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Abstract—In a multicell multiuser MIMO downlink employing ~ features: multiuser diversity and scheduling fairnesscokd-
random beamforming as the transmission scheme, thg hetereg ing to the CDF-based scheduling polidy [12], each user can
neous large scale channel effects of intercell and intradehterfer- be equivalently viewed as competing with other users with

ence complicate analysis of distributed scheduling basegstems. ; o
In this paper, we extend the analysis in[[1] and([2] to study tle the same CDF, and thus each user’s rate is independent of

aforementioned challenging scenario. The cumulative disbution ~ the statistics of other users. This interesting properghées

function (CDF)-based scheduling policy utilized in[[1] and[2] is a “micro” understanding of each user's rate performance
leveraged to maintain fairness among users and simultanesly compared to the conventional “macro” understanding of the
obtain multiuser diversity gain. The closed form expressia of sum rate performance. Due to this property, the notion of

the individual sum rate for each user is derived under the CDF . dividual ¢ d individual i |
based scheduling policy. More importantly, with this distributed  'NdIVidual Sum rat€ and individual scaling laws are projbse

scheduling policy, we conduct asymptotic (in users) analisto N [2] to further understand both the exact and the asymptoti
determine the limiting distribution of the signal-to-interference- performance of random beamforming in a heterogeneous setup
plus-noise ratio, and establish the individual scaling law for each (and with different selective feedback schemes).
user. In a multicell network, the heterogeneous channel effects
come naturally from the different experienced intercel in
terference across users, even for a SISO setup. This issue

With the emerging heterogeneous cellular structure [3] apgl investigated in [[1] for a generic single antenna based
the ever shrinking cell size, achieving high capacity witvl heterogeneous multicell OFDMA network, with both exact
design complexity in a multicell multiuser MIMO downlink rate expression and asymptotic rate approximation derived
has drawn considerable interest in recent years, e.g,[§ee[i)] the rate of convergence and the individual scalingslaw
and the references therein. Distributed scheduling sliere 5re established for the SISO multicell setup. Bdth [1] and
often favored due to operational scalability and affordabL13] employ the CDF-based scheduling to maintain the two
complexity incurred by the limited capacity of the backhaukforementioned scheduling features. In][14], the rateirsgal
Under the employed distributed scheduling policy, analgsi  for 5 power controlled network is examined with additional
the multicell network builds upon the extensive studies anfistance-based random variables. Since the time vargtion
insights drawn from the single cell network. for the large scale and small scale channel effects areyvastl

For the single cell network without intercell interferencegifferent [15], both[[1] and[13] concentrate on the randess
capacity boosting scheme relies on the independent varyigthe small scale channel effects. [n[16], a normalizednfor
channels across users, i.e., the well known multiuser sityer of transformation is applied in a multicell network to achie
gain [3]. To further harness this gain with multiple antesinafajrness. The main difference of using CDF-based scheglulin
the notion of opportunistic beamforming is proposed [6]17] is the inherent nonlinear functional transformatian t
which is later extended to the notion of random beamformingrictly guarantee user fairness.
[7] to have same sum capacity growth as nonlinear precodingn this work, we extend the analysis il [1] and [2] to a
schemes[[8], [[9] with reduced feedback requirement [1QJeneric multicell multiuser MIMO setup. The random beam-
Multiuser diversity depends heavily on the scheduling@®oli forming is utilized as the multi-antenna transmission sche
and it is important to guarantee scheduling fairness whilg reduce feedback need (for part of the literature survey
achieving this gain in consideration of the heterogeneogsyarding random beamforming, please refer [tb [2]). With
large scale channel effects. This issue is tackled in [2 (tRpatial multiplexing in each cell, both intercell intedece
closed form sum rate in a homogeneous setup is derivgy intracell interference exist and users would expeeienc
in [11]), by leveraging the cumulative distribution furani heterogeneous interference. Under the CDF-based schgduli
(CDF)-based scheduling policy [12] to satisfy the two desir policy, we firstly derive the individual sum rate for each use

_ _ _ from the exact analysis perspective. We further prove the ty

. This research was supported by Ericsson endowed chair ftimel<Center of convergence and the rate of convergence to the limiting
or Wireless Communications, UC Discovery grant com09R5E. and NSF
grant CCF-1115645. distribution to establish the individual scaling laws.
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Il. SYSTEM MODEL scale channel gai@ which may consist of path loss, antenna

Consider the downlink of a generic multicell multiuse@@n, and shadowing, varies usually on the order of seconds.
MIMO network. We assume a narrowband model and thg'erefore,G is assumed to be known in advance by the
established analysis in this work can be extended to the-widySteém, through infrequent feedback; and the elements of
band model such as OFDMA using the techniques develop@§ modeled as complex Gaussian W'(t)h zero mean and unit
in [2). Full spectrum reuse is assumed, and the process bof agifiance. Since for a given usgr the 7, s are identically
association is assumed to be performed in advance. With&ifitributed and correlated, the beam indexcan be dropped
loss of generality, one base statid®, equipped with M in the expression of the CDF, which is derived in the follogvin
antennas from the base station Seand its associated singlelemma.
antenna user&y = {1,...,k,..., Ko} with |o] = K, are Lemma 1. The CDF on,(CO) can be expressed as
considered. The random beamforming strate?y at baserstatio

By employsM random orthonormal vectore)) € CMx1 OB (L)
for m = 1,...,M, where the¢” are drawn from an Foo(e) =1 b=1\ p" >0
isotropic distribution independently ever§ (denoting the ~ 2.7\ — J 0 M -
channel coherence interval for the block fading model) alehn (@ + DML, (55 + ﬁ)
uses|[7]. Denotingsﬁg) (t) as themth transmission symbol at 4)
time ¢, the transmitted vectas(®)(¢) from base statiorB, at Proof: The main technique relies on the use of the
time ¢, is given as: moment-generating function (MGF) [17] Denotéco) =

< i e, and ¢ 2 Y B0l +

0)(4) = (0) =
st(t) = mzlqb () ( ), t=1,...,T. 1) Jk (b) Zz ) |h(b)¢(b)|2 Then the CDF OfZ (0) can be
derlved using the following procedure:
The received signaj/,(f) of userk (the time variablet is

dropped for notational convenience) is represented by F_o(z) = 1920) <
7" © ="
. /G(O h(O 0) 0) + G(b h () b) 00
Z gmz o = [ B (0 <0l + 1) f0 )y
0 k
+v(0) k€ Ko, (2) o P _z{%())
o . . Li—e o’ [ e fody,  (5)

where the superscript indicates the base station ittbeing 0 ¢

the cell of interest andb # 0) being the interfering cells/y

denotes the number of interfering cells for uggrand véo) where (a) follows from the fact that 19(0) < x(C(O) +1)
denotes the additive white noise distributed Wit'(0, o). corresponds to the CDF of the exponent|al distribution at

(0 (b) i
siP and s® are the transmitted symbols by the servrn% Cko) +1). From [B), we note that the expression inside the

cell and the interfering celB, with E [|s®[*] = p, and ol ds to the MGF off), denoted asy

E “S(b)q _—— h©® ¢ CixM andhb) e C*M_ \which are integral corresponds to the enoted a (0)( ),
assumed to be méependent across users denote the srall sta- ﬁf,) Due to the additive effect reflected (réo) its MGF
channel gains between the servrng cell and ésand between can be obtained below:

the interfering cellB, and usek. G, (0) andG(b) represent the
large scale channel gains between the servrng cell andkyser 1 Ik 1
and between the interfering celf, and userk respectively. U 0 (7)

=g e ©
Based on the aforementioned assumption, denafiffg, as g (1= p )M 35 (1= p )M

the SINR of userk for beamm, it can be expressed as: Combing [5) and[{6) yields" " expressed in{4). -
70 _ (O)P)|h(0)¢§2)|2 The SINR will be fed bac@ and used for scheduling, which
k,m — M
is pursued next.
; G(O)p |h(0)¢)(0)|2 + Z G(b)pb Z:l |h;(cb)¢z(‘b)|2 + MU';% p
(0)|h(0)¢(o)|2 I1l. CDF-BASED SCHEDULING PoLIcy
= 3) AND INDIVIDUAL SUM RATE
PO o |2 (® (6) 4 (b) 2
Z;,L L Z Pk ZZ by +1 After receiving theSINR(0 from user k& for beamm,
- the scheduler is ready to perform scheduling. In order to

wherep (0) = G]\'}O_’z’“, p;‘)) = i’;g”” guarantee scheduling fairness and obtain multiuser diyers

Now we examine the statistics m‘0> Note that the time gain, we employ the CDF-based scheduling policy! [12] as

variations for the large scale and smaII scale channeltsffec , _ _

v diff ml. Th fth I lachel Full feedback wherein each user feeds back SR for M beams is
ar? vastly difrerent { ] € Va”at.'c_m of the small scal@ehe assumed. The established results in this paper can be egteanddifferent
gainh occurs on the order of milliseconds; whereas the larg®@ms of selective feedback using the techniques develap¢a].



0 _ 1 d(M—l)(é+1)—j 1 ‘
kg =
R e TSR rrameruseaes |
Pk
o Y LG i
ki T M+ 1) — ) daMEFD = _ J © ©
(M( )=7)) (x4 1)M 1)(@+1)Hq;b(x+;€_q))M(£+1) P

the opportunistic scheduling poIB:yAccording to this policy, = Now employing the steps described below, the closed form
the scheduler will utilizeF ., and performs the following expression for the individual sum raf&l”’ is derived.

functional transformation: Sep 1 (PDF Decomposition): This step, utilized similarly in
- Zil i Ko
Z](Cogn — F0 (Z](Cogn) ' ) 11] and [2], is 'Fhe essential s_tep to decompd(iEZ;m (z))
’ k ’ into the following amenable input for Step 2.
The transformed random variab@ is uniformly dis- Ko—1

tributed ranging from0 to 1, and can be regarded as the A(F 0 (2))50 = K, Z (Ko— 1>( 1)
virtual rece|vedSINR of userk for beamm. The transformed 2k ¢ (+1
random varlablesZ 0 'S are ii.d. across users for a given

o+1
—&r O
beam, which enables the maximization at the scheduler side e P?J” (%)M
to perform scheduling in a fair manner. Denotihf} as the xd|1- @)
random variable representing the selected user for beam (x +1)M-1 HJk (x + (b)) :
then:
k! = arg m(}cx Z}gOBn. (8) (12)

Sep 2 (Partial Fraction Expansion [[18]): This step manip-

After userk;, |s selected per(8), the scheduler utilizes thelates part of[(T2) for further integration.

correspondlngzk* for rate matching of the selected user.

Let X\ be theSINR of the selected user for beam, and 1 D
now consider the sum rate for a given base stafigrdefined 7 PO\
(M—=1)(£+1) TT*
as follows: (z+1) [LE (z+7 pal
M (M—1)(£+1) (0) Jy M(£+1) (b)
RO =E log (1 + X,(,?)) 9) - lb;w lb;w 13
)3 Yo Gitn L o @
From the aforementioned analysis, the sum rate can be for- <:C + “’))
mulated as:
(@ 1 where the expressions f@lr andzp are given on top of
RO '~ MEy,. {/ log (1 + F (0) (z )> de”} this page.
0 i Combining the outcomes of the two aforemekn'gioned steps,
. . ~(0) -
® M we can derive the closed form expression fef’ in the
Z/ log(1 +)d(F o (t ), (10)  following procedure:
where (a) follows from the sufficient small probability thatRm) MKy Kil Ko—1)\(-1)*
multiple beams are assigned to the same user;(b) follow§ ~ In2 4 14 041
from the change of variable = F 7 (t) and the fairness - o +1
property of the CDF-based scheduT’ng policy. oo e "k (%)M
The CDF-based scheduling enables a “micro” level under* / In(1+a)d |1~ P, EONY
standing of each user’s rate performance, from both exatt an (z +1) [LE (@ + <b))
asymptotic perspective. The individual sum rate for usés _ M
. . A . Ko—1 ¢ Ik (0)
defined in [2] as the the individual user rate multiplied bg th _ Mo 3 <K0 - 1) (=1 I <pL>
number of users in celBy, namely: n2 = £ 155 PS’)
£(0) A ©) oo K Jp M(e+1) (b) 11 p(O)
R, £ KR, = M/O log(1 + x)d(Fz;m ()™, (12) [Z Z Vi T ( ) 7ﬁ7‘j>
iz .
2For detailed motivation of the CDF-based scheduling as asllthe (M- 1)““) 0 0+ 1
rationale behind the notion of individual sum rate and iitial scaling laws, + Z 1/1( ) (0) 1,741 (14)
please refer ta_J1] and [2].




Wherell( ,B57) fo de andZy(a, B3,7) £ Due to the complicated form df 7 in (4), we need to find

+‘; _dz. The calculation fofZ; (o, 3,~) andZy(a, 8,~) UpPper andBIower bound 1‘0111;C Ko by constructive methods,

has geen discussed inl [1], and their closed form expressuﬂ@éﬂe'ywk Ko S Whiko < Wik, Dy deriving upper and lower
can be found in[[1, (42)] and 1, (43)]. bound for I’ 70 Define b7n = arg mln p,(c ), and b =

Up to now, we have performed exact analysis and derived h tabl bound and |
the closed form results for the individual sum rate for aﬁrgog},ax pk en, one suitable upper ound and lower
arbitrary selected user in a given base station. The deriMeolund for F' 7005 denoted byFU(O) and F;‘?O), are presented
results extend the exact analysis(in [1] (multicell SISQUBEt in the fo||ow|ng lemma. *
and [2] (single cell random beamforming), and can serve fs

emma 3.

a theoretical reference for evaluating the system perfooma
under the CDF-based scheduling policy. In the next sectven, o7

e Pk
will perform asymptotic analysis to evaluate the rate sggli F;J;» () =1- 2 o ©20, (A7)
laws for R,(CO), which helps in understanding the asymptotic <1 + (0) I>
behavior of an individual user.
o
IV. INDIVIDUAL SCALING LAWS °
F8 (z)=1- c x>0, (18)

(0) L

V-Alshows the type of convergence 9 In Sectior 1VB,
the convergence rate to the limiting distribution is stddie
establish the individual rate scaling laws.

This section is devoted to the asymptotic analysis. Section * <1 N pUF) )(JHI)MI

Proof: (Sketch) The upper and lower bound can be
constructed by examining the large scale channel effects of
intercell interference for uset. Herein, we only provide an
intuitive explanatlonFU & can be obtained by assuming that
the intercell and mtracell interference has the same lacgée
hannel effectsp,, OF")  The FL'<30> can be found by using a

A. Type of Convergence

Firstly, we need to examine the tail behavior of the stafssti
of Zko), which has the form presented ial (4). Tools from
extreme value theory [19] are to be utilized. The foIIowm&

lemma describes the tail behavior EE«J). similar line of argument. u
Employing Lemmal3, the upper and lower bound gk,

Lemma 2. 'y« belongs to the domain of attraction of the tan be derived and are provided in the following corollary.
Gumbel dlstrl%utlon ie. F, © € D(Gs). Corollary 1.

Proof: (Sketch) In order to prove tha‘t’z;co) € D(G3), 0. = o log Ko — p@((Jo + 1)M — l)log( 07 1 Ko)

1-F (0) (1)

it must be shown thatlim d% [ﬁ] = 0 [19]. The + O(log log log Ko). (19)

Tr—r0o0

F (0)( z)=1)f! o) () ) (bminy

equivalent condition is:lim ( T (2))2 —1.Since Wik, = A\ log Ko — p” (Ju + )M — 1) log( log Ko)

T—00 z{!
similar methodologies in proving [1, Corollary 1] can be + O(log log log Ko). (20)
employed, we omit the detailed proof. u Proof: The w}j%( can be obtained via solving —

F'B (wyB. ) = . Substituting the expression -8 and

B. Rate of Convergence 7" (k) = g P 2,

takmg thelog operator of both sides yields:
Knowing the type of convergence can lead to asymptotic

(bmax)
approximation for the individual sum rate, which is |nvest|wg_§<0 P uB B
gated in [1]. Herein, dealing with higher order moments ofp(O) (U + 1M —1)log {1+ p(O) ~ ) Wk, | = log Ko.

the extreme order statistics and the rate of convergence i k (21)
of interest. To establish the convergence rate to the ligiti Si UB Witk
L S , L incew;;, — oo as Ky — oo, —»2 dominates[(21) and
distribution for an individual user, the following defirti of k:Ko o 0 e )
the so called growth function [19] is needed: so we haveu}5. ~ p; 1og K. Then the sequence af 5,
1 - Fyo () cgn be further ertten asy, = p,(CO) log Ko + di/f., where
9,0 () & ——E——. (15) dpf, € o(log Kp)- _ o
2 fr0 () The expression fori® can be derived by substituting the

formulation of into , which solvesi{8. as
One important step in proving the rate of convergence is to Whiko @) Ko

solve _for a swtable coefficient sequencg i, by solving the B, = _p,go)(((],c +1)M —1)log ( (0% )log Ko)
following equation: ) , (™)

+p, " d
1 —pio)((Jk"!‘l)M_l)lOg <1_|_pkp—kK0> . (22)

_ _ (bmax
1 FZI(CO) (wk;Ko) = Xy (16) pl(cO)pk ) log Ko



uB
Therefore, wy %

exhibits a scaling performance as exthis generalization lies in the existence of both interesit

pressed in[(119). The corresponding analysis zﬁ,‘gFKo can intracell interference, as well as their accompanyingrogfe-

be conducted following the same line of arguments. =

neous large scale channel effects. The CDF-based schgdulin

Using the results from Corollafyl 1 and observing the fattelps us to deal with this challenging scenario, and enables

thatlog p,(cb?:ax) orlog pgcbr’gin)

large, we have the following expression fof. k,:

WKy = PI(QO) log K¢ — PI(QO)

+ O(logloglog Ky).

((Jx + 1)M — 1) loglog Ky
(23)

are inconsequential whelii, goes “Micro” understanding of the rate performance for any sele.c
user. The closed form individual sum rate is derived empigyi
the MGF and the PDF decomposition. With the constructed
bounding technique, we also establish the individual sgali
laws to show that CDF-based scheduling exhibits the same

scaling performance as opportunistic scheduling (buteselsi

Once the expression afy.x, iS obtained, we can have the
following inequality for the selected usel®NR for beamm
(denoted be,<,2> in Section1l) by employing[[7, Corollary
A.1], as follows:

]P’{p,(co) log Ko — p,(co)(Jk + 1)M loglog K¢ + O(log log log Ko)

<X < P;(CO) log Ko — p;(CO)((Jk + 1)M — 2)loglog Kq

(1]

(2]

+ O(logloglog Ko)} >1— 0 ( (24)

1
log Ko) ' [3]
Now we can state the following theorem for the rate scaling
performance of". [41
Corollary 2. X
lim & =1 o
Ko—oo M loglog K
Proof: (Sketch)

(25)
[6]
R < MP{X®) < wperc, + o}

x log (1 + Wk, + p}(€0)

loglog Ko}
log log KO)

) loglog KO} log(1 + pECO)KO)

(7]

[8]
+ MP {Xf,?) > Wik + 0

9
< M log (1 + Wik, + p,(co) loglogKo) +0(1). (26) ol

A lower bound forR\”’ can be obtained similarly. Thus thef0l
individual scaling law for]?,(co) exhibits aM loglog K growth
in the large user regime.

Remark: Corollary [2 informs us that after we bring in(t4]
the notion of individual scaling law corresponding to they)
individual sum rate for an arbitrary selected user, it eithib
a Mloglog Ky growth. This property is desirable from the[13]
perspective of opportunistic scheduling (e.g., greedydah
ing). In addition to this property, with the nonlinear fuioctal
transformation, the CDF-based scheduling policy can quara, ,
tee scheduling fairness in terms of long term user fairniess (
each user is equiprobable to be scheduled irrespectivesof th
intercell and intracell interference). [15]

V. CONCLUSION [16]

The analytical impact of CDF-based scheduling policy in
two special scenarios (multicell multiuser SISO and sing
cell multiuser MIMO) has been investigated in [1] and [2]j18]
This work extends and generalizes our previous works by
addressing the rate performance in a generic multicell mlrlig]
tiuser MIMO downlink, with random beamforming as the
signal transmission scheme. The most challenging part of

scheduling fairness additionally).
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