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relay amplifies and forwards the signals received from both 
terminals. Due to the signaling rule, hence, only the cascaded 
channels are necessary for self-interference removal and 
coherent detection at each terminal. Except that the advantage 
of low computational burden at the relay, estimate cascaded 
channels at each terminal can mitigate the quantization error 
and also can avoid individual channels further distortion from 
noise [8].  

Traditional linear channel estimation methods, e.g, LS [9], 
have been proposed for MIMO-OFDM AF-TWRN . However, 
these methods cannot take the advantage of inherent channel 
sparsity and hence cause performance loss. In this paper, we 
propose sparse channel approach to exploit such channel 
sparsity. Sparse channel estimation problem in MIMO-OFDM 
AF-TWRN is formulated as CS problem. At each terminal, 
equivalent training signal is constructed to probe equivalent 
channel vector using least absolute shrinkage and selection 
operator (LASSO) [10]. The performance of propose method 
will be evaluated by computer simulations. 

The remainder of this paper is organized as follows. A 
MIMO-OFDM AF-TWRN system model is described and 
problem formulation is given in Section II. In section III, the 
sparse channel estimation method is proposed and lower 
bound of estimation performance is derived. Computer 
simulation results are given in Section IV in order to evaluate 
and compare performances of LS-based channel estimation 
method. Finally, we conclude the paper in Section V. 

II. SYSTEM MODEL AND PROBLEM FORMUALTION 
As shown in Fig. 1(c), we consider a MIMO-OFDM AF-

TWRN in which two-time slots information exchange between 
terminal  and terminal  with the help of relay . Both the 
two terminals and the relay have   and  antennas ( ≥

), respectively. Assume that -length channel vectors 
between the -th antenna of terminals , = 1,2 and -th 
antenna of relay  are denoted by = [ℎ (0), ℎ (1), … , ℎ ( − 1)]   and =[ (0), (1), … , ( − 1)] , respectively. Each 
channel vector is supported only by   nonzero taps and ≪ . Suppose that each the nonzero tap is modeled as a 
complex Gaussian random variable with zero mean and 
variance σ ,  , and σ ,  0,1,...,l L= . In addition,  and 

  are assumed invariant in the two time slots information 
exchange. At time , suppose that OFDM signal vectors are 
transmitted from -th antenna of , = 1,2 , are ̅ = [ ̅ (0), ̅ (1), … , ̅ ( − 1)] and = [ ̅ (0), ̅ (1), …, ( − 1)] , respectively, where  is the number of 
subcarriers and = 1,2, . . , . At the same time, two 
transmitted power is assumed E[ ̅ ̅ ] =  and E[ ] = , respectively. 

                   
(a) MAC phase.                        (b)BC phase. 

Fig. 2. Information exchanges under TWNR. 

 
Fig. 3. Example of two individual channels and their cascaded ones. 

A. MAC phase 
In the multi-access (MAC) phase as shown in Fig. 2(a), 

inverse discrete Fourier transform (IDFT) is computed for 
frequency-domain signal vectors ̅ and . The resultant 
vectors, = ̅  and = , are then cyclic prefix 
(CP) padded with length ≥ ( − 1) to avoid inter-block 
interference (IBI). Here,  is a ×  discrete Fourier 
transform (DFT) matrix where entries = 1⁄ ⁄ , , = 0,1, … , . After removed the CP, the received signal 
vector at the -th antenna of  for = 1,2, … ,  is written as = ∑ + ∑ + ,     (1) 

for = 1,2, . . . , , where  and  are circultant 
matrices with the first columns of [ , ×( )] , and [ , ×( )] , respectively. The additive noise vector 

satisfies CN( × , σ ). If we collect all received signal 
vectors  = 1,2, … ,  at  to form a -length vector = [ , … , , … , ] , then the received model in the MAC 
phase at relay is written as = + + ,                           (2) 

where 

=             …                   …       ⋮                ⋮        …              ⋮         …      ∈ ∁ × ,      (3) 

=             …                   …       ⋮           ⋮           …             ⋮         …      ∈ ∁ × ,       (4) 

= [ , … , , … , ] ∈ ∁ × ,                     (5) = [ , … , , … , ] ∈ ∁ × ,                    (6) = [ , … , , … , ] ∈ ∁ × ,
                    

(7) 
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According to Eq. (2), the received signal vector  is 
amplified by a positive coefficients  which is given by = ∑ , , ,    

                   

(8) 

where  is relay’s amplify power which is given by E[ ̅ ̅ ] = . 

B. BC phase 
Because of system symmetrical in TWRN, without loss of 

generality, we consider the broadcasting (BC) phase at , as 
shown in Fig.2(b). Let  denote the received signal vectors 
at the -th antenna at time (t + T). If we collect  received 
vectors  as = [ , , … , ] , then received signal 
model can be written as = + + + ,                 (9) 

where 

=             …                   …       ⋮                ⋮        …              ⋮         …      ∈ ∁ × ,      (10) 

= [ , , … , ] ∈ ∁ ×                         (11) 

where  is a noise vector at -th antenna of , satisfying ∈ CN( × , ) . According to matrix theory [11], 
circulant matrices  and , = 1, 2, … , , =1, 2, … , , can be decomposed as = ,                           (12) = ,                           (13) 

respectively, where (∙) denotes matrix Hermitian transition 
operation and above diagonal matrices are given by = diag{ (0), … , ( ), … , ( − 1)},  (14) = diag{ (0), … , ( ), … , ( − 1)},  (15) 

respectively. Based on the above analysis, it is easy found that 
the -th diagonal entries ( ) in Eq. (14) and ( ) in 
Eq. (15) are obtained by ( ) = ∑ ℎ ( ) ⁄ ,               (16) ( ) = ∑ ( ) ⁄ ,              (17) 

respectively. Therefore, the product of   
and with respect to , = 1,2, … , and = 1,2, … ,  can also be written as = ,                 (18) = ,                 (19) 
respectively. Hence, both  and  are 
circulant matrices where their first columns are given by [ ( ∗ )   ×( )]  and [ ( ∗ )  

 ×( )]  , respectively, where ‘*’ denotes convolution 
operator between two channel vectors. Based on this 
observation, when the -th row partitions of  multiplies 
with the -th column partitions of , , = 1,2, … , , we 
can obtain an equivalent (2L-1)-length cascaded  channel  
vector ≜ [ (0), … , ( ), … , (2 − 2)]  
which is given by ≜ ∑ ∗  .                     (20) 

Because of the symmetry of two MIMO channel matrices, we 
can easy find their symmetry relationship, that is, =

. Hence, the product β  is equivalent to provide ( + ) 2⁄   independent (2 − 1) -length composite 
channel vectors  with , = 1, 2, … , . Note that ( + ) 2⁄ <  if > 1.  By virtual of the duplication 
matrix property [12] on sparse channel estimation, it can 
reduce some amount of complexity which relates to the 
number of antenna , especially in the case of a relatively 
large scale communication system. That is to say, the 
computational complexity is reduce to O(( + ) 2⁄ ) rather 
than O( ) , where O(∙)  denotes the calculation metric of 
complexity.  Due to independent between the two MIMO 
channel matrices  and , hence,  is equivalent to 
generate  independent  (2L-1)-length cascaded channel 
vectors ≜ [ (0), …,  ( ), … , (2 −2)] with respect to , = 1, 2, … , , where ≜ ∑ ∗ .                        (21) 

If we define = ⊗ ∈ ∁ × , where ‘ ⊗ ’ denotes 
Kronecker product and  denotes an ×  identity matrix, 
the received signal  in Eq. (9) is transformed to frequency-
domain using DFT matrix , then, we have  = ̅ + + ,                (22) 

where = +  denotes composite noise vector at the 
. According to Eq. (18) and (19),  and  

can be given in Eq. (23) and (24), respectively. If we define 
both = diag( ̅ )  and = diag( )  as ×   diagonal 
matrices, and collect all cascaded channel vectors as ≜[ , … , , , … , , … , ] and ≜ [ , … , , …, , … , ] , then two equivalent training signal matrices 
can be written in Eq. (25) and (26) respectively, where  
is partial DFT matrix by extracting the first (2 1)L- -columns 
of . 

Then the received signal model in Eq. (22) can be 
reformulated as = + + = + ,                       (1) 
where = [ , ]  denotes an equivalent training matrix combined 
two training signal matrices  of × (2 − 1) ( + 1) 2⁄   
sizes and  of × (2 − 1) sizes; and = [ , ]  denotes 
overall channel vector including   and . At the receive side of , 
channel estimator   is used to remove self-data interference and 
channel estimator  is applied to extract other users’ data information 



at .  
According to the formulated system model in Eq. (27), it is easy 

found that main object of this paper is to estimate the overall channel 
vector  using the composite training signal matrix . With respect to 
Eq. (27), LS based channel estimator  can be computed by = ( ) = + ( ) .             (28) 

Since the noise variance of  is given by E{ } = ∑ , + 1 ,                    (29) 

then the average MSE of LS channel estimator  can be 
given by MSE{ } = ∑ , + 1 Trace{( ) }.

 

(2) 

It is well known that the training matrix  has (3 + 1)(2 − 1) 2⁄  columns that are normalized in a 
way such that ‖ ‖ = (3 + 1)(2 − 1) 2⁄ , where  ‖∙‖  
denotes the Frobenius norm. Optimal training design for LS-
based channel estimation method is the one that subjects to = ( )( )⁄ . Hence, we can obtain Trace( ) = ‖ ‖ = (3 + 1)(2 − 1) 2⁄ ,      (3) 

where Trace( ) is defined to be the sum of the elements on 
the main diagonal of matrix . According to arithmetic–
harmonic means inequality, lower bound for the LS channel 
estimation error can be derived as MSE{ }                                                                                      ≥ ∑ , + 1 ( (3 + 1)(2 − 1) 2⁄ )Trace{ }  

= ∑ , + 1 ( (3 + 1)(2 − 1) 2⁄ )(3 + 1)(2 − 1) 2⁄  

= ∑ , + 1 (3 + 1)(2 − 1) 2⁄ .        (32) 

From the derivation in Eq. (32), the lower bound of LS can be 
written as MSE{ }~ ( , ∑ , , , , , ). Generally, 
linear channel estimation methods, e.g., LS, emphasize on 
optimal training designing to improve estimation performance 
while neglect the inherent sparsity of channel. 

III. SPARSE CHANNEL ESTIMATION 
According to the CS [13], [14], accurate sparse channel 

estimation requires that training signal matrix D  be satisfied 
restricted isometry property (RIP) [15] in high probability. 
Hence, according to the system model in Eq. (27), optimal 
sparse channel estimator   can be given by = argmin ‖ − ‖ + ‖ ‖ ,              (33) 

where ‖ ‖  denotes Euclidean norm which is given  by ‖ ‖ = ∑ | | ; ‖ ‖  denote zero-norm operator which 
counts their nonzero taps and λ  is regularization parameter 
which trades off the estimation error and sparseness of the 
channel. Assume the positions set of all channel taps of    is 

 and its nonzero taps set is . The number of nonzero taps of 
 is , then the lower bound of sparse channel estimator can 

be derived as MSE = , + 1 Trace{( ) } 

≥ ∑ ,                                              = ∑ , + 1 ,                           (34) 

Where Trace{ } =  denotes the optimal signal training 
for sparse channel estimation. Comparing Eq. (34) to Eq. (32), 

= ∑   ∑ … ∑∑         ∑     …       ∑⋮                                    ⋮                          ⋱                         ⋮∑      ∑     …      ∑ ∈ ∁ × ,            (23)

 

= ∑         ∑     …       ∑∑         ∑     …       ∑⋮                                    ⋮                          ⋱                         ⋮∑      ∑     …      ∑ ∈ ∁ × ,           (24) 

= ×( )  … …⋮ ×( )×( ) … ⋱ ⋱ ×( )  
 ×( ) ×( ) ×( )×( ) ⋮⋮  ⋱… ⋱ ×( )  ,           (25) 

= ×( )×( )  ×( ) ×( ) ×( ) ⋮⋮ ×( )×( ) … ⋱ ×( ) ×( )
…  … ×( ) ×( ) ×( )⋮⋮  ⋱… ×( ) ×( ) ⋱… ×( )

     ×( )  ⋮       ×( )      ,        (26) 



we can found that the lower bound of optimal channel 
estimator depends on  rather than overall channel length (3 + 1)(2 − 1) 2⁄  of . If we can estimate positions of 
nonzero taps of , then sparse channel estimation performance 
could be improved.  Since solving the optimal sparse channel 
estimation in Eq. (33) is NP hard problem [14]. Hence, it is 
necessary to develop alternative suboptimal sparse channel 
estimation method.  

In this paper, we propose a sparse channel estimation 
method for MIMO-OFDM AF-TWRN and it is implemented 
by LASSO algorithm [10]. Given a equivalent training matrix 
D  and a received signal vector   , LASSO based sparse 
channel estimator  can be obtained = argmin ‖ − ‖ + ‖ ‖ ,               (35) 

where ‖ ‖   denotes -norm which is given by ‖ ‖ =∑ | | . In a practical system, accurate number of nonzero 
channel taps is unknown. Hence, to obtain accurate sparse 
channel estimation, effective training signal design is required. 
In accordance with the CS [13], [14], two kinds of training 
design methods, i.e., random Gaussian and random binary, are 
considered for computer simulation to evaluate our proposed 
method.  

IV. COMPUTER SIMULATION 

In this section, we present the simulation results to evaluate 
sparse channel estimation method in MIMO-OFDM AF-
TWRN. Here we compare the performance of the proposed 
estimator with LS-based channel estimator and adopt 100 
independent Monte-Carlo runs for average. The number ( , ) of transmitter/relay pairs are considered three cases: (2,2), (2,4) and (4,2). All of the channel vectors have same 
length = 16  and = 1,2,3,4,5,6 , and its positions of 
nonzero channel taps are randomly generated. Training signal 
length of each antenna is set as = 32 to ensure ≥ 2 − 1. 
Transmit power is set as = =  and relay power is 
allocated as = 2 . The signal to noise ratio (SNR) is 
defined as 10log ( ⁄ )at relay and 10log ( ⁄ ), = 1,2 at 
transmitter, respectively. 

Random Gaussian training is considered in Figs. 4 and 5, 
and random binary training is considered in Figs. 6 and 7. 
From the four figures, we can find that the proposed sparse 
channel estimator is better than LS one. In addition, the four 
figures show that LS channel estimator depends on channel 
length while LASSO one relies on nonzero number K  of 
channel. Note that the lower bound is given by ideal LS 
channel estimator which is known nonzero taps position of 
channel. In four experiments, the proposed sparse method 
works well on different number of nonzero taps of channel. 
However, for sparser channel estimation, more sparsity can be 
exploited. In other words, much better performance can be 
improved. Take the  = 1 for example, the proposed sparse 
channel estimator approach to lower bound. On the contrary, 
channel is approximate parse, e.g., = 6 , the performance 
advantage of the proposed method is no longer obvious. When 
the = = 16, then the proposed sparse channel estimator 

reduce to LS one. Because single channel vector between each 
pair of antennas is not exact sparse, it will incur much number 
of nonzero taps in their cascaded channel. Hence, the proposed 
method can works well in very sparse channel. 

V. CONCLUSION 
  In this paper, we proposed a sparse channel estimation 

method which can exploit the extra knowledge of sparse 
structure as for prior information and hence it can increase 
spectral efficient or enhance estimation performance when 
compared with traditional methods. Computer simulation 
results were showed the performance advantages of our 
proposed method than LS using MSE standard 
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Fig. 4. Performance comparison versus SNR. 

 

 
Fig. 5. Performance comparison versus SNR. 
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Fig. 6. Performance comparison versus SNR. 

 

 
Fig. 7. Performance comparison versus SNR. 
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