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Abstract—In this paper, we propose a novel closed-form ap-
proximation of the Energy Efficiency vs. Spectral Efficiency (EE-
SE) trade-off for the uplink/downlink of distributed multiple-
input multiple-output (DMIMO) system with two cooperating
base stations. Our closed-form expression can be utilized for
evaluating the idealistic and realistic EE-SE performances of
various antenna configurations as well as assessing how DMIMO
compares against MIMO system in terms of EE. Results show
a tight match between our closed-form approximation and the
Monte-Carlo simulation for both idealistic and realistic EE-
SE trade-off. Our results also show that given a target SE
requirement, there exists an optimal antenna setting that maxi-
mizes the EE. In addition, DMIMO scheme can offer significant
improvement in terms of EE over the MIMO scheme.

I. I NTRODUCTION

The traditional approach for designing wireless network
focuses on the spectral efficiency (SE) metric for optimizing
system performance. The current trend of increasing energy
demand and increasing energy related operating cost is cur-
rently steering research towards the design of energy efficient
networks. However, a conflict of interest does exist between
maximizing SE, which is a ratio of the capacity in bits/s to the
available spectrum, and maximizing energy efficiency (EE),
which is a ratio of the capacity to the total consumed power
PT [1]. The SE is the spectrum utilization indicator while the
EE is the energy consumption indicator, hence the relationship
between both indicators needs to be carefully studied through
their trade-off, i.e. the EE-SE trade-off.

The EE-SE trade-off of the point-to-point additive white
Gaussian noise (AWGN) can be easily computed [2]. However,
closed-form approximations (CFAs) are required for explicitly
expressing the EE-SE trade-off of more complex channel
such as point-to-point multiple-input multiple-output (MIMO)
Rayleigh fading channel [3], [4] . Furthermore, the CFA of the
EE-SE trade-off for the uplink of the symmetric coordinated
multi-point (CoMP) system is given in [5]. In this work,
we are interested in obtaining a tight CFA for the EE-
SE trade-off of the distributed MIMO system, which is a
promising technique for meeting the high data rate requirement
of the next generation mobile communication networks. The
DMIMO scheme combines both the advantages of point-to-
point MIMO and distributed antenna system (DAS), i.e. micro
and macro diversity, respectively [6], [7]. In [6], [8]–[10],
closed-form expressions of the channel capacity of DMIMO
were presented. To the best of our knowledge, the CFA of the
EE-SE trade-off of DMIMO is yet to be presented.

In this paper, we present a framework to analyze the EE-
SE trade-off of the DMIMO system with two cooperating base
stations (2BS-DMIMO) over the Rayleigh fading channel by
following the same approach as in the pioneering works of
[3] and [4] on the the EE-SE trade-off CFA for the single-user
MIMO scenario. In Section II, we introduce the system model
for the 2BS-DMIMO. In Section III, we first derive the CFA
of the EE-SE trade-off for the uplink of the 2BS-DMIMO by
designing a parametric function and using a heuristic curve
fitting method [3], [4], [11]. Then, we derive the CFA of
the EE-SE trade-off for the downlink of the 2BS-DMIMO
by relying on a similar approach as in the uplink. Numerical
results show a tight match of our CFAs with Monte-Carlo
simulation for both uplink and downlink scenarios. In Section
IV, we utilized our CFAs along with the realistic power models
in [12] and [13], to obtain the realistic EE in the downlink
of the 2BS-DMIMO and its EE gain against MIMO system
over the Rayleigh fading channel. Our results show that there
exists an optimal number of BS antennas that maximizes EE
and that 2BS-DMIMO can be far more energy efficient than
MIMO system.

II. SYSTEM MODEL

We consider a standard DMIMO communication system
where two base stations (BSs) equipped withp antennas each
cooperate to transmit/receive data to/from a user terminal
(UT) equipped withq antennas, as illustrated in Fig. 1. We
consider only one active user in the system due to the use
of an orthogonal access scheme. We assume as in [6], [9],
[14] that all 2p antennas have a separate feeder to the central
unit where all signal processing is done. We also assume that
p ≥ q, which is a practical and reasonable assumption [7].
The matricesΩi andHi represent the deterministic distance
dependent pathloss/shadowing and the MIMO Rayleigh fad-
ing channel, respectively, between theith BS and the UT,
i ∈ {1, 2}. The channel model of the DMIMO system which
is depicted in Fig. 1 can then be defined asH̃ = Ω�H, where
H = [H†1,H

†
2]
†, (.)† is the complex conjugate transpose,�

denotes the Hadamard product,H̃ ∈ CNr×Nt , H ∈ CNr×Nt

andΩ ∈ RNr×Nt+ with R+ = {x ∈ R|x ≥ 0}. Moreover,
Ω = Λ , [α1J†, α2J†]† and Ω = Λ† in the uplink and
downlink cases, respectively, whereJ is a p × q matrix with
all elements equal to one andαi represents the average channel
gain between the UT and theith BS. Furthermore, the total
number of transmit and receive antennas of the 2BS-DMIMO



Fig. 1. Distributed MIMO system model (2BS-DMIMO)

system is defined asNt andNr, respectively. In the uplink
caseNt = n = q andNr = 2p, whereas in the downlink
caseNt = 2p,Nr = q and n = p, wheren is the number
of transmit antenna per node. The received signaly ∈ CNr×1

can be expressed as

y = H̃x+ z (1)

wherex ∈ CNt×1 is the transmit signal vector with average
transmit powerP and z ∈ CNr×1 is the noise vector with
average noise powerN . We assume thatH is a random
matrix having independent and identically distributed (i.i.d)
complex circular Gaussian entries with zero-mean and unit
variance. The maximum achievable SE or ergodic capacity
per unit bandwidth of the DMIMO system given in (1) can be
expressed from [6] as

C = EH̃

{
log2

∣
∣
∣INr +

γ

n
H̃H̃†

∣
∣
∣
}

(2)

whereINr is aNr ×Nr identity matrix,E is the expectation,
γ, P

N0W
is the average signal-to-noise ratio (SNR),W (Hz)

is the bandwidth andN0 is the noise spectral density.

III. C LOSED-FORM APPROXIMATION OF THEEE-SE
TRADE-OFF

The capacity per unit bandwidth of the Rayleigh fading
DMIMO channel given in (2) is such that

C = f (γ) . (3)

The EE,CJ is the bit-per-Joule capacity and is equivalent to
R/PT , whereR is the achievable rate andPT is the total
consumed power. Note that when considering the idealistic
model,PT = P and PT = 2P in the uplink and downlink
cases, respectively. Using the inverse function off , f−1 (i.e.
f−1u andf−1d for the uplink and downlink case, respectively),
for expressingγ as a function ofC, we obtain that

CJu =
S

N0f
−1
u (C)

, (4)

CJd =
S

2N0f
−1
d (C)

, (5)

for the uplink and the downlink of the 2BS-DMIMO system,
respectively, whereS = R/W . Equations (4) and (5) indicate

that the EE-SE trade-off can be formulated by finding an
explicit expression forf−1(C). For example,f−1(C) can
easily be obtained for point-to-point AWGN channel as in
[2], however, this is not as straightforward for more complex
channel scenarios such as DMIMO. Instead, approximating
f−1(C) as in [3]–[5] is an effective solution for formulating
a closed-form expression of the DMIMO EE-SE trade-off.

A. EE-SE Trade-off CFA for the Uplink of 2BS-DMIMO

The closed-form expression for the ergodic capacity per unit
bandwidth in the uplink of the 2BS-DMIMO system can be
expressed from [8] as

C ≈
1

ln(2)

[
qln(1 + κα21Pu1 + κα

2
2Pu2) + p ln

(
1 + α21Pw

)

+ p ln
(
1 + α22Pw

)
− p

(
α21Pu1 + α

2
2Pu2

)
w
]

(6)

in bits/s/Hz, whereκ = p
q
ui, i ∈ {1, 2} andw are the unique

solution to the following equations:

ui =
(
1 + α2iPw

)−1
i = 1, 2

w =
(
1 + κα21Pu1 + κα

2
2Pu2

)−1
(7)

Let us defineg = κα22Pu2(Δx + 1), d1 = Δα
2
2Pw and

d2 = α
2
2Pw, whereΔ is the SNR offset between the two

links i.e. Δ = α21
α22

, α2 is the link with the lowest gain and

x = u1/u2. In addition, letḡ = 2g + 1, d̄1 = 2d1 + 1 and
d̄2 = 2d2 + 1. Then, equation (6) can be re-expressed as

C ≈ f̃u (γ) =
1

ln(2)
(Sq + Sp1 + Sp2) (8)

whereSq, Sp1 andSp2 are given by

Sq = q

(

−
1

2
− ln(2) +

1

1 + ḡ
+ ln(1 + ḡ)

)

,

Sp1 = p

(

−
1

2
− ln(2) +

1

1 + d̄1
+ ln(1 + d̄1)

)

and

Sp2 = p

(

−
1

2
− ln(2) +

1

1 + d̄2
+ ln(1 + d̄2)

)

, (9)

respectively. We can re-express the first equation in (9) as

gq(Sq) = −
1

1 + ḡ
exp

(

−
1

1 + ḡ

)

, (10)

wheregq(Sq) = − exp(−(
Sq
q
+ 12+ln(2))). Using the Lambert

W function which is the inverse function off(w) = w exp(w)
and is such thatW (z)eW (z) = z, wherew, z ∈ C [15], we
can reformulate (10) as

−
1

1 + ḡ
= W0(gq(Sq))

ḡ = −

[

1 +
1

W0(gq(Sq))

]

. (11)

Similarly, d̄1 = −
[
1+ 1
W0(gp(Sp1 ))

]
and d̄2 = −

[
1+ 1

W0(gp(Sp2 ))

]
.

Moreover, it can be easily demonstrated that

ḡ

[

d̄2+

(
d̄1

Δ
−
1

Δ
+1

)]

=2
[
2α22γ (κΔx+ κ+ 1) + 1

]
, (12)
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which results in the following approximation forf−1u (C) in
(4)

f̃−1u (C)=
−2+
[
1+ 1
W0(gq(Sq))

][(
1+ 1
W0(gp(Sp1))

)
+ 1Δ

(
2+ 1
W0(gp(Sp2 ))

)
−1
]

4α22(κΔx+ κ+ 1)
(13)

Note thatu1 = 2/(1+ d̄1) andu2 = 2/(1+ d̄2) are such that

x =
u1

u2
=
W0(gp(Sp1))

W0(gp(Sp2))
. (14)

Thus, obtaining the closed-form expression of the EE-SE
trade-off for the uplink of the 2BS-DMIMO system is equiv-
alent to expressingSq, Sp1 and Sp2 as a function ofC in
(13). Moreover, sinceC̄ = C ln(2) ≈ Sq + Sp1 + Sp2 in
(8), we can define parametric functionsΨp,q(C) ≈

Sp2
Sp1

and
Φp,q(C) ≈ Sq− (Sp1 + Sp2), such that we obtainSq, Sp1 and
Sp2 as a function ofC, p and q by solving a set of linear
equations. The equationSq− (Sp1+Sp2) can be simplified as

Φp,q(C)≈Sq −(Sp1+Sp2)=ln

(
22p(1+ḡ)q

2q(1+d̄1)p(1+d̄2)p

)

, (15)

since it can be proved thatp(−1/2 + 1/(1 + ḡ)) − q(−1 +
1/(1 + d̄1) + 1/(1 + d̄2)) = 0 as in the MIMO case [3].

We defineφp,q(C) = e
Φp,q
q ≈ e

Sq−(Sp1+Sp2 )

q and utilize the
parametric function derived forSq − Sp in the point-to-point
MIMO Rayleigh fading channel [3], such that

Φp.q(C) = qη1 ln
(
cosh

(
C̄/ (qη1)

))
and

Φp,q(C) = q ln
(
1 + η0

[
cosh

(
C̄/ (qη1)

)η1 − 1
])

(16)

tightly approximateSq− (Sp1+Sp2) as a function ofC when
κ ≥ 2 and 1 ≤ κ < 2, respectively, whereη0 and η1 are
obtained from a numerical search.

In order to obtainΨp,q, we first numerically evaluate
Sp2
Sp1

as a function ofC for a particularΔ and various antenna
configurations, we setα21 = 1 andα22 = 0.1 i.e.,Δ = 10dB.
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In addition, we obtained thatlimC→0
Sp2
Sp1
= 1
Δ , such that the

parametric function that best fits the curves
Sp2
Sp1

as a function
of C is

Ψp,q =
1

Δ
+ ln

(
1 + δ1 tanh

(
C̄δ0/n

))
, (17)

where the values ofδ0 andδ1 for Δ=10dB are given in Table
I. We then plotted the approximation error as a function ofC
for different antenna configurations. Results in Fig. 2 shows
that the accuracy of our approximation increases withκ.

Furthermore, by solving the linear equations (16), (17) and
C̄ ≈ Sq + Sp1 + Sp2 , we obtainSq, Sp1 andSp2 such that

Sq ≈ 0.5
(
C̄ + qη1 ln

(
cosh

(
C̄/ (qη1)

)))

Sp1 ≈
0.5
[
C̄ − qη1 ln

(
cosh

(
C̄/ (qη1)

))]

1 + Ψp,q
(18)

Sp2 ≈
0.5
[
C̄ − qη1 ln

(
cosh

(
C̄/ (qη1)

))]
ln (Ψp,q)

1 + Ψp,q

for κ ≥ 2. In addition,Sq, Sp1 andSp2 can be formulated as

Sq ≈ 0.5
(
C̄+q ln

(
1+η0

[
cosh

(
C̄/(qη1)

)η1−1
]))

Sp1 ≈
0.5
[
C̄−q ln

(
1+η0

[
cosh

(
C̄/(qη1)

)η1−1
])]

1+Ψp,q
(19)

Sp1 ≈
0.5
[
C̄−q ln

(
1+η0

[
cosh

(
C̄/(qη1)

)η1−1
])]
ln(Ψp,q)

1+Ψp,q

when 1 ≤ κ < 2. Next, f̃−1u (C) in (13) is obtained by
substitutingSq, Sp1 and Sp2 (equations (18) or (19) ). Our
CFA for the EE-SE trade-off of the uplink of the 2BS-DMIMO
system is then obtained by insertingf−1u (C) ≈ f̃

−1
u (C) in

(4). In Fig. 3, we compared our uplink CFA obtained from
equations (4) and (13) with the Monte-Carlo simulations for
variousp × q antenna configurations. As it can be observed,
the results clearly show the tight fitness of our CFA with the
Monte-Carlo simulations, hence, it is a graphical illustration
of the accuracy of our uplink CFA.



TABLE I
PARAMETERSη0, η1, δ0 AND δ1 AS A FUNCTION OFκ|1/κ AT Δ = 10dB

κ|1/κ̄ 1 6/5 3/2 5/3 2 9/4 3 10
η0 0.175 0.228 0.278 0.317 - - - -
η1 0.95 0.86 0.73 0.77 2.220 2.113 1.916 1.569
δ0 0.33 0.36 0.38 0.39 0.41 0.42 0.43 0.39
δ1 0.049 0.0298 0.0169 0.0131 0.0085 0.0065 0.0035 0.0003

B. EE-SE Trade-off CFA for the Downlink of 2BS-DMIMO

The closed-form expression for the ergodic capacity per unit
bandwidth in the downlink of DMIMO can be expressed as

C≈f̃d (γ)=
1

ln(2)

[
qln
(
1+α22P (Δu1+u2)

)
+pln(1+κ̄α22ΔPw)

+pln(1+κ̄α22Pw)−qα
2
2Pw(Δu1+u2)

]
(20)

in bits/s/Hz, wherēκ = q
p
, ui, i ∈ {1, 2} andw are the unique

solution to the following equations:

ui =
(
1 + κ̄α2iPw

)−1
i = 1, 2

w =
(
1 + α21Pu1 + α

2
2Pu2

)−1
(21)

Similar to the uplink scenario, we defineg = α22Pu2(Δx +
1), d1 = κ̄Δα

2
2Pw and d2 = κ̄α22Pw. Moreover, we define

ḡ = 2g + 1, d̄1 = 2d1 + 1 and d̄2 = 2d2 + 1. By following
the same approach as in the uplink scenario, we can express
(20) as in (8) and, hence, we can easily show that

ḡ

[

d̄2+

(
d̄1

Δ
−
1

Δ
+1

)]

=2
[
2α22γ (Δx+ κ̄+ 1) + 1

]
, (22)

which results in the following approximation forf−1d (C) in (5)

f̃−1d (C)=
−2+
[
1+ 1
W0(gq(Sq)))

][(
1+ 1
W0(gp(Sp1))

)
+ 1Δ

(
2+ 1
W0(gp(Sp2 ))

)
−1
]

4α22(Δx+ κ̄+ 1)
.

(23)
Using a similar approach as in the uplink case, the closed-form
expression for the downlink of 2BS-DMIMO can be obtained
by expressingSq, Sp1 and Sp2 as a function ofC, p and q.
By utilizing the parametric expression given in (16) and (17)
for Sq − (Sp1 +Sp2) andΨp,q ≈

Sp2
Sp1

, respectively, we obtain
the expressions ofSq, Sp1 and Sp2 given in (18) and (19) ,
for 1/κ̄ ≥ 2 and1 ≤ 1/κ̄ < 2, respectively. Our CFA for the
EE-SE trade-off of the downlink of the 2BS-DMIMO system
is then obtained by insertingf−1d (C) ≈ f̃

−1
d (C) in (5). In

Fig. 4, we demonstrate graphically the accuracy of the EE-SE
CFA in the downlink of 2BS-DMIMO system for variousq×p
antenna configurations.

IV. ENERGY EFFICIENCY ANALYSIS OF DMIMO

In this section, we utilize our CFA of the EE-SE trade-
off for the downlink of 2BS-DMIMO to evaluate the impact
of the antenna configurations on the EE gain of the 2BS-
DMIMO over MIMO system when considering a realistic
power consumption model (PCM) as the ones in [12] and [13].
Combining these two linear PCMs, we obtain that the realistic
total powerPT = pΓ( MPpμPA

+ Psp) + Pbh, whereM = 2,
μPA,Psp andPbh denotes the power amplifier efficiency, sig-
nal processing power and the additional backhauling induced
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power for supporting DMIMO, respectively. In addition, the
parameterΓ = (1 + cdc)(1 + cms)(1 + cc) accounts for the
DC-DC, main supply and cooling losses i.e.cdc, cms and cc
respectively. The powerPsp can be obtained from [12] such
that

Psp = psp
(
(0.9− v) + 0.1M +M2v

)
. (24)

wherepsp is the base value of the signal processing power and(
(0.9− v) + 0.1M +M2v

)
represents the additional process-

ing cost as a result of joint processing. Note thatv% (wherev
is between 1 and 10) ofpsp is used for MIMO processing, and
we assume thatv = 5. The additional backhaul powerPbh is
given byPbh =

Cd
Cbh
Mpb Watts, whereCbh is the capacity of

the backhaul link with a dissipation powerpb. Consequently,
the EE-SE trade-off in the downlink of DMIMO can be re-
expressed as

C̃Jd =
S

N0

[
2f̃−1d (C)Γ

μPA
+
pΓPsp + Pbh

N

]−1

(25)

when considering a realistic PCM. We set the parameters in
(25) by using the values related to the LTE system in Table 1
of [13], wherepsp = PRF + PBB = 42.5Watts. In addition,
we assume thatα21 = 1, α

2
2 = 0.1 (such thatΔ = 10dB) and

N = 1 and the parameters in Table I unless otherwise stated.
In Fig. 5, we utilize our CFA of equation (25), for evaluating

the impact of various antenna configurations on the EE of the
2BS-DMIMO system. The results clearly indicate that given a
certain SE target, their exits an antenna setting that maximizes
the EE. In addition, we observe that in terms of the realistic
EE, havingp > q is not desirable, i.e., we obtain a higher EE
for κ̄ = 1 than for κ̄ = 1

2 . Increasingp beyondq does not
give significant increase in the downlink capacity, however, a
significant increase in power consumption is experienced.

In Fig. 6, we utilize our downlink EE-SE trade-off CFA for
comparing the EE of DMIMO with that of MIMO system. We
define the EE gainGEE asGEE = C̃J,DMIMO/C̃J,MIMO,
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whereC̃J,DMIMO is given in (25) andC̃J,MIMO is obtained
from [3]. The PCM for MIMO can be obtained by setting
M = 1, Pbh = 0 and v = 0 in PT . In order to make the
comparison fair we assume an average channel gain for the
MIMO system ofα1 = 1 while we assume for the DMIMO
thatα1 = 1 andα2 varies between

√
10−1 to

√
10. We obtain

the values ofη0, η1, δ0 andδ1 by numerical search. Our results
indicate that at low SE, the MIMO scheme outperforms the
2BS-DMIMO over all channel offset range. However, at high
SE, the DMIMO scheme performs better when the channel
gain of its other link, i.e.,α22 % α

2
1, which include scenarios

where both channels are not in deep fade and scenarios where
a better channel than the MIMO channel can be exploited by
DMIMO i.e., very good macro diversity gain.

V. CONCLUSION

In this paper, we have derived an accurate closed-form
approximation of the EE-SE trade-off for both the uplink and
downlink of the 2BS-DMIMO system over the Rayleigh fading
channel and also show its accuracy over a wide range of SE
and numerous antenna configurations. We then utilized our
CFA to analyze the effect of using multiple antennas on the EE
while considering a realistic PCM. It was revealed that their
exists an antenna setting that maximizes the EE. Furthermore,
our CFA was also used for assessing the EE gain of the
2BS-DMIMO over MIMO system. The DMIMO scheme can
provide significant gain in terms of EE, especially when the
MIMO links are in deep fade. In the future, we would extend
our method for defining a more generic DMIMO system and
deriving a more compact CFA of its EE-SE trade-off for both
the uplink and downlink scenarios.
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