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Abstract—This paper presents a new channel reconstruction
technique for 3D geometry-based channels in a multi-probe
based MIMO OTA setup. The proposed method provides a
general channel reconstruction framework for any spherical
power spectrum. The channel reconstruction is formed as convex
optimization problems, which give global optimal reconstruction
accuracy and allow for a relatively low computational complexity.

I. INTRODUCTION

As a solution to evaluate multiple input multiple output
(MIMO) device performance in realistic conditions in the lab,
MIMO over the air (OTA) testing has attracted huge interest
from both industry and academia [1], [2]. Standardization
work for the development of the MIMO OTA test methods is
ongoing in CTIA, 3GPP and COST IC1004 [1]. One promising
candidate is the multi-probe based anechoic chamber method.
Compared to field testing, the anechoic chamber based MIMO
OTA testing provides repeatable and controllable testing en-
vironments, so the major challenge is to emulate a realistic
environment which can accurately reflect the real wireless
propagation environment.

Most of the standard channel models in the literature are
two-dimensional (2D). That is, the channel models are defined
only on the azimuth plane and no spread over elevation
dimension is assumed [3], [6]. These models are valid in the
scenarios where the elevation spread of the incoming power
spectrum is concentrated on a very narrow elevation-angle
region at the elevation angle θ = 0o in typical spherical
coordinates in the propagation literature. 2D standard channel
models are used in the MIMO OTA testing so far [1]. Several
contributions in the literature have addressed techniques to
emulate the 2D standard channel models in a multi-probe
setup [2], [5]. However, the 2D channel model assumption
is not generally valid. Measurements have demonstrated that
elevation spread can not be ignored in many propagation
environments. Various distributions have been proposed for
power azimuth spectrum (PAS) and power elevation spectrum
(PES) of the incoming power spectrum [6], [7], [8], [9].

In order to evaluate MIMO terminals in realistic environ-
ments in the lab, it would be desirable that the 3D radio
channels can be accurately reproduced in a multi-probe MIMO
OTA setup. Very few contributions have addressed this issue.
In [10], it was briefly mentioned that 32 symmetrically placed

OTA probes in a 3D setup were used to emulate 3D channel
models, but no algorithm description is given. In [11], the
3D channel reconstruction technique is briefly described. The
test volume where the device under test (DUT) is located is
sampled by selecting locations on three orthogonal segments
of line inside the test volume.

In the current paper, a novel 3D channel model reconstruc-
tion technique in a MIMO OTA setup is proposed, where
the test volume is sampled by locations on the surface of an
ellipsoid shaped test volume. The 3D channel reconstruction
technique has also been implemented in a commercial channel
emulator EB Propsim F8, where the Laplacian distribution is
defined for PAS and PES. For the proposed reconstruction
technique, there is no limitation on the spherical power spec-
trum shape. The main work of this paper is to extend the 2D
prefaded signal synthesis (PFS) technique [2] for 3D channel
models. The focus is on reproducing the spatial structure of
the 3D channel with a limited number of probes in a 3D
configuration. Note that the notation channel reconstruction
is interchangable with channel emulation in this paper. The
contributions of this work are:

• We first form the 3D channel reconstruction problem via
two objectives: the sum reconstruction error minimization
and the maximal reconstruction error minimization. The
first one minimizes the summation over the total recon-
struction errors while the second one avoids potential high
peaks of reconstruction error. Both problems are convex
optimization problems when the OTA probe positions are
fixed, which can be solved efficiently [12]. Employing the
convex optimization framework into the channel recon-
struction can greatly reduce the computational complex-
ity.

• Selecting points on the surface of the test volume to form
the samples, offers better reconstruction accuracy than
that obtained by using points on three orthogonal lines
inside test volume, as reported in [11].

• The proposed reconstruction method provides a general
reconstruction framework for any spherical power spec-
trum.

II. METHOD

A. Reconstruction technique for 2D channel models
Several papers have discussed OTA testing setups for MIMO

devices with emphasis on channel modeling, where the goal
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is to accurately reproduce realistic 2D channels in the test
area inside the chamber with a limited number of OTA probes
[2], [14]. The prefaded signals synthesis (PFS) technique, as
detailed in [2], is able to create radio propagation environments
for OTA testing and has been verified in practical MIMO
OTA systems [13]. The modeling of radio channel parameters
such as delay, Doppler, channel polarization and transmitter
(Tx) side spatial characteristics is detailed in [2] and can be
easily modeled. Thus, the focus is on reproducing receiver
(Rx) side spatial aspects of the channel, which is critical as
we extend Single Input Single Output (SISO) OTA to MIMO
OTA testing.

In [10], a 3D geometry-based radio channel model based on
[6] was presented, where the elevation dimension is introduced
to extend the standard 2D geometry-based channel to the full
3D model. As explained in [2], the PFS technique works the
same for vertically and horizontally polarized power spectrum.
This rule applies to the 3D case as well and the polarization
is omitted for the sake of simplicity.

B. Model of 3D spherical power spectrum
The spherical power spectrum needs to be modeled as a

function of both elevation angle (θ) and azimuth angle (φ).
The spherical power spectrum is often modeled separately in
azimuth and elevation [9], [11]:

P (θ, φ) = P (θ)P (φ) (1)

where P (θ), P (φ) are the PES and PAS, respectively. The
spherical power spectrum P (θ, φ) needs to satisfy the follow-
ing condition:

∮
P (Ω)dΩ =

π∫
−π

∫ π/2

−π/2
P (θ, φ) cos θdθdφ = 1 (2)

where Ω is the solid angle.
The spherical power spectrum shape has been investigated in

the literature. Several models have been proposed for the PAS
and PES based on measurements. Wrapped Gaussian, uniform,
truncated Laplacian and von Mises distribution have been
proposed for the PAS distribution, while wrapped Gaussian,
truncated Laplacian are often used for the PES distribution [7],
[8], [9]. Note that this work is not restricted to any model, and
spherical power spectrum based on measurements can also be
reconstructed as well. In this paper, the PAS is defined with
an interval of [φ0 − π, φ0 + π] of size 2π centered at azimuth
angel of arrival (AoA) φ0, while the PES is with an interval
of [θ0 − π

2 , θ0 + π
2 ] of size π centered at elevation angle of

arrival (EoA) θ0.
The example distributions are described by the following

expressions:
a) Uniform power distribution:

P (φ) =
1

2π
, φ ∈ [−π, π] (3)

b) Truncated Gaussian power distribution:

P (ε) =
QG√
2πσ

exp

[
− (ε− ε0)2

2σ2

]
, (4)

c) Truncated Laplacian power distribution:

P (ε) =
QL√
2πσ

exp

[
−
√

2|ε− ε0|
σ

]
, (5)

d) Von Mises distribution power distribution :

P (θ) =
exp[a cos(θ − θ0)]

2πI0(a)
, (6)

where P (ε) denotes either the PAS distribution P (φ) or the
PES distribution P (θ). QG and QL are scaling constants
ensuring that (2) is fulfilled. σ is the standard deviation. a
controls the angle spread of the von Mises distribution.

C. Criteria to model 3D channel spatial characteristics

The spatial correlation is a statistical measure of the sim-
ilarity of the received signals and it is selected as a figure
of merit (FoM) to model 3D channel spatial characteristics,
similar to the 2D case [2]. For the 2D channel reconstruction,
the spatial correlation between two antenna elements u and
v is calculated based on the assumption that two antenna
elements exhibit the same omnidirectional radiation pattern
and the phase difference is determined by the wavelength
and relative positions of two antenna elements. This is due
to the fact that the DUT antenna pattern is typically not
known beforehand and if some antenna patterns are otherwise
embedded to the channel model for channel reconstruction,
the channel model itself will assume some DUT antennas.
Similar to [2], isotropic antenna patterns are assumed for the
3D channel reconstruction in this paper.

The spatial correlation can be determined according to [4],
for a single polarization, as:

ρa =

∮
Gu(Ω)G?v(Ω)P (Ω)dΩ√∮

|Gu(Ω)|2P (Ω)dΩ
√∮
|Gv(Ω)|2P (Ω)dΩ

, (7)

where ()? denotes complex conjugate operation, Gu and Gv
are the complex radiation patterns of antennas u and v,
respectively, with a common phase center.

From (2) and the assumption about the isotropic antenna
pattern, we can rewrite equation (7) as:

ρ =

∮
exp(jk(ru − rv) · Ω)P (Ω)dΩ, (8)

where ru and rv are vectors containing the position infor-
mation of antenna u and v, respectively. Ω is an unit vector
denoting space angle Ω. (·) is the dot product operator. k is
the wave number.

D. 3D channel reconstruction

In the MIMO OTA setup, the goal is to obtain OTA
probe power weights so as to minimize the deviation between
the theoretical spatial correlation from a target continuous
spherical power spectrum, and the emulated correlation from
a discrete spherical power spectrum characterized by power
weights of the probes.
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Similar to (8), the emulated spatial correlation can be
calculated based on the discrete spherical power spectrum
characterized by M probes as:

ρ̂ =

M∑
m=1

wm exp(jk(ru − rv) · Φm), (9)

where wm is the power weight for the mth probe. Φm is
an unit position vector of the mth probe. M is the number
of probes. We further assume there are N location pairs
for antenna u and v (sample points) on the test volume for
reconstruction purpose. Therefore, we have ρ̂i, 1 ≤ i ≤ N .
We will discuss two different objective functions as follows:

1) Minimizing sum reconstruction errors (Min-Sum): The
objective is to minimize the summation over the total recon-
struction errors across all the location pairs:

min
w

‖ρ̂(w) − ρ‖22 (10)

s.t. 0 ≤ wm ≤ 1, ∀m ∈ [1,M ]

where w = [w1, ..., wM ]T is a power weighting vector to be
optimized. ρ̂ and ρ are the reconstructed spatial correlation
and target spatial correlation vectors with each element cor-
responding to the spatial correlation between two isotropic
antennas at a certain location pair inside the test volume.
The optimal vector of OTA antenna power weights w can
be obtained by solving the objective function (10), which is a
quadratic programming problem with linear constraints when
the probe positions are fixed. Therefore, we can easily solve
the problem in (10) via a popular convex problem solver CVX
in [12].

2) Minimizing maximal reconstruction error (Min-Max) :
An alternative objective function is:

min
w

max
i
|ρ̂i − ρi| (11)

s.t. 0 ≤ wm ≤ 1, ∀m ∈ [1,M ].

Through this objective function, we minimize the largest
reconstruction error maxi |ρ̂i − ρi| and avoid potential high
peaks in the reconstruction errors. However, this surely leads to
a loss in terms of the total reconstruction errors ‖ρ̂(w) − ρ‖22,
which will be demonstrated via simulation results later. Eq.
(11) can be equivalently transformed into

min
w

t (12)

s.t. |ρ̂i − ρi| ≤ t, ∀i ∈ [1, N ], t ≥ 0

0 ≤ wm ≤ 1, ∀m ∈ [1,M ].

Thus, after the equivalent transformation, (12) is again a
convex problem, which can be handled efficiently via CVX
in [12].

3) Sampling the test volume: In [10] and [11], it is men-
tioned that the sphere shaped test volume in the center of
the 3D OTA setup is sampled by selecting locations u and v
from three orthogonal segments of line inside the sphere, as
shown in Figure 1 (red points on three orthogonal lines). This

Figure 1. An illustration of different ways to sample the test volume. Blue
mark denotes the test volume center. One way is to select locations u and v
from three orthogonal axes (red marks), as shown in [10], [11]. Another way
is to select locations u and v on the surface of test volume which are directly
opposite each other (black marks).

way of selecting sample points within the test volume will
give optimal results on the three axes. However, it might not
present optimal reconstruction results for sample points within
whole the test volume and reconstruction accuracy might be
critically bad at certain locations. In a practical MIMO OTA
measurement, antennas on the DUT may be arbitrarily placed
inside the test volume.

In this paper, the oblate ellipsoid shaped test volume is
proposed instead of the sphere, as the number of OTA probes
in the azimuth plane is likely different from that in the
elevation plane. The test volume is sampled by selecting
locations on the surface of the ellipsoid. Positions for u and v
(ru and rv) are on the surface of the test volume and directly
opposite to each other w.r.t the test volume center. Sample
points are obtained by sweeping the location pairs over the
whole surface of the ellipsoid, as illustrated in Figure 1.

III. SIMULATION RESULTS

A. Comparison of reconstruction accuracy for different algo-
rithms

The 3D reconstruction technique is implemented in the
commercial channel emulator EB Propsim F8 where the
PAS and PES are defined for the Laplacian distribution. In
this section, the proposed algorithms are compared with the
emulated results from the EB channel emulator.

Three test scenarios are considered, as detailed in Table I.
Three different probe configurations and target spherical power
spectrum are assessed. For each target spherical power spec-
trum, AoA and azimuth spread of arrival (ASA) are defined for
the Laplacian shaped PAS; while EoA and elevation spread of
arrival (ESA) are specified for the Laplacian shaped PES. The
DUT size should be smaller than the test volume to ensure that
the target propagation environment is accurately reproduced
around the DUT. The test volume of case A is illustrated in
Figure 1. Test volume in case C is larger than that in case A
due to the fact that more probes are used in case C.

Three probe setups are shown in Figure 2(a), Figure 2(b)
and Figure 2(c), respectively. Probe angular location details
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Table I
TEST CASES CONSIDERED FOR ALGORITHM COMPARISON

Test
Case

Probe
Setup

Target Spherical Power Spectrum
PAS shape PES shape Test volume

A A AoA = 0o

ASA = 35o
EoA = 0o

ESA = 10o
Major axis: 0.7λ
Minor axis: 0.5λ

B B AoA = 00

ASA = 35o
EoA = 15o

ESA = 10o
Major axis: 1.8λ
Minor axis: 0.9λ

C C AoA = 0o

ASA = 35o
EoA = 0o

ESA = 10o
Major axis: 2λ
Minor axis: 0.6λ

(a) Probe setup A (b) Probe setup B (c) Probe setup C

Figure 2. Three probe configurations used for algorithm comparison. Red
mark denotes the center of 3D sphere and blue marks denote the position of
probes on the sphere, as detailed in Table II.

are shown in Table II. The probes are placed on a sphere. and
the elevation angle θ and the azimuth angle φ are specified
for each probe. The probes are organized on several elevation
rings. θi denotes the elevation angle for all the probes on ith
elevation ring. φij is the azimuth angle of the jth probe on
the ith elevation ring.

The target spatial correlation |ρ| for the test case A and
reconstruction results with different algorithms are shown in
Figure 3. The spatial correlation between the antennas on the
surface of the test volume varies with locations of antennas.
The reconstruction accuracy depends on the probe setup, the
target channel and the number of probes. Statistics of the
reconstruction results for all cases with different algorithms are
summarized in Table III. Generally, the Min-Sum algorithm
presents the best performance for all scenarios in terms of
rms error, while the Min-Max algorithm offers the smallest
maximal error for all cases, as explained and consistent with
the algorithm description in Section II-D. The Min-Max and
Min-Sum algorithms give comparable reconstruction accura-
cies for the test case C.

The algorithm implemented in the EB channel emulator

Table II
PROBE ANGULAR LOCATION DETAILS

Case Detail
Total Setup Angular location

A 16
3
elevation
rings

θ1 = −15o φ1j = −180o + j · 90o, j ∈ [1, ..., 4]

θ2 = 0o φ2j = −180o + j · 45o, j ∈ [1, ..., 8]

θ3 = 15o φ3j = −180o + j · 90o, j ∈ [1, ..., 4]

B 32
3
elevation
rings

θ1 = 0o φ1j = −180o + j · 45o, j ∈ [1, ..., 8]

θ2 = 15o φ2j = −180o + j · 22.5o, j ∈ [1, ..., 16]

θ3 = 30o φ3j = −180o + j · 45o, j ∈ [1, ..., 8]

C 48
4
elevation
rings

θ1 = −30o φ1j = −180o + j · 45o, j ∈ [1, ..., 8]

θ2 = −15o φ2j = −180o + j · 22.5o, j ∈ [1, ..., 16]

θ3 = 15o φ3j = −180o + j · 22.5o, j ∈ [1, ..., 16]

θ4 = 30o φ4j = −180o + j · 45o, j ∈ [1, ..., 8]

Figure 3. Target spatial correlation |ρ| between antenna u and v on the
surface of the test volume for case A and associated reconstruction results
|ρ− ρ̂| with different algorithms.

Table III
STATISTICS OF THE RECONSTRUCTION RESULTS |ρ− ρ̂| WITH DIFFERENT

ALGORITHMS FOR ALL SCENARIOS

Case EB Min-Sum Min-Max
rms max rms max rms max

A 0.0458 0.1030 0.0402 0.1315 0.0497 0.0672
B 0.0722 0.1933 0.0470 0.1823 0.0580 0.0924
C 0.1581 0.3558 0.1295 0.2665 0.1295 0.2665

generally offers good results for the spatial correlation over
three orthogonal axes probably due to the fact that the sample
points for optimization are on the three axes [11], as shown in
Figure 4. However, as explained before, this way of sampling
the test volume might not give globally optimal reconstruction
results for the whole test volume and the reconstruction
accuracy might be critical at certain locations. As shown in
Table III, the EB algorithm results slightly worse rms error in
all the three test cases compared to the Min-Sum algorithm
and clearly worse maximum error compared to the Min-Max
algorithm.

B. Channel reconstruction for different spherical power spec-
tra

The proposed algorithm is a general reconstruction tech-
nique for any spherical power spectrum. The spherical power
spectrum discussed in Section II-B and the measurement based
practical shape can be emulated as well.

A target channel detailed in Table IV is used to demonstrate
the idea. The target spatial correlation |ρ| between antenna
u and v on the surface of the test volume for the case D
and the associated reconstruction results |ρ − ρ̂| is shown in
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Figure 4. Target spatial correlation |ρ| between antenna u and v on three
orthogonal axes and emulated spatial correlation |ρ̂| with different algorithms
for case C.

Table IV
TEST CASES CONSIDERED FOR ALGORITHM DEMONSTRATION

Test
Case

Probe
Setup

Target Spherical Power Spectrum
PAS shape PES shape Test volume

D A Uniform
PAS

EoA = 0o

ESA = 10o
Major axis: 0.7λ
Minor axis: 0.5λ

Figure 5. The target spatial correlation |ρ| is constant over
azimuth angles due to the uniform PAS model assumption.
reconstruction error |ρ− ρ̂| is below 0.03 for the test case D.
Figure 6 shows the target spatial correlation |ρ| and emulated
spatial correlation |ρ̂| on three orthogonal axes. Therefore, the
spatial correlation values on x and y axes coincide due to
the uniform PAS model assumption. In the probe setup A, 16
probes offers good reconstruction accuracy for the test case
D.

IV. CONCLUSION

This paper presents a channel reconstruction technique for
3D geometry-based channel models in a multi-probe based

Figure 5. Target spatial correlation |ρ| between antenna u and v on the
surface of the test volume for case D and associated reconstruction results
|ρ− ρ̂| with Min-Sum algorithm.
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Figure 6. Target spatial correlation |ρ| between antenna u and v on three
orthogonal axes and emulated spatial correlation |ρ̂| for case D.

setup. The proposed methods, which provides a general re-
construction framework for any spherical power spectrum,
offers globally optimal reconstruction accuracy and allows
for a low computational complexity. In future work, we will
further investigate the impact of number of probes, probe
configurations, and channel models on the test volume size.
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