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Abstract—Wireless network virtualization enables multiple
virtual wireless networks to coexist on shared physical infras-
tructure. However, one of the main challenges is the problem
of assigning the physical resources to virtual networks in an
efficient manner. Although some work has been done on solving
the embedding problem for wireless networks, few solutions are
applicable to dynamic networks with changing traffic patterns.
In this paper we propose a dynamic greedy embedding algorithm
for wireless virtualization. Virtual networks can be re-embedded
dynamically using this algorithm, enabling increased resource
usage and lower rejection rates. We compare the dynamic greedy
algorithm to a static embedding algorithm and also to its dynamic
version. We show that the dynamic algorithms provide increased
performance to previous methods using simulated traffic. In
addition we formulate the embedding problem with multiple
priority levels for the static and dynamic case.

I. INTRODUCTION

Mobile network operators are currently experiencing large
challenges with the continued growth of mobile data traffic.
The volume of data traffic is expected to increase annually
by 66% for the period 2012-17 [1]. However the revenues
collected by mobile network operators are not growing at the
same rate, while deploying new technologies is increasingly
expensive [2]. The sharing of physical infrastructure resources
has been a traditional means of reducing both CAPEX and
OPEX costs for operators. The passive sharing of physical
sites, tower masts and other support systems is well estab-
lished. So too is the model of the Mobile Virtual Network
Operator (MVNO). The MVNO does not own the wireless
infrastructure but instead enters into a service level agreement
with a mobile network operator to obtain bulk access to
network services at wholesale rates, which it uses to serve
an independent customer base. The service level agreements
in place are simple. The MVNO bulk-buys minutes or data,
based on coarse MVNO usage level predictions (for multiple
months) and corresponding spare capacity predictions by the
MNO. Typically there is no differentiation between the MVNO
or the MNO user on the physical network.

The word virtual in the phrase MVNO simply serves to
emphasize the lack of ownership on the part of the MVNO
of the physical infrastructure and the spectrum. In recent
years, however, virtualization techniques have been emerging
which focus on what is termed active sharing of spectrum
and infrastructure [3|]. This allows multiple heterogeneous
virtual networks to coexist concurrently on a shared physical

infrastructure in a much more sophisticated and resource
efficient manner than is the case for MVNOs. The virtual
network operators (VNOs) of the future will be able to request
resources from the physical infrastructure provider (InP) based
on more specific requirements and for specified time slots
rather than based on needs averaged over long periods of time.
Through better use of resources there is potential to support
greater numbers of virtual operators on a given infrastructure
and to potentially provide differentiated experiences for users
from different virtual operators.

Any virtualized system requires full isolation between vir-
tual entities. Since the wireless links are broadcast in nature
and are influenced by interference, it is first necessary to divide
the wireless resources into orthogonal isolated dimensions
[5]. One of the fundamental challenges in wireless network
virtualization is how to assign the isolated resources to the
different virtual operators in an efficient and optimal manner.
This is also known as the virtual embedding problem and is
the focus of this paper.

Currently there are a number of wireless network virtual-
ization solutions in existence which deal with the embedding
problem. In [4] the authors focus on virtualizing Long Term
Evolution (LTE) networks. A Hypervisor layer is proposed that
is added on top of the physical responsible for the resource
and spectrum allocation to VNOs. However, it is difficult
to design a hypervisor that can perform efficient resource
allocation in real time. Two other approaches are the network
virtualization substrate (NVS) [5] and Cellslice algorithms [6].
These approaches are based on using slices to separate the
virtual networks and enabling customization of slices to utilize
resources efficiently. The authors of [[7/] present a Karnaugh-
map based approach to deal with the problem of assigning
virtual network requests to a 2-dimensional substrate. Al-
though these approaches have made significant contributions,
they do not address heterogeneous networks and it is not
possible to alter the slices dynamically; in other words once a
virtual operator is assigned resources, the assignment cannot
be changed.

The purpose of this paper is to explore how the virtual
embedding process can be made more efficient and dynamic.
The term dynamic refers to embedding algorithms that can
re-embed existing virtual networks to achieve more efficient
resource allocation and satisfy additional virtual network re-
quests [8]. We present a dynamic greedy algorithm based on



the combination of virtual networks that maximise resource
usage and profit, and also adapt an existing approach to be
dynamic. Using this dynamic approach, the virtual networks
can be re-embedded at every timeslot, to allow for more
efficient resource allocation and fulfillment of the needs of
virtual network operators. Both the physical infrastructure
provider and the VNOs benefit from this, as the costs decrease
for the VNOs and the revenue increases for the infrastructure
provider.

The virtualization model and the concept of dynamic em-
bedding are described in section [[I} This section of the paper
also makes one of the contributions in providing a formulation
for the embedding problem with priority levels. Section [III]
describes the second contribution of the paper; the greedy
dynamic embedding algorithm and an adapted algorithm based
on the Karnaugh-map algorithm [[7]. Section [[V] provides the
key results and shows how the dynamic approach significantly
improves on a static embedding approach and we conclude in
Section [V]

II. SYSTEM MODEL

Wireless virtual network embedding requires the division
of substrate resources into orthagonal dimensions to prevent
link interference [9]. For now, we assume that we are only
concerned with a single base station, i.e. one geographical
location so that the virtual networks do not change location
when reassigned. The wireless substrate is divided into a
number of frequency and time-domain resources, represented
as F' and T'. The total number of virtual resources available
is FxT.

Each virtual network requires a number of frequency and
time-domain resources. Virtual network operators can make
requests for these physical resources, known as virtual net-
work requests (VNRs). VNRs have different priorities, based
on the service level that the VNO wants to provide to its
services/users. In exchange for providing the resources, the InP
obtains revenue from the VNOs. The revenue depends on the
number of resources used, the duration for which they are in
use and the priority level, since requests with higher priorities
are more likely to be embedded instantly, and therefore should
have higher costs.

The resource allocation is performed at regular timeslots. A
number of VNRs can arrive during a timeslot. These requests
are stored in a buffer and at the beginning of the next timeslot,
the resource allocation is performed for the VNRs in the
buffer. The set of VNRs at timeslot ¢ are represented by
R:. Each request is a set R = (p, f,td,d). The priority
level is represented by p, and the frequency and time-domain
requirements are denoted by f and td respectively. Each VNR
requires an area A of f X td. The duration of timeslots for
which the resources are required is represented by d.

A VNR is successful when the required resources are
allocated to the virtual network. Once a VNR is successfully
embedded it will retain the resources needed until it expires.
If a VNR is unsuccessful within a given timeslot, the VNR
remains in the buffer and is embedded in the next timeslot if
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Fig. 1. Using static embedding, requests A and B can be embedded in

timeslot 1, however request C is rejected in timeslot 2. When using dynamcic
embedding, request C can be accepted in timeslot 2.

possible. When a VNR has not been successfully embedded
for a certain number of timeslots, maz_delay, it is removed
from the buffer and the request is rejected. The maximum
delay can be different for every priority level.

A. Dynamic Embedding

In the static case, successful VNR will receive the same
set of resources every timeslot for the duration specified.
However with this static embedding scheme it is possible that
a virtual network request is rejected although there are enough
resources available to satisfy it due to topology limitations.

The topological limitations of the static embedding scheme
are explained in figure [Th. Let us assume that the substrate has
5 x 5 resources available. At timeslot 1 there are two VNRs
A and B with area requirements of 2 x 3 and durations of 1
and 3 respectively. Since there are enough free resources, both
networks are embedded. At the next timeslot, virtual network
A has expired and the resources are released. At the same time
a VNR arrives with a resource requirement of 3 frequency and
3 time-domain resources. The static embedding method is not
able to accept request C because it cannot change the assigned
resources of the embedded request B.

It is possible to overcome this problem by dynamically reas-
signing the existing networks at every timeslot. The resources
can be used much more efficiently and additional VNRs can be
accepted. Going back to our example, it is clear from Figure
[Ip that using the dynamic embedding approach the substrate
resources are used in a more efficient manner.

There some considerations that must be taken into account
when the virtual network embedding is performed dynami-
cally. Dynamic embedding is more complex than static embed-
ding in the hardware side, and has larger overheads. It is also
easier to define the heuristics for static embedding. However it
might be beneficial for InPs to use more expensive hardware



to support dynamic embedding if the performance is better
than static embedding.

B. Problem Formulation

The allocation of physical resources to virtual network
requests is performed at the start of each timeslot. The
new requests with the highest priority are embedded first,
followed by the lower priorities. To this end, the resource
allocation is performed over several stages, corresponding to
each priority level. In the static case, we must take into account
the resources that are occupied and ensure that VNRs are
embedded only in locations that are vacant. In contrast in the
dynamic case, we must guarantee that existing virtual networks
receive the necessary resources before embedding new VNRs.
By introducing an additional stage for the existing networks,
we can ensure that they will be embedded first, followed by
the VNRs in descending priority order.

The embedding of the existing virtual networks and the new
VNRs is performed in stages from 1 to the number of priority
levels, K. At each stage, k, the embedding for the previous
stages must be taken into account. P represents the set of
virtual networks embedded in the stages previous to stage k.
The set P, is always be empty as there are no previous stages
that need to be accounted for. The set of requests embedded at
stage k is represented as Sy. The full embedding for a timeslot
is thus found when the embedding for the last stage (k = K)
has been completed.

The objective at each timeslot ¢ is to maximize the revenue
for the infrastructure provider while guaranteeing that VNRs
are embedded in order of priority. We propose a revenue
function, rev(t), which represents the revenue that the infras-
tructure provider can achieve at every time slot. The revenue
collected is based on the number of resources occupied at each
timeslot and their priority level. We assume that the physical
infrastructure owner can earn more revenue for high priority
virtual networks than for networks with lower priorities which
is shown by the scalar p; .
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The binary variable a,;; represents the possible embedding
locations for each virtual network. The frequency and time
dimensions of the substrate are ¢ € {1,2,--- | F} and j =
{1,2,---,T} respectively. When a,;; = 1 this means that the
virtual network s is using the resource block ¢,; and when
asi; = 0 it is not using the resource block.

We also add an auxiliary binary variable b;; that is used
to represent the starting position of the virtual network. For
any particular VNR s, there can only be one position at which
bsij =1.

The dynamic resource allocation problem is represented by
the following optimization problem for every priority level k.
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where A(s) is the area of request s. (3b) ensures that the
existing requests must be embedded, while shows that the
requests with lower priority can be embedded. (3d) provides
the constraint that virtual networks must not overlap.
ensures that only one b;; can be selected as starting point for
each request and (3f) provides the dimensional constraints.

In the static case we must also consider the existing sub-
strate, e4%j. This matrix represents the locations of the existing
networks which must be re-embedded in the same location.
The optimization problem is similar to (3) but we also have
the additional constraint below to ensure that existing networks
are mapped to the same resources.

Vs, Vi, Vj 4)

€sij — Qgij <0

For both the static and the dynamic case, this problem is
repeated for all stages 1 through K to find the overall resource
allocation.

III. DYNAMIC EMBEDDING ALGORITHMS

The embedding problem described in Section [[I| is a more
complex version of the set packing problem [10], with the ad-
ditional requirement of priority levels. The knapsack problem
is NP-complete and thus heuristic algorithms are necessary to
achieve feasible solutions.

A. Karnaugh-map algorithm

The Karnaugh-map based approach in [7]] is an example
of a heuristic solution. In this work, heterogeneous VNRs
are embedded on a two-dimensional substrate by finding
Karnaugh-map like regions of vacant resources. We adapted
the algorithm to suit the dynamic case. A detailed description
is given below.



The aim of the Karnaugh-map algorithm is to maximize the
resource occupancy of the substrate and minimize the rejection
rate of VNRs. The algorithm attempts to place virtual networks
on the substrate in such a manner that the highest number of
additional VNRs can be accepted. The best way of achieving
this is by clustering the virtual networks together, so that the
vacant resources are contiguous. This allows virtual networks
of varying sizes to be embedded, maximising the occupied
area and minimising the rejection rate.

At each timeslot the set of VNRs that are in the buffer are
sorted by priority and by decreasing area. Then the requests
are embedded sequentially; the existing virtual networks are
re-embedded first and the new requests follow. For each VNR,
the Karnaugh map approach is used to find the set of vacant
substrate regions with dimensions equal to or greater than the
virtual network’s f and td. The smallest region is selected
from this list as the location for embedding the VNR. Within
this region it is necessary to find the best corner (of the four
corners) at which to embed the virtual network.

The corner that maximizes resource clustering is found
using the Embedding Density Index (EDI). The EDI measures
the number of borders between free and occupied resource
blocks. A high EDI index represents a substrate where the
virtual networks are spread out and not clustered together,
whereas a substrate with virtual networks that are grouped
together will have a low EDI index. For each possible corner,
the EDI is calculated by placing the new virtual network on
the current substrate affects the clustering of resources. After
testing the possible locations, the location with the smallest
EDI is chosen as the location to embed the new network.
This ensures that the network is grouped with the embedded
networks as best as possible.

The duration remaining for each of the networks is updated
and networks that have expired are removed.

B. Greedy algorithm

We developed a heuristic algorithm known as the Greedy
dynamic algorithm. Rather than sorting the VNRs by area,
this algorithm considers the embedding of combinations of
multiple VNRs, so that a more efficient embedding can be
found. Similar to the Dynamic Karnaugh-map algorithm, the
input at each timeslot is the set of existing virtual networks
and the VNRs in the buffer. The aim is to find the combination
of virtual networks that maximizes the number of embedded
virtual networks, while guaranteeing that VNRs with high
priority are considered first.

As is shown in Algorithm (I} it is first necessary to find
the set of possible combinations of VNRs. For each prior-
ity level, the set of combinations of higher priority VNRs
must be included, but since the higher priority requests are
allocated resources first, the combination that maximises the
higher priority requests must be selected (referred to as
previous_combination). previous_combination is known
already, and thus it is only necessary to find the set of
combinations of VNRs with the current priority level.

Algorithm 1 Dynamic Greedy Embedding Algorithm

Input: R; and previous_combination
1: for all priority levels do

2:  possible combinations, P = {}

3: S = subset of R; with current priority

4 find all combinations, C' = (I*1) for n =1: |8

5: foralli=1:|C|do

6 T = {previous_combination} U{C(i)}

7 if area of VNRs in T' <= Total_Area then

8 P =1[P;T|

9: end if

10:  end for

11:  sort P by area of combinations

12:  while no embedding found do

13: Dynamic Embedding for current combination in P

14:  end while

15:  previous_combination =current combination in P

16: end for

Similarly, the combination of existing virtual networks is
known at the start of each embedding. This combination can
be included at the highest priority level by simply substitut-
ing previous_combination with the combination of existing
networks.

The set of combinations are sorted by decreasing total
number of resources used. Although we know that it is possible
to embed the combinations based on resource constraints, we
cannot be sure that it is possible to embed the combinations
based on the dimensional constraints of each VNR. To over-
come this, we test the embedding of combinations sequentially
until an allowed embedding is found. The algorithm used
to perform the embedding is the Dynamic Karnaugh-map;
however any embedding algorithm could be used.

IV. PERFORMANCE EVALUATION

In this section we measure the performance of the static
and dynamic Karnaugh-map algorithms. The metrics used
to evaluate the embedding algorithms are discussed and we
examine how the algorithms compare to the solutions found
through MIP-optimization.

A. Evaluation metrics

The first metric we use to evaluate algorithm performance
is the revenue that the physical infrastructure can expect to
achieve from the virtual network operators.

The second metric that is used is the rejection rate of virtual
network requests, r(¢), which reflects the level of service that
the VNOs receive from the InP. The rejection rate per timeslot
depends on the number of requests that were rejected, sycj,
over the total number of requests. The area, A, and duration,
ds, of each request are taken into account.

Rt
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We do not compare the complexity of the algorithms since
the optimal implementation of each algorithm is not known
and so a fair comparison is not possible.

B. Simulation setup

We assign three priority levels for virtual network requests;
the highest for real-time services such as VOIP, the second
for high data rate services such as video streaming and the
lowest priority for best effort services such as messaging and
downloading.

The arrival of requests is modelled as a Poisson process
with average rate A virtual networks arriving per timeslot.
The duration of each virtual network follows an exponential
distribution with an average lifespan of pu timeslots. The
default values are A = 3 and g = 10. The priority level
of each new VNR is distributed uniformly as U(1,3). The
maximum delay, max_delay, is set to 1 timeslot for high
priority requests, 2 timeslots for medium priority requests, and
3 timeslots for low priority requests. The dimensions of the
substrate are set as F' =12 and T = 12.

The area of each request is initially modelled as a uniform
distribution with U(1,3) for the frequency dimension and
U(1,3) for the time dimension. We run the simulation for
1000 iterations. The function ps which represents the relative
cost for different priority levels is modelled as follows ps = «
for the highest priority, 3 for the medium priority and ~ for
the lowest priority. We set o« = 0.5, 8 = 0.3 and v = 0.2.

C. Results and discussion

1) Dynamic embedding achieves better performance than
static embedding: In Figure 2] we compare the dynamic em-
bedding algorithms and the static algorithm. Fig. 2a shows the
average revenue while Fig [2b shows the average rejection rate
of VNRs. After some initial fluctuation the graphs smooth off
to the long-term values. It is clear that the dynamic embedding
algorithms outperform the static algorithms in terms of revenue
and rejection rate.

It is interesting to note that the rejection rate for the dynamic
algorithms is 64% lower on average than the static case but
that the revenue is only 6.5% better in the dynamic case.
We can also note that the dynamic greedy algorithm achieves
a slight increase in performance compared to the dynamic
embedding. This shows that the use of dynamic algorithms
benefits the virtual network operators as the rejection rate
decreases significantly, but that for the infrastructure owner
the additional revenue obtained is quite small.

2) Accuracy of resource request prediction: Until now we
have assumed that the virtual network operators making the
VNRs know exactly what resources are required for each
VNR. This may not be the case in practise. The accuracy of the
predictions made by the VNOs influences the performance of
the embedding algorithms. If the VNOs can make very accu-
rate predictions then it is possible to have many requests with
small resources requirements. However if it is not possible
to predict accurately, it may be necessary to over-provision
resources and make large requests.
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Fig. 2. The dynamic embedding algorithms provides an increase in revenue

for the InP and a large decrease in the rejection rate of virtual network
requests.

We examine the case when the average resource require-
ments of the VNRs are higher, but the total number of
resources requested remains the same as before. We set the
resource requirement for each dimension to U (2, 5) and reduce
A to 1. From Figure |3| we observe that the rejection rate is 1.7
times higher on average than the scenario where the requests
were smaller but more numerous. The revenue is 13% lower
on average. Fig [d] shows the mean reject rate and the standard
error for the various priority levels and scenarios. From this
figure, we can observe that a large number of high priority
requests are rejected in the scenario where the requests are
large. Since the high priority requests are the most valuable,
this has the most impact on the revenue. We can conclude that
when the VNOs are not able to make accurate predictions and
the resource requests are large, this has a negative impact on
both the rejection rate and the revenue.
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Fig. 3. A larger average request size leads to smaller revenues, and a higher
number of rejected requests.

3) Priority costs: The total revenue that can be achieved is
influenced by the relative cost assigned to each priority level.
However, the cost of each priority level also affects the number
of VNRs received at that priority level. In the absence of a real
market for wireless virtualization the optimum relative cost of
each priority level cannot be known. In our model, since the
demand for each priority level is uniform, the values assigned
to ps do not influence the total revenue.

V. CONCLUSION

Many challenges still remain for wireless network virtu-
alization. In this paper we presented a dynamic embedding
method and formulated the embedding problem with the
additional requirement of priority levels. We showed that better
performance can be achieved using dynamic approaches. Other
challenges include solutions for heterogeneous networks, and
the need for easy and implementable approaches. In future
work, we hope to focus on a realistic pricing model and
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Fig. 4. Detailed rejection rates for the small and large scenarios show that
the high priority rejection rate is much higher in the large scenario, relative
to the other rejection rates.

explore the architecture needed to make wireless network
virtualization a reality.
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