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Abstract—We show how real-number codes can be used to
compress correlated sources, and establish a new framewofkr  of data using binary channel codes. Then, we quantize these
distributed lossy source coding, in which we quantize commssed syndrome or parity samples and transmit them. There are

sources instead of compressing quantized sources. This clge in . - o . ) .
the order of binning and quantization blocks makes it possite still coding (binning) and quantization losses; howeverce

to model correlation between continuous-valued sources me coding is performed before quantization, error correci®n
realistically and correct quantization error when the sources are in the real field and quantization error can be corrected when
completely correlated. The encoding and decoding procedes two sources are completely correlated over a block of code. A
are described in detall, for discrete Fourier transform (DFT) - gecongd and more important advantage of this approach is the
codes. Reconstructed signal, in the mean-squared error sse, is fact that the correlation channel model can be more realissi
seen to be better than or close to quantization error level irthe | . !

conventional approach. it captures the correlation between continuous-valuedcssu
rather than quantized sources. In the conventional approac
it is implicitly assumed that quantization of correlategrsils
results in correlated sequences in the discrete domainhwhic
is not necessarily correct due to nonlinearity of quanizat

|. INTRODUCTION operation. In addition, most of previous works assume that

The distributed source coding (DSC) deals with compre#lis correlation, in the binary field, can be modeled by atyina
sion of correlated sources which do not communicate wiiymmetric channel (BSC) with a known crossover probability
each other[1]. Lossless DSC (Slepian-Wolf coding), hasmbe&0 avoid the loss due to inaccuracy of correlation model, we
realized by different binary channel codes, including LDp@proi_t cqrrelation between continuous-valued sourcderbe
[2] and turbo codes [3]. The Wyner-Ziv coding problem [4]duantization.
deals with lossy data compression with side information at Specifically, we use real BCH-DFT codes [7], for compres-
the decoder, under a fidelity criterion. Current approach fon in the real field. Owing to the DFT codes, the loss due
the DSC of a continuous-valued source is to first convdft quantization can be decreased by a factok ot for an
it to a discrete-valued source using quantization, and thém k) DFT code [8], [9]. Additionally, if the two sources are
to apply Slepian-Wolf coding in the binary field. Similarly,perfectly correlated over one codevector, reconstrudiss
a practical Wyner-Ziv encoder is realized by cascading V@nishes. This is achieved in view of modeling the corretati
quantizer and Slepian-Wolf encodét [S]] [6]. In other worddetween the two sources in the continuous domain. Finally,
the quantized source is compressed. There are, hencegsothe proposed scheme seems more suitable for low-delay com-
coding (or quantization) loss and channel coding (or bighinmunication because using short DFT codes a reconstruction
loss. This approach is based on the assumption that theit is §rror better than quantization error is achievable.
correlation remaining in the quantized version of coredat The rest of this paper is organized as follows. In Sedtibn II,
sources. we motivate and introduce a new framework for lossy DSC. In

In this paper, we establish a new framework for the WynepectionIll, we briefly review encoding and decoding in real
Ziv coding. We propose to first compress the continuouBFT codes. Then in Section]V, we present the DFT encoder
valued source and then quantize it, as opposed to the c8Ad decoder for the proposed system, both in the syndrome and
ventional approach. The compression is thus in the real, fieRirity approaches. These two approaches are also compared
aiming at representing the source with fewer samples. in this section. Sectiof ]V discusses the simulation results

To do compression, we generate either syndrome or parfigctionl V] provides our concluding remarks.
samples of the input sequence using a real-number channel
code, similar to what is done to compress a binary sequence Il. PROPOSEDSYSTEM AND MOTIVATIONS

Index Terms—Distributed source coding, real-number codes,
BCH-DFT codes, channel coding, Wyner-Ziv coding.
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in Interactive Information Infrastructure for the PoweridGr [7], a class of real Bose-Chaudhuri-Hocquenghem ( )

codes, to preform compression. Similar to error correction
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Encoder Decoder I1l. ENCODING AND DECODING WITHBCH-DFT CoDES

X Slepian-Wolf ‘ - Slepian-Wolf X Real BCH-DFT codes, a subset of complex BCH codeés [7],
7| Encoder [ Q@ 9 "l Decoder [T~ are linear block codes over the real field. Any BCH-DFT code
e E T TR Tf” - satisfies two properties. First, as a DFT code, its parigekh

v matrix is defined based on the DFT matrix. Second, similar

to other BCH codes, the spectrum of any codevector is zero
in a block ofd — 1 cyclically adjacent components, wheie
is the designed distance of that code|[10]. A real BCH-DFT

o o ) _codes, in addition, has a generator matrix with real entdes
finite fields, the basic idea of error correcting codes in thfasceribed below.

real field is to insert redundancy to a message vectok of
samples to convert it to a codevector ofsamples € > k) A

[7]. But unlike that, the insertion of redundancy in the real’ i . )
field is performed before quantization and entropy coding. AN (7, k) real BCH-DFT code is defined by its generator

The insertion ofsoft redundancy in the real-number codes has?"d parity-check matrices. The generator matrix is given by
advantages ovérard redundancy in the binary field. By using n

ot G=,/-Wizsw, (1)
soft redundancy, one can go beyond quantization error, and L n ks
thus reconstruct continuous-valued signals more acdyrate hich dWH Vel h d
This makes real-number codes more suitable than binary;coH%W_ Ic Wk.an W, respec.tlve y are the DFT_an IDFT

matrices of sizé: andn, andX is ann x k matrix withn — k

zero rows [[11]-+[14]. Particularly, for odd, X has exactlyk

for lossy distributed source coding.
The proposed system is depicted in Fig. 1. Although it CORTnzero elements given & — 1, Sii = S spy = 1
% [11], [22]. This guarantee§ the speé:trum of any

sists of the same blocks as existing practical Wyner-Zivirogpd i=1 -
rd to haves — k consecutive zeros, which is required

Fig. 1. The Wyner-Ziv coding using real-number codes.

Encoding

schemel[b],[[6], the order of these blocks is changed herat T%odewo

is, we perform Slepian-Wolf coding before quantizationisTh]cor any BCH codel[[10]. The parity-check matrbf, on the
change in the order of the DSC and quantization blocks bring&wer hand. is const}uctéd by using the- k columns: of W H

some advantages as described in the following. corresponding to the — k£ zero rows ofX. Therefore, due to

« Realistic correlation model: In the existing framework Unitary property ofVVf HG =0. o
for lossy DSC, correlation between two sources is mod- In the rest of this paper, we use the term DFT code in lieu of
eled after quantization, i.e., in the binary domain. Mori®@ BCH-DFT code. Besides, we only consider odd numbers

ndn; thus, the error correction capability of the code

precisely, correlation between quantized sources is ud@l * an_kJ S, 1
= =7

ally modeled as a BSC, mostly with known crossove? t = |

probability. Admittedly though, due to nonlinearity of

quantization operation, correlation between the quadtiz8. Decoding

signals is not known accurately even if it is known For decoding, we use the extension of the well-known

in the continuous domain. This motivates investigatingeterson-Gorenstein-Zierler (PGZ) algorithm to the restlfi

a method that exploits correlation between continuougt0]. This algorithm, aimed at detecting, localizing, arst e

valued sources to perform DSC. timating errors, works based on the syndrome of error. We
« Alleviating quantization error: In lossy data compres- summarize the main steps of this algorithm, adapted for a

sion with side information at the decoder, soft redurBFT code of length:, in the following.

dancy, added by DFT codes, can be used to correct bothl) Compute vector of syndrome samples

guantization errors and (correlation) channel errors. Thez) Determine the number of erroes by constructing a

loss due to quantization error thus can be recovered, at syndrome matrix and finding its rank

least partly if not wholly. More precisely, if the two  3) Fingd coefficientsAs, ..., A, of error-locating polyno-

sources are exactly the same over a codevector, quanti-  mja| A(z) = 1", (1—zX;) whose roots are the inverse
zation error can be corrected completely. That is, perfect  of error Iocatic;ﬁsl

reconstruction is achle_ved_ over correspondlng sample§4) Find the zerosX[,..., X! of A(z); the errors are
The Ios_s dye to quantization error is decrgased even if * then in locations, . .., i, whereX; = a’t,..., X, =
correlation is not perfect, i.e., when (correlation) chelnn ol anda = e %

errors exist. 5) Finally, determine error magnitudes by solving a set of
« Low-delay communication: If communication is subject linear equations whose constants coefficients are powers

to low-delay constraints, we cannot use turbo or LDPC ¢ x,.

codes, as their performance is not satisfactory for shortAS mentioned, the PGZ algorithm works based on the

code length. Whether low-delay requirement exists or n9§/ndrome of error, which is the syndrome of the received

depends on the specific applications. However, evenintBGdevector, neglecting quantization. Let— y + e be the
applications that low-delay transmission is not imper%ceived vector. then

tive, it is sometimes useful to consider low-dimensional
systems for their low computational complexity. s=Hr=H(y+e) = He, (2)
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wheres = [s1, so,...,s2]7 is a complex vector of length _____ FEncoder
n — k. In practice however, the received vector is distorted by

T : Sz 18z
guantizationt = g + e, g = y + q) and its syndrome is no —> H A Q e Decoder —is;>
longer equal to the syndrome of error because b ! i
_ |t e Yy
S§=Hr=H(y+q+e)=s,+s., 3 T . ¥
. 1 1 C 1 ti | 1n
wheres, = Hq and s, = He. While the “exact” value f=mmmm-- - oL Ao '
q Channel !

of errors is determined neglecting quantization, the dewpd """ 777Toos
becomes arestimation problem in the presence of quantiza-
tion. Then, it is imperative to modify the PGZ algorithm td
detect errors reliably [10]=[13]. Error detection, loealiion,

and also estimation can be largely improved using leastregua

ig. 2. The Wyner-Ziv coding using DFT codes: Syndrome aagino

methods [14]. 2) Decoding: The decoder estimates the input sequence
) from the received syndrome and side informatignTo this
C. Performance Compared to Binary Codes end, it needs to evaluate the syndrome of channel (cowalati

DFT codes by construction are capable of decreasing qugﬁr_ors. This can be simply done by subtracting the received

tization error. When there is no error, dn,k) DFT code isgndr:gt;;‘;zgﬂsxﬁrgg?;nof side information. Then, neglect-
brings down the mean-squared error (MSE), below the levaP 9 ' '
of quantization error, with a factor ok, = k/n [8], [9]. S, =8, — S, 4)

This is also shown to be valid for channel errors, as long as . .
channel can be modeled as by additive noise. To appreciaped 3. can be used to precisely estimate the error vector, as
es

this, one can consider the generator matrix of a DFT code cr|bAed in SectiolII. In practice, however, th? deod
a tight frame [[9]; it is known that frames are resilient to angnows% =35, T4 .rather.thansm.. Therefore, only a distorted
additive noise, and tight frames reduce the MBE: times yndrome of error is available, i.e.,

[15]. Hence, DFT codes can result in a MSE even better than 8, =8,—8,=s.— q. (5)
guantization error level whereas the best possible MSE in a

: : ; o Hence, using the PGZ algorithm, error correction is accom-
binary code is obviously lower-bounded by quantizatiomerr )
level y y ya plished based onl5). Note that, having computed the synglrom

of error, decoding algorithm in DSC using DFT codes is
IV. WYNER-ZIV CODING USING DFT CODES exactly the same as that in the channel coding problem. This

The concept of lossy DSC and Wyner-Ziv coding in this different fr_om DSC techniq_u_es _in the binary field whiph
real field was described in Sectibh II. In this section, we udually require a slight modification in the corresponding
DFT codes, as a specific means, to do Wyner-Ziv coding fi@nnel coding algorithm to customize for DSC.
the real field. This is accomplished by using DFT codes for
binning, and transmitting compressed signal, in the form &% Parity Approach
either syndrome or parity samples. Syndrome-based Wyner-Ziv coding is straightforward but

Let  be a sequence of i.i.d random variablgs:s ... z,, not very efficient because, in a real DFT code, syndrome
andy be a noisy version af such that; = x;+e;, wheree; is  samples are complex numbers. This means that to transmit
continuous, i.i.d., and independentqf Sincee is continuous, each sample we need to send two real numbers, one for the
this model precisely captures any variation sf so it can real part and one for the imaginary part. Thus, the compassi
model correlation betweem andy accurately. For example, ratio, using ann, k) DFT code, iS5+ whereas it is—"+
the Gaussian, Gaussian Bernoulli-Gaussian, and Gaussi@n-a similar binary code. This also imposes a constraint on
Erasure correlation channels can be modeled using thisiImoghe rate of code, i.en < 2k or R, > % since otherwise
[16]. These correlation models are practically importamt ithere is no compression. In the sequel, we explore parisgda
video coders that exploit Wyner-Ziv concepts, e.g., when tlapproach to the Wyner-Ziv coding.
decoder builds side information via extrapolation of poexgly 1) Encoding: To compresse, the encoder generates the
decoded frames or interpolation of key frames|[16]. In thisorresponding parity sequenge with n — k samples. The
paper, the virtual correlation channel is assumed to beparity is then quantized and transmitted, as shown in [Big. 3,
Bernoulli-Gaussian channel, inserting at mbsandom errors instead of transmitting the input data. The first step intgari

in each codeword; thug, is a sparse vector. based system is to find the systematic generator matri& as
in (@) is not in the systematic form. Lefl be partitioned as
A. Syndrome Approach H = [H, | H,], where H, is a matrix of sizen — k x k,

1) Encoding: Given H, to compress an arbitrary sequencand H; is a square matrix of size — k. Since H; is a
of data samples, we multiply it witdH to find the corre- Vandermonde matrixH, ' exist and we can write
sponding syndrome samples= Hx. The syndrome is then He —H'H-=1PI|I 6
guantized §, = s, + q), and transmitted over a noiseless R = [P L], ©)
digital communication system, as shown in Hig. 2. Note that which P = H;lHl is an (n — k) x k matrix, andI; is
sz, 8, are both complex vectors of length— k. an identity matrix of sizet.



- ___Encoder ___. vector of lengthn whose syndrome, neglecting quantization,
is equal to the syndrome of error. That is,

T : p D .
T -l Gsys k= Q L k= Decoder +>Z: y - e
A n— 'n— ; E
1 ! A = = = v
ool Ly z |:p] [p]+|: 0 :| Giysx + €en, (11)
.., Correltion | ______ Yk hence,
r_ _Channel 5. = 5. (12)

Similarly, when quantization is involveg(= , we get
Fig. 3. The Wyner-Ziv coding using DFT codes: Parity apploac y q (ﬁ( P q) 9

- Y 0
Z—|:ﬁ:|—Z+|:q:|—Gsysm+en+qna (13)

The systematic generator matrix correspondingdg,s is and
given by Sz = S¢ + Sg, (14)
G — I, | _ Iy, @ in which, s, = Hq,. Therefore, we obtain a distorted version
s P || —H;'H, |° of error syndrome. In both cases, the rest of the algorithm,

_ . which is based on the syndrome of error, is similar to that in
Clearly, HuysGiys = 0. It s also easy to check that the channel coding problem using DFT codes.
HGgy = 0. (8)

Therefore, we do not need to calculak&,s and the same C. Comparison Between the Two Approaches
parity-check matrixH can be used for decoding in the parity As we saw earlier, using afn, k) code the compression
approach. ratio in the syndrome and parity approaches, respectively,
An even easier way to come up with systematic generaibrap =5 and ;2%. Hence, the parity approach /n =
G, 2R. > 1 times more efficient than the syndrome approach.
G, f Conversely, we can find two different codes that result in
matrix of sizek. Then, fromHG = 0 and the fact thafl, same compression ratio, say. We know that in the parity
is invertible one can se€'s = —H,; ' H,G1; thus, we have approach, d2n — k,n) code can be used for this matter. It is
G - I also easy to verify that, in the syndrome approach, a code wit
G = [ ! ] - ] G. (9) rate R, = ”2—*;1’“ results in the same compression. For odd
G> | —H, Hi andk, the (n, 2f%) DFT code gives the desired compression
Note thatG, is invertible because usin@l(1) akyx k sub- ratio. Thus, for a given compression ratio the parity apphoa
matrix of G can be represented as product of a Vandermoniteplies a code with smaller rate compared to the code regjuire
matrix and the DFT matri¥¥;. This is also proven using ain the syndrome approach.
different approach i [9], where it is shown that any subfeam
of G is a frame and its rank is equal to Hence, sinces, V. SIMULATION RESULTS
is invertible, the systematic generator matrix is given by

matrix is to partitionG as where G, is a square

We evaluate the performance of the proposed systems using
Gyys = GGT. (10) 2 Gaus_s-Markov_ source with zero mean, unit variancg, and
' correlation coefficient 0.9; the effective range of the ipu
Again HG,,s = 0 becauseHG = 0. Therefore, the same sequences is thuis-4, 4]. The sources sequences are binned
parity-check matrixd can be used for decoding in the parityusing a (7,5) DFT code. The compressed vector, either
approach. It is also easy to see ti@Gl,, is a real matrix. syndrome or parity, is then quantized with a 6-bit uniform
The question that remains to be answered is whefigt quantizer, and transmitted over a noiseless communication
corresponds to a BCH code? To generate a BCH c6Hg, media. The correlation channel randomly inserts one error
must haven — k consecutive zeros in the transform domain¢ = 1), generated by a Gaussian distribution. The decoder
W, Gsys = (W, G)G1 ", the Fourier transform of this matrix localizes and decodes errors. We compare the MSE between
satisfies this condition becaud¥,,G, the Fourier transform transmitted and reconstructed codevectors, to measurétse
of original matrix, satisfies that. end distortion. In all simulations, we use 20,000 input feam

Note that, since parity samples, unlike syndrome samplésy each channel-error-to-quantization-noise ratio (GEQ}.
are real numbers, using &m, k) DFT code a compressionWe vary the CEQNR and plot the resulting MSE. The result
ratio of ﬁ is achieved. Obviously, a compression ratio adire presented in Figl] 4, and compared against the quaatizati
—- is achievable if we use &n — k,n) DFT code. error level in the existing lossy DSC methods.

2) Decoding: A parity decoder estimates the input se- It can be observed that the MSE in the syndrome approach
guence from the received parity and side informatign is lower than quantization error except for a small range of
Similar to the syndrome approach, at the decoder, we ne@HQNR. Similarly, in the parity approach, the MSE is less
to find the syndrome of channel (correlation) errors. To dban quantization error for a wide range of CEQNR. Note
this, we append the parity to the side information and formthat in lossy DSC using binary codes, the MSE can be equal
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o . - ) that our systems, specifically with short codes, can imptoee
to quantization error only if the probability of error is 2er yeconstruction error, so that they may become viable inreal
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