 := {((0, 0), (2, 0)), ((0, 1), (2, 2)), ((0, 2), (2, 1)), ((0, 3), (2, 3)),

((1, 0), (0, 0)), ((1, 1), (0, 2)), ((1, 2), (0, 1)), ((1, 3), (0, 3)),

((2, 0), (3, 0)), ((2, 1), (3, 2)), ((2, 2), (3, 1)), ((2, 3), (3, 3)),

((3, 0), (1, 0)), ((3, 1), (1, 2)), ((3, 2), (1, 1)), ((3, 3), (1, 3))}

L14 := {((0, 0), (2, 3)), ((0, 1), (2, 1)), ((0, 2), (2, 2)), ((0, 3), (2, 0)),

((1, 0), (0, 3)), ((1, 1), (0, 1)), ((1, 2), (0, 2)), ((1, 3), (0, 0)),

((2, 0), (3, 3)), ((2, 1), (3, 1)), ((2, 2), (3, 2)), ((2, 3), (3, 0)),

((3, 0), (1, 3)), ((3, 1), (1, 1)), ((3, 2), (1, 2)), ((3, 3), (1, 0))}

L15 := {((0, 0), (2, 1)), ((0, 1), (2, 3)), ((0, 2), (2, 0)), ((0, 3), (2, 2)),

((1, 0), (0, 1)), ((1, 1), (0, 3)), ((1, 2), (0, 0)), ((1, 3), (0, 2)),

((2, 0), (3, 1)), ((2, 1), (3, 3)), ((2, 2), (3, 0)), ((2, 3), (3, 2)),

((3, 0), (1, 1)), ((3, 1), (1, 3)), ((3, 2), (1, 0)), ((3, 3), (1, 2))}

L16 := {((0, 0), (2, 2)), ((0, 1), (2, 0)), ((0, 2), (2, 3)), ((0, 3), (2, 1)),

((1, 0), (0, 2)), ((1, 1), (0, 0)), ((1, 2), (0, 3)), ((1, 3), (0, 1)),

((2, 0), (3, 2)), ((2, 1), (3, 0)), ((2, 2), (3, 3)), ((2, 3), (3, 1)),

((3, 0), (1, 2)), ((3, 1), (1, 0)), ((3, 2), (1, 3)), ((3, 3), (1, 1))}

0 1 2 3
0 l1 l3 l4 l2
1 l4 l2 l1 l3
2 l3 l1 l2 l4
3 l2 l4 l3 l1
(a) 4× 4 blocks inL









α1 α3 α4 α2

α4 α2 α1 α3

α3 α1 α2 α4

α2 α4 α3 α1









(b) The arrayLB

Fig. 4. Latin Square representing the clustering C[j] with
the symbol sent by A(B) along the rows(columns).

The resulting Latin Square representing the clusters denoted
by sayL, is shown in Fig. 3. This16 × 16 arrayL can be
divided into 16 blocks of4× 4 arrays. LetLB = [Li,j] where
eachLi,j is a 4 × 4 array for i, j = 1, 2, 3, 4 as shown in
Fig. 3. EachLi,j is in one-to-one correspondence with the
Latin Square obtained in [8] for removing the singular fade
state γejθ = j for the two-way 2-stage relaying scenario
representing the clusteringC[j] given in Fig 4(a). Also let,

α1 := L1,1 = L2,3 = L3,2 = L4,4,

α2 := L1,4 = L2,2 = L3,3 = L4,1,

α3 := L1,2 = L2,4 = L3,1 = L4,3 and

α4 := L1,3 = L2,1 = L3,4 = L4,2.

This makesLB of the form shown in Fig. 4(b).

8

(0, 0) (0, 1) (0, 2) (0, 3) (1, 0) (1, 1) (1, 2) (1, 3) (2, 0) (2, 1) (2, 2) (2, 3) (3, 0) (3, 1) (3, 2) (3, 3)

(0, 0) L25 L21 L22 L23 L5 L1 L2 L3 L10 L6 L7 L8 L15 L11 L12 L13

(0, 1) L24 L25 L21 L22 L4 L5 L1 L2 L9 L10 L6 L7 L14 L15 L11 L12

(0, 2) L23 L24 L25 L21 L3 L4 L5 L1 L8 L9 L10 L6 L13 L14 L15 L11

(0, 3) L22 L23 L24 L25 L2 L3 L4 L5 L7 L8 L9 L10 L12 L13 L14 L15

(1, 0) L20 L16 L17 L18 L25 L21 L22 L23 L5 L1 L2 L3 L10 L6 L7 L8

(1, 1) L19 L20 L16 L17 L24 L25 L21 L22 L4 L5 L1 L2 L9 L10 L6 L7

(1, 2) L18 L19 L20 L16 L23 L24 L25 L21 L3 L4 L5 L1 L8 L9 L10 L6

(1, 3) L17 L18 L19 L20 L22 L23 L24 L25 L2 L3 L4 L5 L7 L8 L9 L10

(2, 0) L15 L11 L12 L13 L20 L16 L17 L18 L25 L21 L22 L23 L5 L1 L2 L3

(2, 1) L14 L15 L11 L12 L19 L20 L16 L17 L24 L25 L21 L22 L4 L5 L1 L2

(2, 2) L13 L14 L15 L11 L18 L19 L20 L16 L23 L24 L25 L21 L3 L4 L5 L1

(2, 3) L12 L13 L14 L15 L17 L18 L19 L20 L22 L23 L24 L25 L2 L3 L4 L5

(3, 0) L10 L6 L7 L8 L15 L11 L12 L13 L20 L16 L17 L18 L25 L21 L22 L23

(3, 1) L9 L10 L6 L7 L14 L15 L11 L12 L19 L20 L16 L17 L24 L25 L21 L22

(3, 2) L8 L9 L10 L6 L13 L14 L15 L11 L18 L19 L20 L16 L23 L24 L25 L21

(3, 3) L7 L8 L9 L10 L12 L13 L14 L15 L17 L18 L19 L20 L22 L23 L24 L25

Fig. 5. Latin Square representing the clustering at the relay for the case γejθ = 0.5 + 0.5j, obtained using Cartesian
Cluster Product, with the 4-PSK symbols that A(B) sent in the first and second channel use along the rows(columns)

This makes the block matrixLB also consistent with the
Latin Square given in Fig. 4. The reason behindLB and
Li,j being consistent with this Latin Square is as follows:
eachLi,j corresponds to some fixed values of the symbols
A and B send during the first channel use, with the symbols
sent by A and B during second channel use varying along
the rows and columns respectively. The Latin Square in
Fig. 3 has been obtained by taking the Cartesian Product
of the clustering for removing the fade stateγejθ = j with
itself. The Cartesian Product utilizes the clustering thatis
represented by the Latin Square given in Fig. 4, given by
C[j], for the case for both the first and second channel use
in the MA phase, which makes eachLi,j i, j = 1, 2, 3, 4 and
LB in one-to-one correspondence with this Latin Square that
represents the clusteringC[j].

Case 2: γejθ lies on the circle of radius1/
√
2.

In this case, the Cartesian Product ofC[γejθ] with itself
consists of25 clusters since the clusteringC[γejθ] has 5
clusters. We now give an example of this case. The remaining
instances of this case can be obtained from this example as
will be shown later in Section V, Lemma 6.

Example 2:Consider the case whenγejθ = 0.5+0.5j. The
clusteringC[0.5+0.5j] given in [8] that removes this fade state
for the two-way 2-stage relaying scenario is given by:

C[0.5+0.5j] = {l1, l2, l3, l4, l5} ,
where, (11)

l1 = {(0, 1) , (1, 2) , (2, 3)}
l2 = {(0, 2) , (1, 3) , (3, 0)}
l3 = {(0, 3) , (2, 0) , (3, 1)}
l4 = {(1, 0) , (2, 1) , (3, 2)}
l5 = {(0, 0) , (1, 1) , (2, 2) , (3, 3)} .

The Cartesian Product of the above clustering given by
D[0.5+0.5j] =

{

C{li,lj} | i, j = 1, 2, 3, 4, 5
}

contains exactly
25 clusters. The clusters and the corresponding constraints
for the Latin Square representing the clustering have been
listed in the Appendix A. The Cartesian Product of the
clusteringC[0.5+0.5j] with itself, denoted byD[0.5+0.5j] can
be represented by the Latin Square given in Fig. 5.

0 1 2 3

0 l5 l1 l2 l3

1 l4 l5 l1 l2

2 l3 l4 l5 l1

3 l2 l3 l4 l5

Fig. 6. Latin Square l representing the clustering
C[0.5+0.5j] with the symbol sent by A(B) along the
rows(columns)

As explained in the previous example, let the16 × 16
Latin Square obtained as shown in Fig. 5 be denoted by
say L′ and L′

B =
[

L′
i,j

]

with i, j = 1, 2, 3, 4. Then both
L′
B and L′

i,j must be consistent with the Latin Square
of side 4 given in Fig. 6, denoted byl, which represents
the clusteringC[0.5+0.5j]. As can be seen in Fig. 5,l is
repeated in each blockL′

i,j with a possibly different set
of five symbols amongst{L1,L2, ...,L25} denoting the
five symbols {l1, l2, ..., l5} in each L′

i,j. More precisely,
the blocks L′

1,1 = L′
2,2 = L′

3,3 = L′
4,4 are the same

as l, with the symbols L21,L22, ...,L25 replacing the
symbols l1, l2, ..., l5 respectively. Similarly, the blocks
L′
1,2 = L′

2,3 = L′
3,4 are the same asl with symbols

L1,L2, ...,L5 replacing the symbolsl1, l2, ..., l5 respectively,
the blocksL′

1,3 = L′
2,4 = L′

4,1 are the same asl with symbols
L6,L7, ...,L10 replacing the symbolsl1, l2, ..., l5 respectively,

9

(0, 0) (0, 1) (0, 2) (0, 3) (1, 0) (1, 1) (1, 2) (1, 3) (2, 0) (2, 1) (2, 2) (2, 3) (3, 0) (3, 1) (3, 2) (3, 3)

(0, 0) L25 L21 L24 L22 L5 L1 L4 L2 L20 L16 L19 L17 L10 L6 L9 L7

(0, 1) L22 L25 L23 L24 L2 L5 L3 L4 L17 L20 L18 L19 L7 L10 L8 L9

(0, 2) L23 L24 L25 L21 L3 L4 L5 L1 L18 L19 L20 L16 L8 L9 L10 L6

(0, 3) L21 L23 L22 L25 L1 L3 L2 L5 L16 L18 L17 L20 L6 L8 L7 L10

(1, 0) L10 L6 L9 L7 L25 L21 L24 L22 L15 L11 L14 L12 L20 L16 L19 L17

(1, 1) L7 L10 L8 L9 L22 L25 L23 L24 L12 L15 L13 L14 L17 L20 L18 L19

(1, 2) L8 L9 L10 L6 L23 L24 L25 L21 L13 L14 L15 L11 L18 L19 L20 L16

(1, 3) L6 L8 L7 L10 L21 L23 L22 L25 L11 L13 L12 L15 L16 L18 L17 L20

(2, 0) L15 L11 L14 L12 L20 L16 L19 L17 L25 L21 L24 L22 L5 L1 L4 L2

(2, 1) L12 L15 L13 L14 L17 L20 L18 L19 L22 L25 L23 L24 L2 L5 L3 L4

(2, 2) L13 L14 L15 L11 L18 L19 L20 L16 L23 L24 L25 L21 L3 L4 L5 L1

(2, 3) L11 L13 L12 L15 L16 L18 L17 L20 L21 L23 L22 L25 L1 L3 L2 L5

(3, 0) L5 L1 L4 L2 L15 L11 L14 L12 L10 L6 L9 L7 L25 L21 L24 L22

(3, 1) L2 L5 L3 L4 L12 L15 L13 L14 L7 L10 L8 L9 L22 L25 L23 L24

(3, 2) L3 L4 L5 L1 L13 L14 L15 L11 L8 L9 L10 L6 L23 L24 L25 L21

(3, 3) L1 L3 L2 L5 L11 L13 L12 L15 L6 L8 L7 L10 L21 L23 L22 L25

Fig. 7. Latin Square representing the clustering at the relay for the case γejθ = 1+j, obtained using Cartesian Cluster
Product, with the 4-PSK symbols that A(B) sent in the first and second channel use along the rows(columns)

the blocksL′
1,4 = L′

3,1 = L′
4,2 are the same asl with

symbolsL11,L12, ...,L15 replacing the symbolsl1, l2, ..., l5
respectively, and the blocksL′

2,1 = L′
3,2 = L′

4,3 are the same
as l with symbols L16,L17, ...,L20 replacing the symbols
l1, l2, ..., l5 respectively. Thus, the arrayL′ can be obtained
using l by simply using a different set of five symbols to
denotel1, l2, ..., l5 for every set of blocks corresponding to a
symbol amongstl1, l2, ..., l5 in l. We will illustrate this in the
next example by obtaining the16 × 16 Latin Square using
the 4× 4 Latin Square given in [8] for the case.

Case 3: γejθ lies on the circle of radius
√
2.

In this case, the Cartesian Product ofC[γejθ] with itself
consists of25 clusters since the clusteringC[γejθ] has 5
clusters. An instance of this case is as follows.

Example 3:Consider the case whenγejθ = 1 + j. The
clusteringC[1+j] given in [8] that removes this fade state for
the two-way 2-stage relaying scenario is given by:

C[1+j] = {l1, l2, l3, l4, l5}
where,

l1 = {(0, 1) , (2, 3) , (3, 0)}
l2 = {(0, 3) , (1, 0) , (3, 2)}
l3 = {(1, 2) , (2, 0) , (3, 1)}
l4 = {(0, 2) , (1, 3) , (2, 1)}
l5 = {(0, 0) , (1, 1) , (2, 2) , (3, 3)} .

This clustering can be represented by a Latin Square of
side4 denoted byl′ as shown in Fig. 8.

The Cartesian Product of the above clustering given by
D[1+j] =

{

C{li,lj} | i, j = 1, 2, 3, 4, 5
}

contains exactly25
clusters as given in the Appendix B. We represent these

0 1 2 3

0 l5 l1 l4 l2

1 l2 l5 l3 l4

2 l3 l4 l5 l1

3 l1 l3 l2 l5

Fig. 8. Latin Square representing the clustering C[1+j]

with the symbol sent by A(B) along the rows(columns)

clusters by a Latin Square of side16, with (xA1 , xA2)
along the rows, and(xB1 , xB2) along the columns. The
((xA1 , xA2), (xB1 , xB2)) entry of the Latin Square as dictated
by the clusters above are also listed in the Appendix B.

Let the16× 16 Latin Square that represents the clustering
obtained as a Cartesian Product ofC[1+j] with itself be
denoted by sayL′′, andL′′

B =
[

L′′
i,j

]

with i, j = 1, 2, 3, 4.
Then each ofL′′

B andL′′
i,j must be consistent with the Latin

Square of side4 given in Fig. 8 which represents the clustering
C[1+j]. We denotel1, l2, ..., l5 in L1,2 = L3,4 = L4,1 by
L1,L2, ...,L5, in L1,4 = L2,1 = L4,3 by L5,L6, ...,L10, in
blocks L2,3 = L3,1 = L3,2 by L10,L11, ...,L15, in blocks
L1,3 = L2,4 = L3,2 by L16,L17, ...,L20 and in blocks
L1,1 = L2,2 = L3,3 = L4,4 by L21,L22, ...,L25. Placing
these blocks in accordance withl′, the Cartesian Product of
the clusteringC[1+j] with itself, denoted byD[1+j] can be
represented by the Latin Square given in Fig. 7.

The Latin Square which removes the singular fade state
1
γ
e−jθ can be obtained by taking the transpose of the

Latin Square which removes the singular fade stateγejθ.
For example, the Latin Square which removes the singular
fade state

√
2ej

π
4 can also be obtained by taking the

transpose of the Latin Square which removes the singular
fade state 1√

2
e−j π

4 . The reason for this is as follows:

10

the case when the singular fade state is1
γ
e−jθ can be

equivalently viewed as the case when the singular fade states
is γejθ with the users A and B interchanged. Interchanging
the users is equivalent to taking transpose of the Latin Square.

IV. CLUSTERINGS FROMLATIN SQUARE OFLOWER SIZE

In this section, we deal with any2λ-PSK constellation.
In [7], it was shown that the singular fade states for the
two-way 2-stage relaying scenario lie on circles centered at
the origin. From Lemma 1, since the singular fade states
for the ACF two-way relaying scenario are the same as that
of the two-way 2-stage relaying scenario, it follows that the
singular fade states for the ACF two-way relaying scenario
lie on circles centered at the origin as well. In this section, it
is shown that for each circle, it is enough if we obtain one
Latin Square which removes a singular fade state on that
circle. The Latin Squares which remove the other singular
fade states on that circle can be obtained by some elementary
operations on the Latin Square, which are described in the
sequel.

For a Latin SquareL of order22λ, letLi,j, 0 ≤ i, j ≤ 2λ−1,
denote the Latin Sub-square of order2λ obtained by taking
only the rows2λi to 2λ(i + 1) − 1 and only the columns
2λj to 2λ(j + 1)− 1 of L. For example, in Fig. 9, the Latin
Sub-squaresLi,j , i, j ∈ {0, 1}, of order 2 corresponding to
the Latin SquareL of order 4 are shown. LetLB denote
the Square of order2λ, associated with the Latin SquareL
of order 22λ, with Li,j , 0 ≤ i, j ≤ 2λ − 1, as its entries.
For example the squareLB of order 2 associated to a Latin
SquareL of order 4 is as shown in Fig. 10.

0

0

0

0

1 2 3

1

2

3

3 2

3

2

1

1

0

0

1

1

2

2

3

3

2

2

3

3

0

0

1

1

L

L0,0
L0,1

L1,0
L1,1

Fig. 9. Obtaining Latin SquaresLi,j ’s from the Latin SquareL.

L0,0

L1,1

L0,1

L1,0

LB

Fig. 10. The Square LB order 2 corresponding to a Latin
Square L of order 4.

Lemma 3:Consider the two-way ACF relaying with
2λ-PSK signal set used at nodes A and B. The Latin Square
L′′ of order 22λ which removes the singular fade state

(γ, θ′), can be obtained from the Latin SquareL of order
22λ which removes the singular fade state(γ, θ), where
θ′ − θ = k 2π

2λ , as follows: Cyclic shift the columns of
each one the22λ Latin SquaresLi,j , 0 ≤ i, j ≤ 2λ − 1, k
times to the left to get the Latin SquareL′. Cyclic shift the
columns of the SquareL′

B associated withL′, k times to the
left, to get the SquareL′′

B associated with the Latin SquareL′′.

Proof: For the singular fade stateγejθ, let
{

(

(xA1
, xA2

), (xB1
, xB2

)
)

,
(

(x′
A1

, x′
A2

), (x′
B1

, x′
B2

)
)}

be a
singularity removal constraint , i.e.,

γejθ =
x′
A1

− xA1

xB1 − x′
B1

=
x′
A2

− xA2

xB2 − x′
B2

. (12)

From (12), it follows that

{(

(xA1
, xA2

), (xB1
e
−

jk2π

2λ , xB2
e
−

jk2π

2λ)

)

,

(

(x′
A1

, x′
A2

)(x′
B1

e
− jk2π

2λ , x′
B2

e
− jk2π

2λ)

)}

is a singularity removal constraint for the singular fade state
(γ, θ′), where θ′ − θ = k 2π

2λ
. In other words, the rotation

in the γejθ plane by an angleθ can be viewed equivalently
as a rotation of the constellations used by B during the MA
phases by an angleθ′ − θ. Note that the columns of the Latin
SquareL which removes the singular fade statesγejθ are
indexed by the symbols(xB1 , xB2) transmitted by B during
the two MA phases. Rotating the signal set used by B during
the second MA phase by an angle2kπ

2λ
is equivalent to shifting

the columns of the Latin Sub-squaresLi,j k times to the left.
Similarly, rotating the signal set used by B during the first
MA phase by an angle2kπ2λ is equivalent to cyclic shifting the
columns of the squareLB, k times to the left. This completes
the proof.

For example consider the Latin SquareL in Fig. 11(a)
which removes the singular fade state(γ = 1, θ = 0). The
Latin SquareL′′ which removes the singular fade state
(γ = 1, θ = π

2) can be obtained fromL as follows: The
columns of the Latin Sub-squaresLi,j, 0 ≤ i, j ≤ 3 are
cyclically shifted once to the left, to obtain the Latin Square
L′ shown in Fig. 11(b). The columns of the SquareL′

B

associated with the Latin SquareL′ are cyclically shifted once
to the left, to obtain the SquareL′′

B. The Latin SquareL′′

associated with the SquareL′′
B which removes the singular

fade state(γ = 1, θ = π
2) is shown in Fig. 11(c).

For the ACF two-way relaying scenario with 4-PSK signal
set used at the end nodes, the twelve singular fade states
lie on three circles with radii1, 1√

2
, and

√
2. The Latin

Squares which remove all the twelve singular fade states can
be obtained from the three Latin Squares which remove the
singular fade statesj, 0.5 + 0.5j and 1 + j given in Fig. 3,
Fig. 5 and Fig.7 respectively.

11

L1 L2 L3 L4

L2 L1 L4

L3 L4 L1 L2

L3

L1L2L3L4

L5 L6 L7 L8

L6 L5 L8

L7 L8 L5 L6

L7

L5L6L7L8

L1 L2 L3 L4

L2 L1 L4

L3 L4 L1 L2

L3

L1L2L3L4

L1 L2 L3 L4

L2 L1 L4

L3 L4 L1 L2

L3

L1L2L3L4

L1 L2 L3 L4

L2 L1 L4

L3 L4 L1 L2

L3

L1L2L3L4

L9 L10 L11L12

L10 L9 L12

L11L12 L9 L10

L11

L9L10L11L12

L13L14L15L16

L14L13L16

L15L16L13L14

L15

L13L14L15L16

L5 L6 L7 L8

L6 L5 L8

L7 L8 L5 L6

L7

L5L6L7L8

L5 L6 L7 L8

L6 L5 L8

L7 L8 L5 L6

L7

L5L6L7L8

L5 L6 L7 L8

L6 L5 L8

L7 L8 L5 L6

L7

L5L6L7L8

L9 L10 L11L12

L10 L9 L12

L11L12 L9 L10

L11

L9L10L11L12

L9 L10 L11L12

L10 L9 L12

L11L12 L9 L10

L11

L9L10L11L12

L9 L10 L11L12

L10 L9 L12

L11L12 L9 L10

L11

L9L10L11L12

L13L14L15L16

L14L13L16

L15L16L13L14

L15

L13L14L15L16

L13L14L15L16

L14L13L16

L15L16L13L14

L15

L13L14L15L16

L13L14L15L16

L14L13L16

L15L16L13L14

L15

L13L14L15L16

(a) The Latin SquareL that removes the singular fade state(γ =
1, θ = 0)

L13L14L15L16

L14L13L16

L15L16L13L14

L15

L13L14L15L16

L6 L7 L8

L5 L8

L8 L5 L6

L7

L5L6L7

L5

L6

L7

L8

L6 L7 L8

L5 L8

L8 L5 L6

L7

L5L6L7

L5

L6

L7

L8

L6 L7 L8

L5 L8

L8 L5 L6

L7

L5L6L7

L5

L6

L7

L8

L6 L7 L8

L5 L8

L8 L5 L6

L7

L5L6L7

L5

L6

L7

L8

L10 L11L12

L9 L12

L12 L9 L10

L11

L9L10L11

L9

L10

L11

L12

L10 L11L12

L9 L12

L12 L9 L10

L11

L9L10L11

L9

L10

L11

L12

L10 L11L12

L9 L12

L12 L9 L10

L11

L9L10L11

L9

L10

L11

L12

L10 L11L12

L9 L12

L12 L9 L10

L11

L9L10L11

L9

L10

L11

L12

L14L15L16

L13L16

L16L13L14

L15

L13L14L15

L13

L14

L15

L16

L14L15L16

L13L16

L16L13L14

L15

L13L14L15

L13

L14

L15

L16

L14L15L16

L13L16

L16L13L14

L15

L13L14L15

L13

L14

L15

L16

L2 L3 L4

L1 L4

L4 L1 L2

L3

L1L2L3

L1

L2

L3

L4

L2 L3 L4

L1 L4

L4 L1 L2

L3

L1L2L3

L1

L2

L3

L4

L2 L3 L4

L1 L4

L4 L1 L2

L3

L1L2L3

L1

L2

L3

L4

L2 L3 L4

L1 L4

L4 L1 L2

L3

L1L2L3

L1

L2

L3

L4

(b) The Latin SquareL′ obtained form the Latin SquareL using
the procedure described in Lemma 4

L13L14L15L16

L14L13L16

L15L16L13L14

L15

L13L14L15L16

L6 L7 L8

L5 L8

L8 L5 L6

L7

L5L6L7

L5

L6

L7

L8

L6 L7 L8

L5 L8

L8 L5 L6

L7

L5L6L7

L5

L6

L7

L8

L6 L7 L8

L5 L8

L8 L5 L6

L7

L5L6L7

L5

L6

L7

L8

L10 L11L12

L9 L12

L12 L9 L10

L11

L9L10L11

L9

L10

L11

L12

L10 L11L12

L9 L12

L12 L9 L10

L11

L9L10L11

L9

L10

L11

L12

L10 L11L12

L9 L12

L12 L9 L10

L11

L9L10L11

L9

L10

L11

L12

L14L15L16

L13L16

L16L13L14

L15

L13L14L15

L13

L14

L15

L16

L14L15L16

L13L16

L16L13L14

L15

L13L14L15

L13

L14

L15

L16

L6 L7 L8

L5 L8

L8 L5 L6

L7

L5L6L7

L5

L6

L7

L8

L10 L11L12

L9 L12

L12 L9 L10

L11

L9L10L11

L9

L10

L11

L12

L14L15L16

L13L16

L16L13L14

L15

L13L14L15

L13

L14

L15

L16

L2 L3 L4

L1 L4

L4 L1 L2

L3

L1L2L3

L1

L2

L3

L4

L2 L3 L4

L1 L4

L4 L1 L2

L3

L1L2L3

L1

L2

L3

L4

L2 L3 L4

L1 L4

L4 L1 L2

L3

L1L2L3

L1

L2

L3

L4

L2 L3 L4

L1 L4

L4 L1 L2

L3

L1L2L3

L1

L2

L3

L4

(c) The Latin SquareL′′ that removes the singular fade state
(γ = 1, θ = π

2
)

Fig. 11. Construction of the Latin Square L′′ which
removes (γ = 1, θ = π/2) from the Latin Square L which
removes (γ = 1, θ = 0)

V. D IRECT CLUSTERING

Algorithm 1 : Obtaining the16 × 16 Latin Square from
the 16 × 16 array constrained using Singularity Removal
Constraints
Input : The constrained16× 16 array
Output : A Latin Square representing the clustering map

at the relay
Start with the constrained16× 16 array1

Initialize all empty cells of the array to 02

for 1 ≤ i ≤ 16 do3

for 1 ≤ j ≤ 16 do4

if cell (i, j) of the array is NULLthen5

Initialize c=16

if Lc does not occur in theith row or thejth7

column of the arraythen
replace 0 at cell(i, j) of the array with8

Lc;
else9

c=c+1;10

end11

end12

end13

end14

Recall that there are three classes of singular fade states
depending on the radius of the circle it lies on(Case 1:)γejθ

lies on the unit circle,(Case 2:)γejθ lies on the circle of radius
1/

√
2 and (Case 3:)γejθ lies on the circle of radius

√
2. The

number of clusters in the clustering utilized by relay node
R during BC phase obtained using Cartesian Product in the
three cases is16, 25 and25 respectively. It is observed that,
if instead of taking the Cartesian Product of the clusterings
given in [8], the Cartesian Product of theSingularity Removal
Constraints corresponding to each fade state are used to
fill a 16 × 16 array, and the resulting incomplete array so
obtained is completed using Algorithm 1, so as to form a
Latin Square of side 16, then the number of clusters of the
resulting clustering corresponding the to this Latin Square can
be reduced from 25 to a lesser number in bothCase 2and
Case 3. We call this the Direct Clustering. We now explain
this clustering with the help of examples in the second and
the third case only, since for the first case, the minimum
number of clusters required, i.e.,16, can be achieved using
Cartesian Product Clustering as shown in Section III.

Case 2: γejθ lies on the circle of radius1/
√
2.

In this case, there are a total of80 singularity removal
constraints as shown in the following lemma.

Lemma 4:When γejθ lies on the circle of radius1/
√
2,

there are a total of80 singularity removal constraints.
Proof: Let the singularity removal constraints for the two-

way ACF relaying be the set{C1, C2, ..., Cs}. Let, for t =
1, 2, ..., s,

Ct =
{

((x1k , y1k), (x2k , y2k)) | x1k , y1k , x2k , y2k ∈ S, k = 1, 2, ...nt

}

.

12

Then, for1 ≤ k1, k2 ≤ nt,

x1k1
+ γejθy1k1 = x1k2

+ γejθy1k2 and

x2k1
+ γejθy2k1 = x2k2

+ γejθy2k2 .

Since in the case of two-way ACF relaying, the user nodes
A and B transmit twice to the relay node R, these constraints
for the ACF relaying can be obtained by taking the Cartesian
Product of all sets of the form
{

(xAl
, xBl

) | xAl1
+ γejθxBl1

= xAl2
+ γejθxBl2

∀l1, l2
wherexAl1

, xBl1
, xAl2

, xBl2
∈ S

}

.

These sets can be of two types:

1) The singularity removal constraints corresponding to the
fade stateγejθ for the two-way 2-stage relaying as given
in [8]. Let us denote the 2-stage singularity removal
constraints as:

li =
{

(xi1 , yi1), (x
′
i1
, y′i1)

}

for i = 1, 2, 3, 4.

2) The sets of the form{(xA, xB), (xA, xB)} for
(xA, xB) ∈ S2 where (xA, xB) /∈ li ∀ i = 1, 2, 3, 4,
sincexA + γejθxB = xA + γejθxB . The (xA, xB) for
which (xA, xB) ∈ li for somei = 1, 2, 3, 4, 5 are not
considered in this category, as it already occurs in some
set of the above category.

The Cartesian Products of these sets amongst themselves
must be the singularity removal constraints for the ACF
relaying. Now, the constraint sets so obtained are also of two
types:

1) For i, j ∈ {1, 2, 3, 4},

li × lj =
{

((xi1 , yi1), (x
′
j1
, y′j1)), ((x

′
i1
, y′i1), (xj1 , yj1)),

((xi1 , yi1), (xj1 , yj1)), ((x
′
i1
, y′i1), (x

′
j1
, y′j1))

}

,

These singularity removal constraints account for 16
of the total number of constraints.

2) For i ∈ {1, 2, 3, 4} and the four mk :=
((xAk

, xBk
), (xAk

, xBk
)) for k ∈ {1, 2, ..., 8} that sat-

isfy (xAk
, xBk

) /∈ lj ∀j ∈ {1, 2, 3, 4};
li ×mk =

{

((xi1 , yi1), (xAk
, xBk

)), ((x′
i1
, y′i1), (xAk

, xBk
))
}

mk × li =
{

((xAk
, xBk

), (xi1 , yi1)), ((xAk
, xBk

), (x′
i1
, y′i1))

}

These singularity removal constraints account for
remaining 64 constraints.

Thus, the set of singularity removal constraints for two-way
ACF relaying becomes,

{li × lj | i, j = 1, 2, 3, 4} ∪ {li ×mk | i = 1, 2, 3, 4, k = 1, 2, ..., 8}

∪ {mk × li | i = 1, 2, 3, 4, k = 1, 2, ..., 8} ,

where the subset {li × lj | i, j = 1, 2, 3, 4}
contains 16 constraints, and the subsets
{li ×mk | i = 1, 2, 3, 4, k = 1, 2, ..., 8} and
{mk × li | i = 1, 2, 3, 4, k = 1, 2, ..., 8} contain 32
constraints each, which amount to a total of 80 singularity

removal constraints.

The16×16 Latin Square representing these constraints can
be completed using 20 symbols, as we show in the following
example.

Example 4:Consider the case for whichγejθ =
−0.5 + 0.5j. The singularity removal constraints for
the caseγejθ = −0.5 + 0.5j in two-way 2-stage relaying as
given in [8] are:
{(0, 0), (1, 3)} , {(1, 1), (3, 2)} , {(0, 1), (2, 2)} and {(2, 0), (3, 3)} .

As a result, the singularity removal constraints for the
two-way ACF relaying are as shown in Fig. 12 and Fig. 13.
The clusters as shown in the third column of the table, are
chosen such that each cluster satisfies the mutually exclusive
laws given by (5) and (6).

The constraints can be represented using 17 symbols. In
order to complete the latin square, we use Algorithm 1. A
total of 20 symbols suffice in completing the array. Fig. 14
represents the Latin Square representing the clustering at
the relay for the caseγejθ = −0.5 + 0.5j, with the 4-PSK
symbols that A(B) sent in the first and second channel use
along the rows(columns).

Case 3: γejθ lies on the circle of radius
√
2.

In this case, there are a total of80 singularity removal
constraints as stated in the following lemma:

Lemma 5:Whenγejθ lies on the circle of radius
√
2, there

are a total of80 singularity removal constraints.

We omit the proof of this lemma, as it is the same as that of
Lemma 3.

The resulting constrained16 × 16 array can be uniquely
completed with 20 symbols as shown in the following
example:

Example 5:Consider the case for whichγejθ = −1 + j.
The singularity removal constraints for the caseγejθ = −1+j
in two-way 2-stage relaying as given in [8] are:
{(0, 0), (3, 2)} , {(0, 1), (3, 3)} , {(1, 1), (2, 0)} and {(1, 3), (2, 2)} .

As a result, the constraints representing the singularity
removal constraints for the two-way ACF relaying can be
represented by the bold letters in the16 × 16 Latin Square.
The constraints can be represented using 18 symbols. In
order to complete the latin square using Algorithm 1, a total
of 20 symbols suffice. Fig. 15 represents the clustering. The
constraints representing the singularity removal constraints
for this example are given in Appendix C.

13

Singularity Removal Constraints forγejθ = −0.5 + 0.5j Latin Square Constraints forγejθ = −0.5 + 0.5j Cluster

(1) {((0, 0), (1, 3)), ((1, 3), (0, 0)), ((0, 0), (0, 0)), ((1, 3), (1, 3))} {((0, 1), (0, 3)), ((1, 0), (3, 0)), ((0, 0), (0, 0)), ((1, 1), (3, 3))} L1

(2) {((1, 1), (3, 2)), ((3, 2), (1, 1)), ((1, 1), (1, 1)), ((3, 2), (3, 2))} {((1, 3), (1, 2)), ((3, 1), (2, 1)), ((1, 1), (1, 1)), ((3, 3), (2, 2))} L2

(3) {((0, 1), (2, 2)), ((2, 2), (0, 1)), ((0, 1), (0, 1)), ((2, 2), (2, 2))} {((0, 2), (1, 2)), ((2, 0), (2, 1)), ((0, 0), (1, 1)), ((2, 2), (2, 2))} L3

(4) {((2, 0), (3, 3)), ((3, 3), (2, 0)), ((2, 0), (2, 0)), ((3, 3), (3, 3))} {((2, 3), (0, 3)), ((3, 2), (3, 0)), ((2, 2), (0, 0)), ((3, 3), (3, 3))} L4

(5) {((0, 0), (0, 1)), ((1, 3), (2, 2)), ((1, 3), (0, 1)), ((0, 0), (2, 2))} {((0, 0), (0, 1)), ((1, 2), (3, 2)), ((1, 0), (3, 1)), ((0, 2), (0, 2))} L3

(6) {((0, 0), (1, 1)), ((1, 3), (3, 2)), ((1, 3), (1, 1)), ((0, 0), (3, 2))} {((0, 0), (0, 1)), ((1, 3), (1, 0)), ((1, 3), (0, 1)), ((0, 0), (1, 0))} L2

(7) {((0, 0), (2, 0)), ((1, 3), (3, 3)), ((1, 3), (2, 0)), ((0, 0), (3, 3))} {((0, 2), (0, 0)), ((1, 3), (3, 3)), ((1, 2), (3, 0)), ((0, 3), (0, 3))} L5

(8) {((0, 1), (0, 0)), ((2, 2), (1, 3)), ((2, 2), (0, 0)), ((0, 1), (1, 3))} {((0, 0), (1, 0)), ((2, 1), (2, 3)), ((2, 0), (2, 0)), ((0, 1), (1, 3))} L4

(9) {((0, 1), (1, 1)), ((2, 2), (3, 2)), ((2, 2), (3, 2)), ((0, 1), (1, 1))} {((0, 1), (1, 1)), ((2, 3), (2, 2)), ((2, 3), (2, 2)), ((0, 1), (1, 1))} L6

(10) {((0, 1), (2, 0)), ((2, 2), (3, 3)), ((2, 2), (3, 3)), ((0, 1), (2, 0))} {((0, 2), (1, 0)), ((2, 3), (2, 3)), ((2, 3), (2, 3)), ((0, 2), (1, 0))} L1

(11) {((1, 1), (0, 0)), ((3, 2), (1, 3)), ((3, 2), (0, 0)), ((1, 1), (1, 3))} {((1, 0), (1, 0)), ((3, 1), (2, 3)), ((3, 0), (2, 0)), ((1, 1), (1, 3))} L5

(12) {((1, 1), (0, 1)), ((3, 2), (2, 2)), ((3, 2), (0, 1)), ((1, 1), (2, 2))} {((1, 0), (1, 1)), ((3, 2), (2, 2)), ((3, 0), (2, 1)), ((1, 2), (1, 2))} L7

(13) {((1, 1), (2, 0)), ((3, 2), (3, 3)), ((3, 2), (2, 0)), ((1, 1), (3, 3))} {((1, 2), (1, 0)), ((3, 3), (2, 3)), ((3, 2), (2, 0)), ((1, 3), (1, 3))} L6

(14) {((2, 0), (0, 0)), ((3, 3), (1, 3)), ((3, 3), (0, 0)), ((2, 0), (1, 3))} {((2, 0), (0, 0)), ((3, 1), (3, 3)), ((3, 0), (3, 0)), ((2, 1), (0, 3))} L8

(15) {((2, 0), (0, 1)), ((3, 3), (2, 2)), ((3, 3), (0, 1)), ((2, 0), (2, 2))} {((2, 0), (0, 1)), ((3, 2), (3, 2)), ((3, 0), (3, 1)), ((2, 2), (0, 2))} L9

(16) {((2, 0), (1, 1)), ((3, 3), (3, 2)), ((3, 3), (1, 1)), ((2, 0), (3, 2))} {((2, 1), (0, 1)), ((3, 3), (3, 2)), ((3, 1), (3, 1)), ((2, 3), (0, 2))} L7

(17) {((0, 0), (0, 2)), ((1, 3), (0, 2))} {((0, 0), (0, 2)), ((1, 0), (3, 2))} L6

(18) {((0, 0), (0, 3)), ((1, 3), (0, 3))} {((0, 0), (0, 3)), ((1, 0), (3, 3)} L9

(19) {((0, 0), (1, 0)), ((1, 3), (1, 0))} {((0, 1), (0, 0)), ((1, 1), (3, 0))} L7

(20) {((0, 0), (1, 2)), ((1, 3), (1, 2))} {((0, 1), (0, 2)), ((1, 1), (3, 2))} L8

(21) {((0, 0), (2, 1)), ((1, 3), (2, 1))} {((0, 2), (0, 1)), ((1, 2), (3, 1))} L4

(22) {((0, 0), (2, 3)), ((1, 3), (2, 3))} {((0, 2), (0, 3)), ((1, 2), (3, 3))} L10

(23) {((0, 0), (3, 0)), ((1, 3), (3, 0))} {((0, 3), (0, 0)), ((1, 3), (3, 0))} L9

(24) {((0, 0), (3, 1)), ((1, 3), (3, 1))} {((0, 3), (0, 1)), ((1, 3), (3, 1))} L8

(25) {((0, 2), (0, 0)), ((0, 2), (1, 3))} {((0, 0), (2, 0)), ((0, 1), (2, 3))} L10

(26) {((0, 3), (0, 0)), ((0, 3), (1, 3))} {((0, 0), (3, 0)), ((0, 1), (3, 3))} L11

(27) {((1, 0), (0, 0)), ((1, 0), (1, 3))} {((1, 0), (0, 0)), ((1, 1), (0, 3))} L11

(28) {((1, 2), (0, 0)), ((1, 2), (1, 3))} {((1, 0), (2, 0)), ((1, 1), (2, 3))} L12

(29) {((2, 1), (0, 0)), ((2, 1), (1, 3))} {((2, 0), (1, 0)), ((2, 1), (1, 3))} L3

(30) {((2, 3), (0, 0)), ((2, 3), (1, 3))} {((2, 0), (3, 0)), ((2, 1), (3, 3))} L12

(31) {((3, 0), (0, 0)), ((3, 0), (1, 3))} {((3, 0), (0, 0)), ((3, 1), (0, 3))} L2

(32) {((3, 1), (0, 0)), ((3, 1), (1, 3))} {((3, 0), (1, 0)), ((3, 1), (1, 3))} L10

(33) {((0, 1), (0, 2)), ((2, 2), (0, 2))} {((0, 0), (1, 2)), ((2, 0), (2, 2))} L5

(34) {((0, 1), (0, 3)), ((2, 2), (0, 3))} {((0, 0), (1, 3)), ((2, 0), (2, 3))} L7

(35) {((0, 1), (1, 0)), ((2, 2), (1, 0))} {((0, 1), (1, 0)), ((2, 1), (2, 0))} L9

(36) {((0, 1), (1, 2)), ((2, 2), (1, 2))} {((0, 1), (1, 2)), ((2, 1), (2, 2))} L13

(37) {((0, 1), (2, 1)), ((2, 2), (2, 1))} {((0, 2), (1, 1)), ((2, 2), (2, 1))} L8

(38) {((0, 1), (2, 3)), ((2, 2), (2, 3))} {((0, 2), (1, 3)), ((2, 2), (2, 3))} L11

(39) {((0, 1), (3, 0)), ((2, 2), (3, 0))} {((0, 3), (1, 0)), ((2, 3), (2, 0))} L11

(40) {((0, 1), (3, 1)), ((2, 2), (3, 1))} {((0, 3), (1, 1)), ((2, 3), (2, 1))} L10

(41) {((0, 2), (0, 1)), ((0, 2), (2, 2))} {((0, 0), (2, 1)), ((0, 2), (2, 2))} L12

(42) {((0, 3), (0, 1)), ((0, 3), (2, 2))} {((0, 0), (3, 1)), ((0, 2), (3, 2))} L13

(43) {((1, 0), (0, 1)), ((1, 0), (2, 2))} {((1, 0), (0, 1)), ((1, 2), (0, 2))} L13

(44) {((1, 2), (0, 1)), ((1, 2), (2, 2))} {((1, 0), (2, 1)), ((1, 2), (2, 2))} L14

(45) {((2, 1), (0, 1)), ((2, 1), (2, 2))} {((2, 0), (1, 1)), ((2, 2), (1, 2))} L14

(46) {((2, 3), (0, 1)), ((2, 3), (2, 2))} {((2, 0), (3, 1)), ((2, 2), (3, 2))} L10

(47) {((3, 0), (0, 1)), ((3, 0), (2, 2))} {((3, 0), (0, 1)), ((3, 2), (0, 2))} L1

(48) {((3, 1), (0, 1)), ((3, 1), (2, 2))} {((3, 0), (1, 1)), ((3, 2), (1, 2))} L11

(49) {((1, 1), (0, 2)), ((3, 2), (0, 2))} {((1, 0), (1, 2)), ((3, 0), (2, 2))} L4

(50) {((1, 1), (0, 3)), ((3, 2), (0, 3))} {((1, 0), (1, 3)), ((3, 0), (2, 3))} L15

(51) {((1, 1), (1, 0)), ((3, 2), (1, 0))} {((1, 1), (1, 0)), ((3, 1), (2, 0))} L13

(52) {((1, 1), (1, 2)), ((3, 2), (1, 2))} {((1, 1), (1, 2)), ((3, 1), (2, 2))} L9

(53) {((1, 1), (2, 1)), ((3, 2), (2, 1))} {((1, 2), (1, 1)), ((3, 2), (2, 1))} L15

(54) {((1, 1), (2, 3)), ((3, 2), (2, 3))} {((1, 2), (1, 3)), ((3, 2), (2, 3))} L2

(55) {((1, 1), (3, 0)), ((3, 2), (3, 0))} {((1, 3), (1, 0)), ((3, 3), (2, 0))} L14

(56) {((1, 1), (3, 1)), ((3, 2), (3, 1))} {((1, 3), (1, 1)), ((3, 3), (2, 1))} L1

(57) {((0, 2), (1, 1)), ((0, 2), (3, 2))} {((0, 1), (2, 1)), ((0, 3(, (2, 2))} L16

(58) {((0, 3), (1, 1)), ((0, 3), (3, 2))} {((0, 1), (3, 1)), ((0, 3), (3, 2))} L12

(59) {((1, 0), (1, 1)), ((1, 0), (3, 2))} {((1, 1), (0, 1)), ((1, 3), (0, 2))} L10

(60) {((1, 2), (1, 1)), ((1, 2), (3, 2))} {((1, 1), (2, 1)), ((1, 3), (2, 2))} L17

(61) {((2, 1), (1, 1)), ((2, 1), (3, 2))} {((2, 1), (1, 1)), ((2, 3), (1, 2))} L16

(62) {((2, 3), (1, 1)), ((2, 3), (3, 2))} {((2, 1), (3, 1)), ((2, 3), (3, 2))} L5

(63) {((3, 0), (1, 1)), ((3, 0), (3, 2))} {((3, 1), (0, 1)), ((3, 3), (0, 2))} L11

(64) {((3, 1), (1, 1)), ((3, 1), (3, 2))} {((3, 1), (1, 1)), ((3, 3), (1, 2))} L12

(65) {((2, 0), (0, 2)), ((3, 3), (0, 2))} {((2, 0), (0, 2)), ((3, 0), (3, 2))} L16

(66) {((2, 0), (0, 3)), ((3, 3), (0, 3))} {((2, 0), (0, 3)), ((3, 0), (3, 3))} L6

(67) {((2, 0), (1, 0)), ((3, 3), (1, 0))} {((2, 1), (0, 0)), ((3, 1), (3, 0))} L14

(68) {((2, 0), (1, 2)), ((3, 3), (1, 2))} {((2, 1), (0, 2)), ((3, 1), (3, 2))} L15

(69) {((2, 0), (2, 1)), ((3, 3), (2, 1))} {((2, 2), (0, 1)), ((3, 2), (3, 1))} L16

(70) {((2, 0), (2, 3)), ((3, 3), (2, 3))} {((2, 2), (3, 3)), ((3, 2), (3, 3))} L3

(71) {((2, 0), (3, 0)), ((3, 3), (3, 0))} {((2, 3), (0, 0)), ((3, 3), (3, 0))} L13

(72) {((2, 0), (3, 1)), ((3, 3), (3, 1))} {((2, 3), (0, 1)), ((3, 3), (3, 1))} L15

(73) {((0, 2), (2, 0)), ((0, 2), (3, 3))} {((0, 2), (2, 0)), ((0, 3), (2, 3))} L17

(74) {((0, 3), (2, 0)), ((0, 3), (3, 3))} {((0, 2), (3, 0)), ((0, 3), (3, 3))} L15

(75) {((1, 0), (2, 0)), ((1, 0), (3, 3))} {((1, 2), (0, 0)), ((1, 3), (0, 3))} L12

(76) {((1, 2), (2, 0)), ((1, 2), (3, 3))} {((1, 2), (2, 0)), ((1, 3), (2, 3))} L16

(77) {((2, 1), (2, 0)), ((2, 1), (3, 3))} {((2, 2), (1, 0)), ((2, 3), (1, 3))} L12

(78) {((2, 3), (2, 0)), ((2, 3), (3, 3))} {((2, 2), (3, 0)), ((2, 3), (3, 3))} L17

(79) {((3, 0), (2, 0)), ((3, 0), (3, 3))} {((3, 2), (0, 0)), ((3, 3), (0, 3))} L17

(80) {((3, 1), (2, 0)), ((3, 1), (3, 3))} {((3, 2), (1, 0)), ((3, 3), (1, 3))} L8

Fig. 12. Singularity Removal Constraints Constraints forγejθ = −0.5 + 0.5j

14

(0, 0) (0, 1) (0, 2) (0, 3) (1, 0) (1, 1) (1, 2) (1, 3) (2, 0) (2, 1) (2, 2) (2, 3) (3, 0) (3, 1) (3, 2) (3, 3)

(0, 0) L1 L3 L6 L9 L4 L2 L5 L7 L10 L12 L8L8L8 L14L14L14 L11 L13 L17L17L17 L18L18L18

(0, 1) L7 L2 L8 L1 L9 L6 L13 L4 L3L3L3 L16 L15L15L15 L10 L18L18L18 L12 L14L14L14 L11

(0, 2) L5 L4 L3 L10 L1 L8 L2 L11 L17 L9L9L9 L12 L18L18L18 L15 L6L6L6 L13 L7L7L7

(0, 3) L9 L8 L2 L5 L11 L10 L6 L1 L7L7L7 L4L4L4 L16 L17 L3L3L3 L14L14L14 L12 L15

(1, 0) L11 L13 L17L17L17 L16L16L16 L5 L7 L4 L15 L12 L14 L10L10L10 L8L8L8 L1 L3 L6 L9

(1, 1) L6L6L6 L10 L4L4L4 L11 L13 L3 L9 L5 L15L15L15 L17 L18L18L18 L12 L7 L2 L8 L1

(1, 2) L12 L17L17L17 L13 L18L18L18 L6 L15 L7 L2 L16 L11L11L11 L14 L9L9L9 L5 L4 L3 L10

(1, 3) L15L15L15 L18L18L18 L10 L12 L14 L1 L3 L6 L19L19L19 L13L13L13 L17 L16 L9 L8 L2 L5

(2, 0) L8 L9 L16 L6 L3 L14 L1L1L1 L13L13L13 L4 L2 L5 L7 L12 L10 L11L11L11 L19L19L19

(2, 1) L14 L7 L15 L8 L2L2L2 L16 L10L10L10 L3 L9 L6 L13 L4 L19L19L19 L5 L1L1L1 L12

(2, 2) L4 L16 L9 L3 L12 L5L5L5 L14 L18L18L18 L1 L8 L2 L11 L17 L19L19L19 L10 L13L13L13

(2, 3) L13 L15 L7 L4 L18L18L18 L9L9L9 L16 L12 L11 L10 L6 L1 L2L2L2 L20L20L20 L5 L17

(3, 0) L2 L1 L12L12L12 L13L13L13 L10 L11 L17L17L17 L14L14L14 L5 L7 L4 L15 L8 L9 L16 L6

(3, 1) L16L16L16 L11 L18L18L18 L2 L17L17L17 L12 L19L19L19 L10 L13 L3 L9 L5 L14 L7 L15 L8

(3, 2) L17 L5L5L5 L1 L14L14L14 L8 L13L13L13 L11 L19L19L19 L6 L5 L7 L2 L4 L16 L9 L3

(3, 3) L10L10L10 L19L19L19 L11 L17 L16L16L16 L18L18L18 L12 L8 L14 L1 L3 L6 L13 L15 L7 L4

Fig. 13. Latin Square representing the clustering at the relay for the case γejθ obtained using Direct Clustering, with
the 4-PSK symbols that A(B) sent in the first and second channel use along the rows(columns)

(0, 0) (0, 1) (0, 2) (0, 3) (1, 0) (1, 1) (1, 2) (1, 3) (2, 0) (2, 1) (2, 2) (2, 3) (3, 0) (3, 1) (3, 2) (3, 3)

(0, 0) L1 L2 L7 L5 L4 L3 L10 L9 L8 L12 L15L15L15 L16L16L16 L11 L14 L13L13L13 L17L17L17

(0, 1) L8 L3 L9 L4 L10 L1 L7 L2 L6L6L6 L13 L11L11L11 L14 L15L15L15 L12 L18L18L18 L16

(0, 2) L3 L6 L4 L9 L1 L10 L2 L5 L13 L18L18L18 L14 L7L7L7 L12 L19L19L19 L16 L20L20L20

(0, 3) L9 L10 L1 L2 L13 L6 L4 L3 L15L15L15 L5L5L5 L8 L12 L17L17L17 L18L18L18 L11 L14

(1, 0) L2 L1 L3L3L3 L18L18L18 L6 L7 L13 L12 L10 L11 L16L16L16 L19L19L19 L5 L8 L17 L15

(1, 1) L10L10L10 L4 L12L12L12 L17 L14 L5 L15 L8 L2L2L2 L16 L18L18L18 L13 L11 L7 L3 L6

(1, 2) L4 L11L11L11 L17 L3L3L3 L5 L9 L8 L10 L16 L14L14L14 L13 L17L17L17 L7 L15 L6 L1

(1, 3) L16L16L16 L18L18L18 L2 L1 L15 L12 L6 L7 L4L4L4 L9L9L9 L10 L11 L14 L17 L5 L8

(2, 0) L6 L7 L13 L12 L3 L4 L1L1L1 L16L16L16 L5 L8 L17 L15 L9 L11 L14L14L14 L10L10L10

(2, 1) L14 L5 L15 L8 L9L9L9 L2 L10L10L10 L18 L11 L7 L3 L6 L19L19L19 L16 L1L1L1 L12

(2, 2) L5 L9 L8 L10 L2 L13L13L13 L18 L11L11L11 L7 L15 L6 L1 L16 L4L4L4 L12 L19L19L19

(2, 3) L15 L12 L6 L7 L16L16L16 L18L18L18 L3 L4 L14 L17 L5 L8 L2L2L2 L13L13L13 L9 L11

(3, 0) L11 L14 L18L18L18 L6L6L6 L12 L15 L16L16L16 L13L13L13 L1 L2 L7 L5 L4 L3 L10 L9

(3, 1) L12L12L12 L13 L5L5L5 L16 L17L17L17 L11 L19L19L19 L14 L8 L3 L9 L4 L10 L1 L7 L2

(3, 2) L13 L8L8L8 L16 L15L15L15 L11 L17L17L17 L14 L19L19L19 L3 L6 L4 L9 L1 L10 L2 L4

(3, 3) L7L7L7 L16L16L16 L11 L14 L8L8L8 L19L19L19 L12 L15 L9 L10 L1 L2 L13 L6 L4 L3

Fig. 14. Latin Square representing the clustering at the relay for the case γejθ = −1+ j, with the 4-PSK symbols that
A(B) sent in the first and second channel use along the rows(columns)

VI. QUANTIZATION OF THE COMPLEX FADE
STATE PLANE

In practice,γejθ can take any value in the complex plane
(it takes a value equal to one of the singular fade states
with zero probability). As explained in Section II, one of
the Latin Squares obtained, which remove the singular fade
states needs to be chosen, depending on the value ofγejθ.
For a γejθ which is not a singular fade state, among all the
Latin Squares which remove the singular fade states, the
Latin SquareCh, h ∈ H which has the maximum value of
the minimum cluster distance atγejθ is chosen. In other
words, for a givenγejθ /∈ H, the clustering is chosen to
be the one which removes the singular fade stateh ∈ H
which maximizes the metricd2min

(

Ch, γejθ
)

given in (9).

In this way, theγejθ−plane is quantized into|H| point set,
depending on which one of the obtained Latin Squares is
chosen.

For (xA, xB) 6= (x′
A, x

′
B) ∈ S2, let

D(γ, θ, xA, xB, x
′
A, x

′
B) be defined as,

D(γ, θ, xA, xB , x
′
A, x

′
B) = |(xA − x′

A) + γejθ(xB − x′
B)|.
(13)

In the following lemma, it is shown that for a givenγejθ,
choosing the clusteringCh ∈ CH, whereh ∈ H, that maxi-
mizesd2min

(

Ch, γejθ
)

given in (9), is the same as choosing

the clusteringC
[

− x
A
−x

′
A

x
B
−x′

B

]

, where (xA, xB) 6= (x′
A
, x′

B
) ∈ S2,

15

that minimizes the simpler metric given in (13).

Lemma 6: If the complex fade stateγejθ and the clustering

C
[

− x
A
−x

′
A

x
B
−x′

B

]

∈ CH are such that,

arg min
(xA,xB) 6=(x′

A
,x′

B
)∈S2

D(γ, θ, xA, xB, x′
A, x′

B) = (xA, xB, x
′
A
, x′

B
),

then
[

− xA−x
′
A

xB−x′
B

]

∈ H, maximizes the metricd2min

(

Ch, γejθ
)

given in (9), among allh ∈ H.
Proof: The squared minimum distance of the effective

constellation at the relaydmin(γe
jθ) is given by (3).

Let f1, f2 andf3 be functions ofγejθ defined as in (14)-
(16) given in the next page. We have,

d2min(γe
jθ) = min{f1(γejθ), f2(γejθ), f3(γejθ)}.

From (14) and (15), it follows that

f1(γe
jθ) = f2(γe

jθ) = min
(xA,xB) 6=(x′

A
,x′

B
)∈S2
|(xA − x′

B) + γejθ(xB − x′
B)|2.

From (16), it can be seen that,

f3(γe
jθ) ≥ min

(xA,xB) 6=(x′
A
,x′

B
)∈S2

|(xA−x′
B)+γejθ(xB−x′

B)|2.

Hence, we have,

d2min(γe
jθ) = min

(xA,xB) 6=(x′
A
,x′

B
)∈S2

|(xA − x′
B) + γejθ(xB − x′

B)|2.

Since,

arg min
xA,xB ,x′

A,x′
B

D(γ, θ, xA, xB , x
′
A, x

′
B) = (xA, xB, x

′
A, x

′
B),

we have,d2min(γe
jθ) = |(xA − x

′
B) + γejθ(xB − x

′
B)|2.

For the clusteringC
[

− x
A
−x

′
A

x
B
−x′

B

]

which removes the singular
fade state− xA−x

′
A

xB−x′
B

, the minimum cluster distance is greater

thandmin(γe
jθ), while for all other clusterings in the setCH,

it is equal todmin(γe
jθ). This completes the proof.

The decision criterion in Lemma 6 based on which R
chooses one of the Latin Squares obtained, is the same as
the decision criterion for the two-way 2-stage relaying in
[7]. Hence, the quantization of the complex fade state plane
for the ACF relaying is same as that of the two-way 2-stage
relaying obtained in [7].

VII. SIMULATION RESULTS

The simulation results presented are for the case when
HA, HB, H ′

A andH ′
B are distributed according to Rayleigh

distribution, with the variances of all the fading links equal to
0 dB. It is assumed that the AWGN noises at the three nodes
are of variance 0 dB. By SNR, we mean the average energies
of the signal set used at the three nodes A, B and R, which
are assumed to be equal. The frame length of a transmission
is taken to be 256 bits.

Consider the case when 4-PSK signal set is used at A and B.
Fig. 15 shows the SNR vs end-to-end sum throughput curves
for the following schemes: Closest-Neighbour Clustering
(CNC) Algorithm based scheme for the two-way 2-stage
relaying proposed in [4], the Scheme based on Latin Squares
for two-way 2-stage relaying proposed in [8], the scheme
in which XOR network code is used irrespective of the
channel condition, the Cartesian Product based scheme for
ACF (ACF-CP) relaying and the Direct Clustering based
scheme for ACF (ACF-DC) relaying. It can be seen from
Fig. 15 that the schemes based on the ACF relaying perform
better than the schemes based on 2-stage relaying at high
SNR. From Fig. 15, it follows that when the SNR is greater
than 42 dB, the ACF-DC scheme outperforms all other
schemes. The maximum throughput achieved by the ACF
relaying schemes is 8/3 bits/s/Hz, whereas it is 2 bits/s/Hz
for the 2-stage two-way relaying schemes. Also, as seen
from Fig. 15, the ACF-DC scheme performs better than the
ACF-CP scheme. The reason for this is that the maximum
cardinality of the signal set used during the BC phase is 25 for
the ACF-CP scheme whereas it is 20 for the ACF-DC scheme.

Consider the case when 8-PSK signal set is used at A and
B. It was shown in [8] that for the two-way 2-stage relaying
scheme with 8-PSK signal set, all the clusterings which
the remove the singular fade states have exactly 8 clusters.
Hence, the ACF-CP scheme, in which the clusterings are
obtained by taking the Cartesian Product of the clusterings
corresponding to the two-way 2-stage relaying scheme, have
exactly 64 clusters (note that 64 is the minimum number of
clusters required for conveying 6 information bits). Since
the Cartesian Product itself results in the minimum number
of clusters, the ACF-DC scheme is not considered for this
case. Fig. 16 shows the SNR vs end-to-end sum throughput
curves for the different scheme. Similar to the 4-PSK case, at
high SNR, the ACF-CP scheme provides a larger throughput
than the 2-stage relaying schemes. The maximum throughput
achieved by the ACF-CP scheme is 4 bits/s/Hz, whereas it is
3 bits/s/Hz for the 2-stage relaying schemes.

VIII. C ONCLUSION

We proposed a scheme based on the ACF protocol for
two-way relaying that utilizes totally three channel uses of
the wireless two-way relaying channel unlike the 2-stage
protocol that uses four channel uses, assuming that the users
A and B transmit points from the same 4-PSK constellation.
The network codes used at the relay during the Broadcast
Phase were obtained using two methods: by taking the
Cartesian Product of the clusterings proposed in [8] for
two user 2-stage case and by completing the Latin Square
filled partially with the singularity removal constraints for
a given fade state. Using the second method called Direct
Clustering, the maximum size of the resulting constellation
used by the relay node R in the BC phase was reduced to
20, as compared to the Cartesian Product based approach
which results in the constellation size being 25 for these

16

f1(γe
jθ) = min

(xA1
,xB1

)6=(x′
A1

,x′
B1

),(xA2
,xB2

)=(x′
A2

,x′
B2

)

{

|(xA1 − x
′
A1

) + γe
jθ(xB1 − x

′
B1

)|2 + |(xA2 − x
′
A2

) + γe
jθ(xB2 − x

′
B2

)|2
}

(14)

f2(γe
jθ) = min

(xA1
,xB1

)=(x′
A1

,x′
B1

),(xA2
,xB2

)6=(x′
A2

,x′
B2

)

{

|(xA1 − x
′
A1

) + γe
jθ(xB1 − x

′
B1

)|2 + |(xA2 − x
′
A2

) + γe
jθ(xB2 − x

′
B2

)|2
}

(15)

f3(γe
jθ) = min

(xA1
,xB1

)6=(x′
A1

,x′
B1

),(xA2
,xB2

)6=(x′
A2

,x′
B2

)

{

|(xA1 − x
′
A1

) + γe
jθ(xB1 − x

′
B1

)|2 + |(xA2 − x
′
A2

) + γe
jθ(xB2 − x

′
B2

)|2
}

(16)

25 30 35 40 45 50 55
0

0.5

1

1.5

2

2.5

SNR in dB

T
h

ro
u

g
h

p
u

t
in

 b
it
s
/s

/H
z

2−Stage Relaying − CNC Algorithm [4]
2−Stage Relaying − Latin Square based Scheme [8]
2 Stage Relaying − Pure XOR n/w Code
ACF−DC Scheme
ACF−CP Scheme

Fig. 15. SNR vs throughput curves for different schemes for 4-PSK signal set

cases. Having obtained all the Latin Squares, the complex
plane was quantized depending on which one of the obtained
Latin Squares maximizes the minimum cluster distance. This
quantization was shown to be the same as that achieved in [7]
for the two-way 2-stage relaying scenario. Simulation results
showed that the ACF protocol based schemes outperform the
schemes proposed in [4] and [8], at high SNR.

ACKNOWLEDGMENTS

This work was supported partly by the DRDO-IISc program
on Advanced Research in Mathematical Engineering through
a research grant as well as the INAE Chair Professorship grant

to B. S. Rajan.

REFERENCES

[1] S. Zhang, S. C. Liew and P. P. Lam, “Hot topic: Physical-layer Network
Coding”, ACM MobiCom ’06, pp. 358–365, Sept. 2006.

[2] S. J. Kim, P. Mitran and V. Tarokh, “Performance Bounds for Bidirec-
tional Coded Cooperation Protocols”, IEEE Trans. Inf. Theory, Vol. 54,
pp. 5235–5241, Nov. 2008.

[3] P. Popovski and H. Yomo, “Physical Network Coding in Two-Way
Wireless Relay Channels”, IEEE ICC, Glasgow, Scotland, pp.707–712,
June 2007.

[4] T. Koike-Akino, P. Popovski and V. Tarokh, “Optimized constellation for
two-way wireless relaying with physical network coding”, IEEE Journal
on selected Areas in Comm., Vol.27, pp. 773–787, June 2009.

[5] T. Koike-Akino, P. Popovski and V. Tarokh, “Denoising strategy for
convolutionally-coded bidirectional relaying”, IEEE ICC2009, Dresden,
Germany, June 2009.

17

30 35 40 45 50 55 60 65 70
0

0.5

1

1.5

2

2.5

3

3.5

SNR in dB

T
h

r
o

u
g

h
p

u
t

in
 b

it
s
/s

/H
z

2−Stage Potocol − Pure XOR n/w Code
2−Stage Potocol − Latin Square based Sheme [8]
2−Stage Protocol − CNC Algorithm [4]
ACF−CP Scheme

Fig. 16. SNR vs throughput curves for different schemes for 8-PSK signal set

[6] B. Hern and K. Narayanan, “Multilevel Coding Schemes forCompute-
and-Forward”, IEEE ISIT, St. Petersburg, Russia, July 2011.

[7] Vijayvaradharaj T Muralidharan, Vishnu Namboodiri andB. Sundar
Rajan, “Channel Quantization for Physical-Layer Network Coded Two-
Way Relaying”, available online at arXiv:1109.6101v1 [cs.IT], 28 Sept.
2011.

[8] Vishnu Namboodiri, Vijayvaradharaj T Muralidharan andB. Sundar
Rajan, “Wireless Bidirectional Relaying and Latin Squares”, available
online at arXiv:1110.0084v2 [cs.IT], 1 Oct. 2011.

[9] Chris A. Rodger, “Recent Results on The Embedding of Latin Squares and
Related Structures, Cycle Systems and Graph Designs”, Le Matematiche,
Vol. XLVII (1992)- Fasc. II, pp. 295-311.

[10] Jianquan Lui, Youyun Xu and Meixia Tao, “Alternative Awaiting and
Broadcast for Two-Way Relay Fading Channels”, available online at
arXiv:1109.1949v1 [cs.IT], 9 Sept. 2011.

APPENDIX A

Clustering that removes the singular fade state0.5 + 0.5j:
The Cartesian Product of the clusteringC[0.5+0.5j] with itself
denoted byD[0.5+0.5j] =

{

C{li,lj} | i, j = 1, 2, 3, 4, 5
}

con-
tains exactly25 clusters. The clusters inD[0.5+0.5j] have been
listed below.

C{l1,l1} = {((0, 1), (0, 1)), ((0, 1), (1, 2)), ((0, 1), (2, 3)),

((1, 2), (0, 1)), ((1, 2), (1, 2)), ((1, 2), (2, 3)),

((2, 3), (0, 1)), ((2, 3), (1, 2)), ((2, 3), (2, 3))}

C{l1,l2} = {((0, 1), (0, 2)), ((0, 1), (1, 3)), ((0, 1), (3, 0)),

((1, 2), (0, 2)), ((1, 2), (1, 3)), ((1, 2), (3, 0)),

((2, 3), (0, 2)), ((2, 3), (1, 3)), ((2, 3), (3, 0))}

C{l1,l3} = {((0, 1), (0, 3)), ((0, 1), (2, 0)), ((0, 1), (3, 1)),

((1, 2), (0, 3)), ((1, 2), (2, 0)), ((1, 2), (3, 1)),

((2, 3), (0, 3)), ((2, 3), (2, 0)), ((2, 3), (3, 1))}

C{l1,l4} = {((0, 1), (1, 0)), ((0, 1), (2, 1)), ((0, 1), (3, 2)),

((1, 2), (1, 0)), ((1, 2), (2, 1)), ((1, 2), (3, 2)),

((2, 3), (1, 0)), ((2, 3), (2, 1)), ((2, 3), (3, 2))}

C{l1,l5} = {((0, 1), (0, 0)), ((0, 1), (1, 1)), ((0, 1), (2, 2)), ((0, 1), (3, 3)),

((1, 2), (0, 0)), ((1, 2), (1, 1)), ((1, 2), (2, 2)), ((1, 2), (3, 3)),

((2, 3), (0, 0)), ((2, 3), (1, 1)), ((2, 3), (2, 2)), ((2, 3), (3, 3))}

C{l2,l1} = {((0, 2), (0, 1)), ((0, 2), (1, 2)), ((0, 2), (2, 3)),

((1, 3), (0, 1)), ((1, 3), (1, 2)), ((1, 3), (2, 3)),

((3, 0), (0, 1)), ((3, 0), (1, 2)), ((3, 0), (2, 3))}

C{l2,l2} = {((0, 2), (0, 2)), ((0, 2), (1, 3)), ((0, 2), (3, 0)),

((1, 3), (0, 2)), ((1, 3), (1, 3)), ((1, 3), (3, 0)),

((3, 0), (0, 2)), ((3, 0), (1, 3)), ((3, 0), (3, 0))}

http://arxiv.org/abs/1109.6101
http://arxiv.org/abs/1110.0084
http://arxiv.org/abs/1109.1949

18

C{l2,l3} = {((0, 2), (0, 3)), ((0, 2), (2, 0)), ((0, 2), (3, 1)),

((1, 3), (0, 3)), ((1, 3), (2, 0)), ((1, 3), (3, 1)),

((3, 0), (0, 3)), ((3, 0), (2, 0)), ((3, 0), (3, 1))}

C{l2,l4} = {((0, 2), (1, 0)), ((0, 2), (2, 1)), ((0, 2), (3, 2)),

((1, 3), (1, 0)), ((1, 3), (2, 1)), ((1, 3), (3, 2)),

((3, 0), (1, 0)), ((3, 0), (2, 1)), ((3, 0), (3, 2))}

C{l2,l5} = {((0, 2), (0, 0)), ((0, 2), (1, 1)), ((0, 2), (2, 2)), ((0, 2), (3, 3)),

((1, 3), (0, 0)), ((1, 3), (1, 1)), ((1, 3), (2, 2)), ((1, 3), (3, 3)),

((3, 0), (0, 0)), ((3, 0), (1, 1)), ((3, 0), (2, 2)), ((3, 0), (3, 3))}

C{l3,l1} = {((0, 3), (0, 1)), ((0, 3), (1, 2)), ((0, 3), (2, 3)),

((2, 0), (0, 1)), ((2, 0), (1, 2)), ((2, 0), (2, 3)),

((3, 1), (0, 1)), ((3, 1), (1, 2)), ((3, 1), (2, 3))}

C{l3,l2} = {((0, 3), (0, 2)), ((0, 3), (1, 3)), ((0, 3), (3, 0)),

((2, 0), (0, 2)), ((2, 0), (1, 3)), ((2, 0), (3, 0)),

((3, 1), (0, 2)), ((3, 1), (1, 3)), ((3, 1), (3, 0))}

C{l3,l3} = {((0, 3), (0, 3)), ((0, 3), (2, 0)), ((0, 3), (3, 1)),

((2, 0), (0, 3)), ((2, 0), (2, 0)), ((2, 0), (3, 1)),

((3, 1), (0, 3)), ((3, 1), (2, 0)), ((3, 1), (3, 1))}

C{l3,l4} = {((0, 3), (1, 0)), ((0, 3), (2, 1)), ((0, 3), (3, 2)),

((2, 0), (1, 0)), ((2, 0), (2, 1)), ((2, 0), (3, 2)),

((3, 1), (1, 0)), ((3, 1), (2, 1)), ((3, 1), (3, 2))}

C{l3,l5} = {((0, 3), (0, 0)), ((0, 3), (1, 1)), ((0, 3), (2, 2)), ((0, 3), (3, 3)),

((2, 0), (0, 0)), ((2, 0), (1, 1)), ((2, 0), (2, 2)), ((2, 0), (3, 3)),

((3, 1), (0, 0)), ((3, 1), (1, 1)), ((3, 1), (2, 2)), ((3, 1), (3, 3))}

C{l4,l1} = {((1, 0), (0, 1)), ((1, 0), (1, 2)), ((1, 0), (2, 3)),

((2, 1), (0, 1)), ((2, 1), (1, 2)), ((2, 1), (2, 3)),

((3, 2), (0, 1)), ((3, 2), (1, 2)), ((3, 2), (2, 3))}

C{l4,l2} = {((1, 0), (0, 2)), ((1, 0), (1, 3)), ((1, 0), (3, 0)),

((2, 1), (0, 2)), ((2, 1), (1, 3)), ((2, 1), (3, 0)),

((3, 2), (0, 2)), ((3, 2), (1, 3)), ((3, 2), (3, 0))}

C{l4,l3} = {((1, 0), (0, 3)), ((1, 0), (2, 0)), ((1, 0), (3, 1)),

((2, 1), (0, 3)), ((2, 1), (2, 0)), ((2, 1), (3, 1)),

((3, 2), (0, 3)), ((3, 2), (2, 0)), ((3, 2), (3, 1))}

C{l4,l4} = {((1, 0), (1, 0)), ((1, 0), (2, 1)), ((1, 0), (3, 2)),

((2, 1), (1, 0)), ((2, 1), (2, 1)), ((2, 1), (3, 2)),

((3, 2), (1, 0)), ((3, 2), (2, 1)), ((3, 2), (3, 2))}

C{l4,l5} = {((1, 0), (0, 0)), ((1, 0), (1, 1)), ((1, 0), (2, 2)), ((1, 0), (3, 3)),

((2, 1), (0, 0)), ((2, 1), (1, 1)), ((2, 1), (2, 2)), ((2, 1), (3, 3)),

((3, 2), (0, 0)), ((3, 2), (1, 1)), ((3, 2), (2, 2)), ((3, 2), (3, 3))}

C{l5,l1} = {((0, 0), (0, 1)), ((0, 0), (1, 2)), ((0, 0), (2, 3)), ((1, 1), (0, 1)),

((1, 1), (1, 2)), ((1, 1), (2, 3)), ((2, 2), (0, 1)), ((2, 2), (1, 2)),

((2, 2), (2, 3)), ((3, 3), (0, 1)), ((3, 3), (1, 2)), ((3, 3), (2, 3))}

C{l5,l2} = {((0, 0), (0, 2)), ((0, 0), (1, 3)), ((0, 0), (3, 0)), ((1, 1), (0, 2)),

((1, 1), (1, 3)), ((1, 1), (3, 0)), ((2, 2), (0, 2)), ((2, 2), (1, 3)),

((2, 2), (3, 0)), ((3, 3), (0, 2)), ((3, 3), (1, 3)), ((3, 3), (3, 0))}

C{l5,l3} = {((0, 0), (0, 3)), ((0, 0), (2, 0)), ((0, 0), (3, 1)), ((1, 1), (0, 3)),

((1, 1), (2, 0)), ((1, 1), (3, 1)), ((2, 2), (0, 3)), ((2, 2), (2, 0)),

((2, 2), (3, 1)), ((3, 3), (0, 3)), ((3, 3), (2, 0)), ((3, 3), (3, 1))}

C{l5,l4} = {((0, 0), (1, 0)), ((0, 0), 2, 1)), ((0, 0), (3, 2)), ((1, 1), (1, 0)),

((1, 1), (2, 1)), ((1, 1), (3, 2)), ((2, 2), (1, 0)), ((2, 2), (2, 1)),

((2, 2), (3, 2)), ((3, 3), (1, 0)), ((3, 3), (2, 1)), ((3, 3), (3, 2))}

C{l5,l5} = {((0, 0), (0, 0)), ((0, 0), (1, 1)), ((0, 0), (2, 2)), ((0, 0), (3, 3)),

((1, 1), (0, 0)), ((1, 1), (1, 1)), ((1, 1), (2, 2)), ((1, 1), (3, 3)),

((2, 2), (0, 0)), ((2, 2), (1, 1)), ((2, 2), (2, 2)), ((2, 2), (3, 3)),

((3, 3), (0, 0)), ((3, 3), (1, 1)), ((3, 3), (2, 2)), ((3, 3), (3, 3))}

The entries in the above constraints are of the form
((xA1 , xB1), (xA2 , xB2)). In order to represent these clusters
by a Latin Square of side16, with (xA1 , xA2) along the rows,
and(xB1 , xB2) along the columns each entry must be made of
the form((xA1 , xA2), (xB1 , xB2)). Thus the constraints on the
Latin Square as dictated by the clusters above are as follows:

L1 := {((0, 0), (1, 1)), ((0, 1), (1, 2)), ((0, 2), (1, 3)),

((1, 0), (2, 1)), ((1, 1), (2, 2)), ((1, 2), (2, 3)),

((2, 0), (3, 1)), ((2, 1), (3, 2)), ((2, 2), (3, 3))}

L2 := {((0, 0), (1, 2)), ((0, 1), (1, 3)), ((0, 3), (1, 0)),

((1, 0), (2, 2)), ((1, 1), (2, 3)), ((1, 3), (2, 0)),

((2, 0), (3, 2)), ((2, 1), (3, 3)), ((2, 3), (3, 0))}

L3 := {((0, 0), (1, 3)), ((0, 2), (1, 0)), ((0, 3), (1, 1)),

((1, 0), (1, 3)), ((1, 2), (2, 0)), ((1, 3), (2, 1)),

((2, 0), (3, 3)), ((2, 2), (3, 0)), ((2, 3), (3, 1))}

L4 := {((0, 1), (1, 0)), ((0, 2), (1, 1)), ((0, 3), (1, 2)),

((1, 1), (2, 0)), ((1, 2), (2, 1)), ((1, 3), (2, 2)),

((2, 1), (3, 0)), ((2, 2), (3, 1)), ((2, 3), (3, 2))}

L5 := {((0, 0), (1, 0)), ((0, 1), (1, 1)), ((0, 2), (1, 2)), ((0, 3), (1, 3)),

((1, 0), (2, 0)), ((1, 1), (2, 1)), ((1, 2), (2, 2)), ((1, 3), (2, 3)),

((2, 0), (3, 0)), ((2, 1), (3, 1)), ((2, 2), (3, 2)), ((2, 3), (3, 3))}

L6 := {((0, 0), (2, 1)), ((0, 1), (2, 2)), ((0, 2), (2, 3)),

((1, 0), (3, 1)), ((1, 1), (3, 2)), ((1, 2), (3, 3)),

((3, 0), (0, 1)), ((3, 1), (0, 2)), ((3, 2), (0, 3))}

L7 := {((0, 0), (2, 2)), ((0, 1), (2, 3)), ((0, 3), (2, 0)),

((1, 0), (3, 2)), ((1, 1), (3, 3)), ((1, 3), (3, 0)),

((3, 0), (0, 2)), ((3, 1), (0, 3)), ((3, 3), (0, 0))}

L8 := {((0, 0), (2, 3)), ((0, 2), (2, 0)), ((0, 3), (2, 1)),

((1, 0), (3, 3)), ((1, 2), (3, 0)), ((1, 3), (3, 1)),

((3, 0), (0, 3)), ((3, 2), (0, 0)), ((3, 3), (0, 1))}

L9 := {((0, 1), (2, 0)), ((0, 2), (2, 1)), ((0, 3), (2, 2)),

((1, 1), (3, 0)), ((1, 2), (3, 1)), ((1, 3), (3, 2)),

((3, 1), (0, 0)), ((3, 2), (0, 1)), ((3, 3), (0, 2))}

L10 := {((0, 0), (2, 0)), ((0, 1), (2, 1)), ((0, 2), (2, 2)), ((0, 3), (2, 3)),

((1, 0), (3, 0)), ((1, 1), (3, 1)), ((1, 2), (3, 2)), ((1, 3), (3, 3)),

((3, 0), (0, 0)), ((3, 1), (0, 1)), ((3, 2), (0, 2)), ((3, 3), (0, 3))}

L11 := {((0, 0), (3, 1)), ((0, 1), (3, 2)), ((0, 2), (3, 3)),

((2, 0), (0, 1)), ((2, 1), (0, 2)), ((2, 2), (0, 3)),

((3, 0), (1, 1)), ((3, 1), (1, 2)), ((3, 2), (1, 3))}

L12 := {((0, 0), (3, 2)), ((0, 1), (3, 3)), ((0, 3), (3, 0)),

((2, 0), (0, 2)), ((2, 1), (0, 3)), ((2, 3), (0, 0)),

((3, 0), (1, 2)), ((3, 1), (1, 3)), ((3, 3), (1, 0))}

L13 := {((0, 0), (3, 3)), ((0, 2), (3, 0)), ((0, 3), (3, 1)),

((2, 0), (0, 3)), ((2, 2), (0, 0)), ((2, 3), (0, 1)),

((3, 0), (1, 3)), ((3, 2), (1, 0)), ((3, 3), (1, 1))}

L14 := {((0, 1), (3, 0)), ((0, 2), (3, 1)), ((0, 3), (3, 2)),

((2, 1), (0, 0)), ((2, 2), (0, 1)), ((2, 3), (0, 2)),

((3, 1), (1, 0)), ((3, 2), (1, 1)), ((3, 3), (1, 2))}

L15 := {((0, 0), (3, 0)), ((0, 1), (3, 1)), ((0, 2), (3, 2)), ((0, 3), (3, 3)),

((2, 0), (0, 0)), ((2, 1), (0, 1)), ((2, 2), (0, 2)), ((2, 3), (0, 3)),

((3, 0), (1, 0)), ((3, 1), (1, 1)), ((3, 2), (1, 2)), ((3, 3), (1, 3))}

L16 := {((1, 0), (0, 1)), ((1, 1), (0, 2)), ((1, 2), (0, 3)),

((2, 0), (1, 1)), ((2, 1), (1, 2)), ((2, 2), (1, 3)),

((3, 0), (2, 1)), ((3, 1), (2, 2)), ((3, 2), (2, 3))}

19

L17 := {((1, 0), (0, 2)), ((1, 1), (0, 3)), ((1, 3), (0, 0)),

((2, 0), (1, 2)), ((2, 1), (1, 3)), ((2, 3), (1, 0)),

((3, 0), (2, 2)), ((3, 1), (2, 3)), ((3, 3), (2, 0))}

L18 := {((1, 0), (0, 3)), ((1, 2), (0, 0)), ((1, 3), (0, 1)),

((2, 0), (1, 3)), ((2, 2), (1, 0)), ((2, 3), (1, 1)),

((3, 0), (1, 3)), ((3, 2), (2, 0)), ((3, 3), (2, 1))}

L19 := {((1, 1), (0, 0)), ((1, 2), (0, 1)), ((1, 3), (0, 2)),

((2, 1), (1, 0)), ((2, 2), (1, 1)), ((2, 3), (1, 2)),

((3, 1), (2, 0)), ((3, 2), (2, 1)), ((3, 3), (2, 2))}

L20 := {((1, 0), (0, 0)), ((1, 1), (0, 1)), ((1, 2), (0, 2)), ((1, 3), (0, 3)),

((2, 0), (1, 0)), ((2, 1), (1, 1)), ((2, 2), (1, 2)), ((2, 3), (1, 3)),

((3, 0), (2, 0)), ((3, 1), (2, 1)), ((3, 2), (2, 2)), ((3, 3), (2, 3))}

L21 := {((0, 0), (0, 1)), ((0, 1), (0, 2)), ((0, 2), (0, 3)), ((1, 0), (1, 1)),

((1, 1), (1, 2)), ((1, 2), (1, 3)), ((2, 0), (2, 1)), ((2, 1), (2, 2)),

((2, 2), (2, 3)), ((3, 0), (3, 1)), ((3, 1), (3, 2)), ((3, 2), (3, 3))}

L22 := {((0, 0), (0, 2)), ((0, 1), (0, 3)), ((0, 3), (0, 0)), ((1, 0), (1, 2)),

((1, 1), (1, 3)), ((1, 3), (1, 0)), ((2, 0), (2, 2)), ((2, 1), (2, 3)),

((2, 3), (2, 0)), ((3, 0), (3, 2)), ((3, 1), (3, 3)), ((3, 3), (3, 0))}

L23 := {((0, 0), (0, 3)), ((0, 2), (0, 0)), ((0, 3), (0, 1)), ((1, 0), (1, 3)),

((1, 2), (1, 0)), ((1, 3), (1, 1)), ((2, 0), (2, 3)), ((2, 2), (2, 0)),

((2, 3), (2, 1)), ((3, 0), (3, 3)), ((3, 2), (3, 0)), ((3, 3), (3, 1))}

L24 := {((0, 1), (0, 0)), ((0, 2), (0, 1)), ((0, 3), (0, 2)), ((1, 1), (1, 0)),

((1, 2), (1, 1)), ((1, 3), (1, 2)), ((2, 1), (2, 0)), ((2, 2), (2, 1)),

((2, 3), (2, 2)), ((3, 1), (3, 0)), ((3, 2), (3, 1)), ((3, 3), (3, 2))}

L25 := {((0, 0), (0, 0)), ((0, 1), (0, 1)), ((0, 2), (0, 2)), ((0, 3), (0, 3)),

((1, 0), (1, 0)), ((1, 1), (1, 1)), ((1, 2), (1, 2)), ((1, 3), (1, 3)),

((2, 0), (2, 0)), ((2, 1), (2, 1)), ((2, 2), (2, 2)), ((2, 3), (2, 3)),

((3, 0), (3, 0)), ((3, 1), (3, 1)), ((3, 2), (3, 2)), ((3, 3), (3, 3))}

APPENDIX B

Clustering that removes the singular fade state1 + j:
The Cartesian Product of the clusteringC[1+j] with itself
denoted byD[1+j] contains exactly25 clusters. The clusters
in D[1+j] are as follows.

C{l1,l1} = {((0, 1), (0, 1)), ((0, 1), (2, 3)), ((0, 1), (3, 0)),

((2, 3), (0, 1)), ((2, 3), (2, 3)), ((2, 3), (3, 0))

((3, 0), (0, 1)), ((3, 0), (2, 3)), ((3, 0), (3, 0)), }

C{l1,l2} = {((0, 1), (0, 3)), ((0, 1), (1, 0)), ((0, 1), (3, 2)),

((2, 3), (0, 3)), ((2, 3), (1, 0)), ((2, 3), (3, 2))

((3, 0), (0, 3)), ((3, 0), (1, 0)), ((3, 0), (3, 2)), }

C{l1,l3} = {((0, 1), (1, 2)), ((0, 1), (2, 0)), ((0, 1), (3, 1)),

((2, 3), (1, 2)), ((2, 3), (2, 0)), ((2, 3), (3, 1))

((3, 0), (1, 2)), ((3, 0), (2, 0)), ((3, 0), (3, 1)), }

C{l1,l4} = {((0, 1), (0, 2)), ((0, 1), (1, 3)), ((0, 1), (2, 1)),

((2, 3), (0, 2)), ((2, 3), (1, 3)), ((2, 3), (2, 1))

((3, 0), (0, 2)), ((3, 0), (1, 3)), ((3, 0), (2, 1)), }

C{l1,l5} = {((0, 1), (0, 0)), ((0, 1), (1, 1)), ((0, 1), (2, 2)), ((0, 1), (3, 3)),

((2, 3), (0, 0)), ((2, 3), (1, 1)), ((2, 3), (2, 2)), ((2, 3), (3, 3)),

((3, 0), (0, 0)), ((3, 0), (1, 1)), ((3, 0), (2, 2)), ((3, 0), (3, 3))}

C{l2,l1} = {((0, 3), (0, 1)), ((0, 3), (2, 3)), ((0, 3), (3, 0)),

((1, 0), (0, 1)), ((1, 0), (2, 3)), ((1, 0), (3, 0))

((3, 2), (0, 1)), ((3, 2), (2, 3)), ((3, 2), (3, 0)), }

C{l2,l2} = {((0, 3), (0, 3)), ((0, 3), (1, 0)), ((0, 3), (3, 2)),

((1, 0), (0, 3)), ((1, 0), (1, 0)), ((1, 0), (3, 2))

((3, 2), (0, 3)), ((3, 2), (1, 0)), ((3, 2), (3, 2)), }

C{l2,l3} = {((0, 3), (1, 2)), ((0, 3), (2, 0)), ((0, 3), (3, 1)),

((1, 0), (1, 2)), ((1, 0), (2, 0)), ((1, 0), (3, 1))

((3, 2), (1, 2)), ((3, 2), (2, 0)), ((3, 2), (3, 1)), }

C{l2,l4} = {((0, 3), (0, 2)), ((0, 3), (1, 3)), ((0, 3), (2, 1)),

((1, 0), (0, 2)), ((1, 0), (1, 3)), ((1, 0), (2, 1))

((3, 2), (0, 2)), ((3, 2), (1, 3)), ((3, 2), (2, 1)), }

C{l2,l5} = {((0, 3), (0, 0)), ((0, 3), (1, 1)), ((0, 3), (2, 2)), ((0, 3), (3, 3)),

((1, 0), (0, 0)), ((1, 0), (1, 1)), ((1, 0), (2, 2)), ((1, 0), (3, 3)),

((3, 2), (0, 0)), ((3, 2), (1, 1)), ((3, 2), (2, 2)), ((3, 2), (3, 3))}

C{l3,l1} = {((1, 2), (0, 1)), ((1, 2), (2, 3)), ((1, 2), (3, 0)),

((2, 0), (0, 1)), ((2, 0), (2, 3)), ((2, 0), (3, 0))

((3, 1), (0, 1)), ((3, 1), (2, 3)), ((3, 1), (3, 0)), }

C{l3,l2} = {((1, 2), (0, 3)), ((1, 2), (1, 0)), ((1, 2), (3, 2)),

((2, 0), (0, 3)), ((2, 0), (1, 0)), ((2, 0), (3, 2))

((3, 1), (0, 3)), ((3, 1), (1, 0)), ((3, 1), (3, 2)), }

C{l3,l3} = {((1, 2), (1, 2)), ((1, 2), (2, 0)), ((1, 2), (3, 1)),

((2, 0), (1, 2)), ((2, 0), (2, 0)), ((2, 0), (3, 1))

((3, 1), (1, 2)), ((3, 1), (2, 0)), ((3, 1), (3, 1)), }

C{l3,l4} = {((1, 2), (0, 2)), ((1, 2), (1, 3)), ((1, 2), (2, 1)),

((2, 0), (0, 2)), ((2, 0), (1, 3)), ((2, 0), (2, 1))

((3, 1), (0, 2)), ((3, 1), (1, 3)), ((3, 1), (2, 1)), }

C{l3,l5} = {((1, 2), (0, 0)), ((1, 2), (1, 1)), ((1, 2), (2, 2)), ((1, 2), (3, 3)),

((2, 0), (0, 0)), ((2, 0), (1, 1)), ((2, 0), (2, 2)), ((2, 0), (3, 3)),

((3, 1), (0, 0)), ((3, 1), (1, 1)), ((3, 1), (2, 2)), ((3, 1), (3, 3))}

C{l4,l1} = {((0, 2), (0, 1)), ((0, 2), (2, 3)), ((0, 2), (3, 0)),

((1, 3), (0, 1)), ((1, 3), (2, 3)), ((1, 3), (3, 0))

((2, 1), (0, 1)), ((2, 1), (2, 3)), ((2, 1), (3, 0)), }

C{l4,l2} = {((0, 2), (0, 3)), ((0, 2), (1, 0)), ((0, 2), (3, 2)),

((1, 3), (0, 3)), ((1, 3), (1, 0)), ((1, 3), (3, 2))

((2, 1), (0, 3)), ((2, 1), (1, 0)), ((2, 1), (3, 2)), }

C{l4,l3} = {((0, 2), (1, 2)), ((0, 2), (2, 0)), ((0, 2), (3, 1)),

((1, 3), (1, 2)), ((1, 3), (2, 0)), ((1, 3), (3, 1))

((2, 1), (1, 2)), ((2, 1), (2, 0)), ((2, 1), (3, 1)), }

C{l4,l4} = {((0, 2), (0, 2)), ((0, 2), (1, 3)), ((0, 2), (2, 1)),

((1, 3), (0, 2)), ((1, 3), (1, 3)), ((1, 3), (2, 1))

((2, 1), (0, 2)), ((2, 1), (1, 3)), ((2, 1), (2, 1)), }

C{l4,l5} = {((0, 2), (0, 0)), ((0, 2), (1, 1)), ((0, 2), (2, 2)), ((0, 2), (3, 3)),

((1, 3), (0, 0)), ((1, 3), (1, 1)), ((1, 3), (2, 2)), ((1, 3), (3, 3)),

((2, 1), (0, 0)), ((2, 1), (1, 1)), ((2, 1), (2, 2)), ((2, 1), (3, 3))}

C{l5,l1} = {((0, 0), (0, 1)), ((0, 0), (2, 3)), ((0, 0), (3, 0)), ((1, 1), (0, 1)),

((1, 1), (2, 3)), ((1, 1), (3, 0)), ((2, 2), (0, 1)), ((2, 2), (2, 3)),

((2, 2), (3, 0)), ((3, 3), (0, 1)), ((3, 3), (2, 3)), ((3, 3), (3, 0))}

C{l5,l2} = {((0, 0), (0, 3)), ((0, 0), (1, 0)), ((0, 0), (3, 2)), ((1, 1), (0, 3)),

((1, 1), (1, 0)), ((1, 1), (3, 2)), ((2, 2), (0, 3)), ((2, 2), (1, 0)),

((2, 2), (3, 2)), ((3, 3), (0, 3)), ((3, 3), (1, 0)), ((3, 3), (3, 2))}

C{l5,l3} = {((0, 0), (1, 2)), ((0, 0), (2, 0)), ((0, 0), (3, 1)), ((1, 1), (1, 2)),

((1, 1), (2, 0)), ((1, 1), (3, 1)), ((2, 2), (1, 2)), ((2, 2), (2, 0)),

((2, 2), (3, 1)), ((3, 3), (1, 2)), ((3, 3), (2, 0)), ((3, 3), (3, 1))}

C{l5,l4} = {((0, 0), (0, 2)), ((0, 0), 1, 3)), ((0, 0), (2, 1)), ((1, 1), (0, 2)),

((1, 1), (1, 3)), ((1, 1), (2, 1)), ((2, 2), (0, 2)), ((2, 2), (1, 3)),

((2, 2), (2, 1)), ((3, 3), (0, 2)), ((3, 3), (1, 3)), ((3, 3), (2, 1))}

20

C{l5,l5} = {((0, 0), (0, 0)), ((0, 0), (1, 1)), ((0, 0), (2, 2)), ((0, 0), (3, 3)),

((1, 1), (0, 0)), ((1, 1), (1, 1)), ((1, 1), (2, 2)), ((1, 1), (3, 3)),

((2, 2), (0, 0)), ((2, 2), (1, 1)), ((2, 2), (2, 2)), ((2, 2), (3, 3)),

((3, 3), (0, 0)), ((3, 3), (1, 1)), ((3, 3), (2, 2)), ((3, 3), (3, 3))}

The constraints for the Latin Square representing the above
clustering are as follows:

L1 := {((0, 0), (1, 1)), ((0, 2), (1, 3)), ((0, 3), (1, 0)),

((2, 0), (3, 1)), ((2, 2), (3, 3)), ((2, 3), (3, 0))

((3, 0), (0, 1)), ((3, 2), (0, 3)), ((3, 3), (0, 0)), }

L2 := {((0, 0), (1, 3)), ((0, 1), (1, 0)), ((0, 3), (1, 2)),

((2, 0), (3, 3)), ((2, 1), (3, 0)), ((2, 3), (3, 2))

((3, 0), (0, 3)), ((3, 1), (0, 0)), ((3, 3), (0, 2)), }

L3 := {((0, 1), (1, 2)), ((0, 2), (1, 0)), ((0, 3), (1, 1)),

((2, 1), (3, 2)), ((2, 2), (3, 0)), ((2, 3), (3, 1))

((3, 1), (0, 2)), ((3, 2), (0, 0)), ((3, 3), (0, 1)), }

L4 := {((0, 0), (1, 2)), ((0, 1), (1, 3)), ((0, 2), (1, 1)),

((2, 0), (3, 2)), ((2, 1), (3, 3)), ((2, 2), (3, 1))

((3, 0), (0, 2)), ((3, 1), (0, 3)), ((3, 2), (0, 1)), }

L5 := {((0, 0), (1, 0)), ((0, 1), (1, 1)), ((0, 2), (1, 2)), ((0, 3), (1, 3)),

((2, 0), (3, 0)), ((2, 1), (3, 1)), ((2, 2), (3, 2)), ((2, 3), (3, 3)),

((3, 0), (0, 0)), ((3, 1), (0, 1)), ((3, 2), (0, 2)), ((3, 3), (0, 3))}

L6 := {((0, 0), (3, 1)), ((0, 2), (3, 3)), ((0, 3), (3, 0)),

((1, 0), (0, 1)), ((1, 2), (0, 3)), ((1, 3), (0, 0))

((3, 0), (2, 1)), ((3, 2), (2, 3)), ((3, 3), (2, 0)), }

L7 := {((0, 0), (3, 3)), ((0, 1), (3, 0)), ((0, 3), (3, 2)),

((1, 0), (0, 3)), ((1, 1), (0, 0)), ((1, 3), (0, 2))

((3, 0), (2, 3)), ((3, 1), (2, 0)), ((3, 3), (2, 2)), }

L8 := {((0, 1), (3, 2)), ((0, 2), (3, 0)), ((0, 3), (3, 1)),

((1, 1), (0, 2)), ((1, 2), (0, 0)), ((1, 3), (0, 1))

((3, 1), (2, 2)), ((3, 2), (2, 0)), ((3, 3), (2, 1)), }

L9 := {((0, 0), (3, 2)), ((0, 1), (3, 3)), ((0, 2), (3, 1)),

((1, 0), (0, 2)), ((1, 1), (0, 3)), ((1, 2), (0, 1))

((3, 0), (2, 2)), ((3, 1), (2, 3)), ((3, 2), (2, 1)), }

L10 := {((0, 0), (3, 0)), ((0, 1), (3, 1)), ((0, 2), (3, 2)), ((0, 3), (3, 3)),

((1, 0), (0, 0)), ((1, 1), (0, 1)), ((12), (0, 2)), ((1, 3), (0, 3)),

((3, 0), (2, 0)), ((3, 1), (2, 1)), ((3, 2), (2, 2)), ((3, 3), (2, 3))}

L11 := {((1, 0), (2, 1)), ((1, 2), (2, 3)), ((1, 3), (2, 0)),

((2, 0), (0, 1)), ((2, 2), (0, 3)), ((2, 3), (0, 0))

((3, 0), (1, 1)), ((3, 2), (1, 3)), ((3, 3), (1, 0)), }

L12 := {((1, 0), (2, 3)), ((1, 1), (2, 0)), ((1, 3), (2, 2)),

((2, 0), (0, 3)), ((2, 1), (0, 0)), ((2, 3), (0, 2))

((3, 0), (1, 3)), ((3, 1), (1, 0)), ((3, 3), (1, 2)), }

L13 := {((1, 1), (2, 2)), ((1, 2), (2, 0)), ((1, 3), (2, 1)),

((2, 1), (0, 2)), ((2, 2), (0, 0)), ((2, 3), (0, 1))

((3, 1), (1, 2)), ((3, 2), (1, 0)), ((3, 3), (1, 1)), }

L14 := {((1, 0), (2, 2)), ((1, 1), (2, 3)), ((1, 2), (2, 1)),

((2, 0), (0, 2)), ((2, 1), (0, 3)), ((2, 2), (0, 1))

((3, 0), (1, 2)), ((3, 1), (1, 3)), ((3, 2), (1, 1)), }

L15 := {((1, 0), (2, 0)), ((1, 1), (2, 1)), ((1, 2), (2, 2)), ((1, 3), (2, 3)),

((2, 0), (0, 0)), ((2, 1), (0, 1)), ((2, 2), (0, 2)), ((2, 3), (0, 3)),

((3, 0), (1, 0)), ((3, 1), (1, 1)), ((3, 2), (1, 2)), ((3, 3), (1, 3))}

L16 := {((0, 0), (2, 1)), ((0, 2), (2, 3)), ((0, 3), (2, 0)),

((1, 0), (3, 1)), ((1, 2), (3, 3)), ((1, 3), (3, 0))

((2, 0), (1, 1)), ((2, 2), (1, 3)), ((2, 3), (1, 0)), }

L17 := {((0, 0), (2, 3)), ((0, 1), (2, 0)), ((0, 3), (2, 2)),

((1, 0), (3, 3)), ((1, 1), (3, 0)), ((1, 3), (3, 2))

((2, 0), (1, 3)), ((2, 1), (1, 0)), ((2, 3), (1, 2)), }

L18 := {((0, 1), (2, 2)), ((0, 2), (2, 0)), ((0, 3), (2, 1)),

((1, 1), (3, 2)), ((1, 2), (3, 0)), ((1, 3), (3, 1))

((2, 1), (1, 2)), ((2, 2), (1, 0)), ((2, 3), (1, 1)), }

L19 := {((0, 0), (2, 2)), ((0, 1), (2, 3)), ((0, 2), (2, 1)),

((1, 0), (3, 2)), ((1, 1), (3, 3)), ((1, 2), (3, 1))

((2, 0), (1, 2)), ((2, 1), (1, 3)), ((2, 2), (1, 1)), }

L20 := {((0, 0), (2, 0)), ((0, 1), (2, 1)), ((0, 2), (2, 2)), ((0, 3), (2, 3)),

((1, 0), (3, 0)), ((1, 1), (3, 1)), ((1, 2), (3, 2)), ((1, 3), (3, 3)),

((2, 0), (1, 0)), ((2, 1), (1, 1)), ((2, 2), (1, 2)), ((2, 3), (1, 3))}

L21 := {((0, 0), (0, 1)), ((0, 2), (0, 3)), ((0, 3), (0, 0)), ((1, 0), (1, 1)),

((1, 2), (1, 3)), ((1, 3), (1, 0)), ((2, 0), (2, 1)), ((2, 2), (2, 3)),

((2, 3), (2, 0)), ((3, 0), (3, 1)), ((3, 2), (3, 3)), ((3, 3), (3, 0))}

L22 := {((0, 0), (0, 3)), ((0, 1), (0, 0)), ((0, 3), (0, 2)), ((1, 0), (1, 3)),

((1, 1), (1, 0)), ((1, 3), (1, 2)), ((2, 0), (2, 3)), ((2, 1), (2, 0)),

((2, 3), (2, 2)), ((3, 0), (3, 3)), ((3, 1), (3, 0)), ((3, 3), (3, 2))}

L23 := {((0, 1), (0, 2)), ((0, 2), (0, 0)), ((0, 3), (0, 1)), ((1, 1), (1, 2)),

((1, 2), (1, 0)), ((1, 3), (1, 1)), ((2, 1), (2, 2)), ((2, 2), (2, 0)),

((2, 3), (2, 1)), ((3, 1), (3, 2)), ((3, 2), (3, 0)), ((3, 3), (3, 1))}

L24 := {((0, 0), (0, 2)), ((0, 1), (0, 3)), ((0, 2), (0, 1)), ((1, 0), (1, 2)),

((1, 1), (1, 3)), ((1, 2), (1, 1)), ((2, 0), (2, 2)), ((2, 1), (2, 3)),

((2, 2), (2, 1)), ((3, 0), (3, 2)), ((3, 1), (3, 3)), ((3, 2), (3, 1))}

L25 := {((0, 0), (0, 0)), ((0, 1), (0, 1)), ((0, 2), (0, 2)), ((0, 3), (0, 3)),

((1, 0), (1, 0)), ((1, 1), (1, 1)), ((1, 2), (1, 2)), ((1, 3), (1, 3)),

((2, 0), (2, 0)), ((2, 1), (2, 1)), ((2, 2), (2, 2)), ((2, 3), (2, 3)),

((3, 0), (3, 0)), ((3, 1), (3, 1)), ((3, 2), (3, 2)), ((3, 3), (3, 3))}

The Cartesian Product of the clusteringC[1+j] with itself,
denoted byD[1+j] can be represented by the Latin Square
given in Fig. 8.

APPENDIX C

Singularity removal constraints for the singular fade state
−1 + j:
The singularity removal constraints for the singular fade state
−1 + j are given in Fig. 17 in the next page.

21

Singularity Removal Constraints forγejθ = −1 + j Latin Square Constraints forγejθ = −1 + j Cluster

(1) {((0, 0), (3, 2)), ((3, 2), (0, 0)), ((0, 0), (0, 0)), ((3, 2), (3, 2))} {((0, 3), (0, 2)), ((3, 0), (2, 0)), ((0, 0), (0, 0)), ((3, 3), (2, 2))} L1

(2) {((0, 0), (0, 1)), ((3, 2), (3, 3)), ((3, 2), (0, 1)), ((0, 0), (3, 3))} {((0, 0), (0, 1)), ((3, 3), (2, 3)), ((3, 0), (2, 1)), ((0, 3), (0, 3))} L2

(3) {((0, 0), (1, 1)), ((3, 2), (2, 0)), ((3, 2), (1, 1)), ((0, 0), (2, 0))} {((0, 1), (0, 1)), ((3, 2), (2, 0)), ((3, 1), (2, 1)), ((0, 2), (0, 0))} L3

(4) {((0, 0), (1, 3)), ((3, 2), (2, 2)), ((3, 2), (1, 3)), ((0, 0), (2, 2))} {((0, 1), (0, 3)), ((3, 2), (2, 2)), ((3, 1), (2, 3)), ((0, 2), (0, 2))} L4

(5) {((0, 1), (0, 0)), ((3, 3), (3, 2)), ((3, 3), (0, 0)), ((0, 1), (3, 2))} {((0, 0), (1, 0)), ((3, 3), (3, 2)), ((3, 0(, (3, 0)), ((0, 3), (1, 2))} L4

(6) {((0, 1), (1, 1)), ((3, 3), (2, 0)), ((3, 3), (1, 1)), ((0, 1), (2, 0))} {((0, 1), (1, 1)), ((3, 2), (3, 0)), ((3, 1), (3, 1)), ((0, 2), (1, 0))} L1

(7) {((0, 1), (0, 1)), ((3, 3), (3, 3)), ((3, 3), (0, 1)), ((0, 1), (3, 3))} {((0, 0), (1, 1)), ((3, 3), (3, 3)), ((3, 0), (3, 1)), ((0, 3), (1, 3))} L3

(8) {((0, 1), (1, 3)), ((3, 3), (2, 2)), ((3, 3), (1, 3)), ((0, 1), (2, 2))} {((0, 1), (1, 3)), ((3, 2), (3, 2)), ((3, 1), (3, 3)), ((0, 2), (1, 2))} L2

(9) {((1, 1), (1, 1)), ((2, 0), (2, 0)), ((2, 0), (1, 1)), ((1, 1), (2, 0))} {((1, 1), (1, 1)), ((2, 2), (0, 0)), ((2, 1), (0, 1)), ((1, 2), (1, 0))} L5

(10) {((1, 1), (0, 0)), ((2, 0), (3, 2)), ((2, 0), (0, 0)), ((1, 1), (3, 2))} {((1, 0), (1, 0)), ((2, 3), (0, 2)), ((2, 0), (0, 0)), ((1, 3), (1, 2))} L6

(11) {((1, 1), (0, 1)), ((2, 0), (3, 3)), ((2, 0), (0, 1)), ((1, 1), (3, 3))} {((1, 0), (1, 1)), ((2, 3), (0, 3)), ((2, 0), (0, 1)), ((1, 3), (1, 1))} L7

(12) {((1, 1), (1, 3)), ((2, 0), (2, 2)), ((2, 0), (1, 3)), ((1, 1), (2, 2))} {((1, 1), (1, 3)), ((2, 2), (0, 2)), ((2, 1), (0, 3)), ((1, 2), (1, 2))} L8

(13) {((1, 3), (0, 0)), ((2, 2), (3, 2)), ((2, 2), (0, 0)), ((1, 3), (3, 2))} {((1, 0), (3, 0)), ((2, 3), (2, 2)), ((2, 0), (2, 0)), ((1, 3), (3, 2))} L5

(14) {((1, 3), (0, 1)), ((2, 2), (3, 3)), ((2, 2), (0, 1)), ((1, 3), (3, 3))} {((1, 0), (3, 1)), ((2, 3), (2, 3)), ((2, 0), (2, 1)), ((1, 3), (3, 3))} L8

(15) {((1, 3), (1, 1)), ((2, 2), (2, 0)), ((2, 2), (1, 1)), ((1, 3), (2, 0))} {((1, 1), (3, 1)), ((2, 2), (2, 0)), ((2, 1), (2, 1)), ((1, 2), (3, 0))} L7

(16) {((1, 3), (1, 3)), ((2, 2), (2, 2)), ((2, 2), (1, 3)), ((1, 3), (2, 2))} {((1, 1), (3, 3)), ((2, 2), (2, 2)), ((2, 1), (2, 3)), ((1, 2), (3, 2))} L6

(17) {((0, 0), (0, 2)), ((3, 2), (0, 2))} {((0, 0), (0, 2)), ((3, 0), (2, 2))} L7

(18) {((0, 0), (0, 3)), ((3, 2), (0, 3))} {((0, 0), (0, 3)), ((3, 0), (2, 3))} L5

(19) {((0, 0), (1, 0)), ((3, 2), (0, 2))} {((0, 1), (0, 0)), ((3, 0), (2, 2))} L8

(20) {((0, 0), (1, 2)), ((3, 2), (1, 2))} {((0, 1), (0, 2)), ((3, 1), (2, 2))} L9

(21) {((0, 0), (2, 1)), ((3, 2), (2, 1))} {((0, 2), (0, 1)), ((3, 2), (2, 1))} L6

(22) {((0, 0), (2, 3)), ((3, 2), (2, 3))} {((0, 2), (0, 3)), ((3, 2), (2, 3))} L9

(23) {((0, 0), (3, 0)), ((3, 2), (3, 0))} {((0, 3), (0, 0)), ((3, 3), (2, 0))} L9

(24) {((0, 0), (3, 1)), ((3, 2), (3, 1))} {((0, 3), (0, 1)), ((3, 3), (2, 1))} L10

(25) {((0, 2), (0, 0)), ((0, 2), (3, 2))} {((0, 0), (2, 0)), ((0, 3), (2, 2))} L8

(26) {((0, 3), (0, 0)), ((0, 3), (3, 2))} {((0, 0), (3, 0)), ((0, 3), (3, 2))} L11

(27) {((1, 0), (0, 0)), ((1, 0), (3, 2))} {((1, 0), (0, 0)), ((1, 3), (0, 2))} L2

(28) {((1, 2), (0, 0)), ((1, 2), (3, 2))} {((1, 0), (2, 0)), ((1, 3), (2, 2))} L10

(29) {((2, 1), (0, 0)), ((2, 1), (3, 2))} {((2, 0), (1, 0)), ((2, 3), (1, 2))} L3

(30) {((2, 3), (0, 0)), ((2, 3), (3, 2))} {((2, 0), (3, 0)), ((2, 3), (3, 2))} L9

(31) {((3, 0), (0, 0)), ((3, 0), (3, 2))} {((3, 0), (0, 0)), ((3, 3), (0, 2))} L11

(32) {((3, 1), (0, 0)), ((3, 1), (3, 2))} {((3, 0), (1, 0)), ((3, 3), (1, 2))} L12

(33) {((0, 1), (0, 2)), ((3, 3), (0, 2))} {((0, 0), (1, 2)), ((3, 0), (3, 2))} L10

(34) {((0, 1), (0, 3)), ((3, 3), (0, 3))} {((0, 0), (1, 3)), ((3, 0), (3, 3))} L9

(35) {((0, 1), (1, 0)), ((3, 3), (0, 2))} {((0, 1), (1, 0)), ((3, 0), (3, 2))} L10

(36) {((0, 1), (1, 2)), ((3, 3), (1, 2))} {((0, 1), (1, 2)), ((3, 1), (3, 2))} L7

(37) {((0, 1), (2, 1)), ((3, 3), (2, 1))} {((0, 2), (1, 1)), ((3, 2), (3, 1))} L10

(38) {((0, 1), (2, 3)), ((3, 3), (2, 3))} {((0, 2), (1, 3)), ((3, 2), (3, 3))} L5

(39) {((0, 1), (3, 0)), ((3, 3), (3, 0))} {((0, 3), (1, 0)), ((3, 3), (3, 0))} L13

(40) {((0, 1), (3, 1)), ((3, 3), (3, 1))} {((0, 3), (1, 1)), ((3, 3), (3, 1))} L6

(41) {((0, 2), (0, 1)), ((0, 2), (3, 3))} {((0, 0), (2, 1)), ((0, 3), (2, 3))} L12

(42) {((0, 3), (0, 1)), ((0, 3), (3, 3))} {((0, 0), (3, 1)), ((0, 3), (3, 3))} L14

(43) {((1, 0), (0, 1)), ((1, 0), (3, 3))} {((1, 0), (0, 1)), ((1, 3), (0, 3))} L1

(44) {((1, 2), (0, 1)), ((1, 2), (3, 3))} {((1, 0), (2, 1)), ((1, 3), (2, 3))} L11

(45) {((2, 1), (0, 1)), ((2, 1), (3, 3))} {((2, 0), (1, 1)), ((2, 3), (1, 3))} L4

(46) {((2, 3), (0, 1)), ((2, 3), (3, 3))} {((2, 0), (3, 1)), ((2, 3), (3, 3))} L11

(47) {((3, 0), (0, 1)), ((3, 0), (3, 3))} {((3, 0), (0, 1)), ((3, 3), (0, 3))} L14

(48) {((3, 1), (0, 1)), ((3, 1), (3, 3))} {((3, 0), (1, 1)), ((3, 3), (1, 3))} L15

(49) {((1, 1), (0, 2)), ((2, 0), (0, 2))} {((1, 0), (1, 2)), ((2, 0), (0, 2))} L13

(50) {((1, 1), (0, 3)), ((2, 0), (0, 3))} {((1, 0), (1, 3)), ((2, 0), (0, 3))} L12

(51) {((1, 1), (1, 0)), ((2, 0), (0, 2))} {((1, 1), (1, 0)), ((2, 0), (0, 2))} L14

(52) {((1, 1), (1, 2)), ((2, 0), (1, 2))} {((1, 1), (1, 2)), ((2, 1), (0, 2))} L15

(53) {((1, 1), (2, 1)), ((2, 0), (2, 1))} {((1, 2), (1, 1)), ((2, 2), (0, 1))} L9

(54) {((1, 1), (2, 3)), ((2, 0), (2, 3))} {((1, 2), (1, 3)), ((2, 2), (0, 3))} L10

(55) {((1, 1), (3, 0)), ((2, 0), (3, 0))} {((1, 3), (1, 0)), ((2, 3), (0, 0))} L15

(56) {((1, 1), (3, 1)), ((2, 0), (3, 1))} {((1, 3), (1, 1)), ((2, 3), (0, 1))} L12

(57) {((0, 2), (1, 1)), ((0, 2), (2, 0))} {((0, 1), (2, 1)), ((0, 2), (2, 0))} L13

(58) {((0, 3), (1, 1)), ((0, 3), (2, 0))} {((0, 1), (3, 1)), ((0, 2), (3, 0))} L12

(59) {((1, 0), (1, 1)), ((1, 0), (2, 0))} {((1, 1), (0, 1)), ((1, 2), (0, 0))} L4

(60) {((1, 2), (1, 1)), ((1, 2), (2, 0))} {((1, 1), (2, 1)), ((1, 2), (2, 0))} L16

(61) {((2, 1), (1, 1)), ((2, 1), (2, 0))} {((2, 1), (1, 1)), ((2, 2), (1, 0))} L2

(62) {((2, 3), (1, 1)), ((2, 3), (2, 0))} {((2, 1), (3, 1)), ((2, 2), (3, 0))} L16

(63) {((3, 0), (1, 1)), ((3, 0), (2, 0))} {((3, 1), (0, 1)), ((3, 2), (0, 0))} L13

(64) {((3, 1), (1, 1)), ((3, 1), (2, 0))} {((3, 1), (1, 1)), ((3, 2), (1, 0))} L11

(65) {((1, 3), (0, 2)), ((2, 2), (0, 2))} {((1, 0), (3, 2)), ((2, 0), (2, 2))} L17

(66) {((1, 3), (0, 3)), ((2, 2), (0, 3))} {((1, 0), (3, 3)), ((2, 0), (2, 3))} L15

(67) {((1, 3), (1, 0)), ((2, 2), (0, 2))} {((1, 1), (3, 0)), ((2, 0), (2, 2))} L11

(68) {((1, 3), (1, 2)), ((2, 2), (1, 2))} {((1, 1), (3, 2)), ((2, 1), (2, 2))} L3

(69) {((1, 3), (2, 1)), ((2, 2), (2, 1))} {((1, 2), (3, 1)), ((2, 2), (2, 1))} L15

(70) {((1, 3), (2, 3)), ((2, 2), (2, 3))} {((1, 2), (3, 3)), ((2, 2), (2, 3))} L1

(71) {((1, 3), (3, 0)), ((2, 2), (3, 0))} {((1, 3), (3, 0)), ((2, 3), (2, 0))} L14

(72) {((1, 3), (3, 1)), ((2, 2), (3, 1))} {((1, 3), (3, 1)), ((2, 3), (2, 1))} L17

(73) {((0, 2), (1, 3)), ((0, 2), (2, 2))} {((0, 1), (2, 3)), ((0, 2), (2, 2))} L14

(74) {((0, 3), (1, 3)), ((0, 3), (2, 2))} {((0, 1), (3, 3)), ((0, 2), (3, 2))} L16

(75) {((1, 0), (1, 3)), ((1, 0), (2, 2))} {((1, 1), (0, 3)), ((1, 2), (0, 2))} L17

(76) {((1, 2), (1, 3)), ((1, 2), (2, 2))} {((1, 1), (2, 3)), ((1, 2), (2, 2))} L13

(77) {((2, 1), (1, 3)), ((2, 1), (2, 2))} {((2, 1), (1, 3)), ((2, 2), (1, 2))} L18

(78) {((2, 3), (1, 3)), ((2, 3), (2, 2))} {((2, 1), (3, 3)), ((2, 2), (3, 2))} L12

(79) {((3, 0), (1, 3)), ((3, 0), (2, 2))} {((3, 1), (0, 3)), ((3, 2), (0, 2))} L16

(80) {((3, 1), (1, 3)), ((3, 1), (2, 2))} {((3, 1), (1, 3)), ((3, 2), (1, 2))} L14

Fig. 17. Singularity Removal Constraints Constraints forγejθ = −1 + j

	I Background
	II Preliminaries
	III Exclusive Law and Latin Squares
	IV Clusterings from Latin Square of Lower Size
	V Direct Clustering
	VI QUANTIZATION OF THE COMPLEX FADE STATE PLANE
	VII SIMULATION RESULTS
	VIII Conclusion
	References
	Appendix A
	Appendix B
	Appendix C

