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Abstract—Quantum-based transmission is an attractive
solution conceived for achieving absolute security. In this quest,
we have conceived an EXtrinsic Information Transfer (EXIT)
chart aided channel code design for symbol-based entanglement-
assisted classical communication over quantum depolarizing
channels. Our proposed concatenated code design incorporates
a Convolutional Code (CC), a symbol-based Unity Rate Code
(URC) and a soft-decision aided2-qubit Superdense Code (2SD),
which is hence referred to as a CC-URC-2SD arrangement.
We have optimized our design with the aid of non-binary
EXIT charts. Our proposed design operates within1 dB of the
achievable capacity, providing attractive performance gains over
its bit-based counterpart. Quantitatively, the bit-based scheme
requires 60% more iterations than our symbol-based scheme for
the sake of achieving perfect decoding convergence. Furthermore,
we demonstrate that the decoding complexity can be reduced by
using memory-2 and memory-3 convolutional codes, while still
outperforming the bit-based approach.

Keywords—Entanglement-Assisted Classical Communication,
Superdense Coding, Non-Binary EXIT Charts, Iterative Decoding.

I. I NTRODUCTION

Quantum-based communication constitutes an attractive
solution for absolute secure transmission [1]. More explicitly,
any ‘measurement’ or ‘observation’ of the transmitted
qubits by the eavesdropper destroys the associated quantum
entanglement, hence instantly intimating the parties con-
cerned [1]. In this context, entanglement-assisted transmission
of classical information over quantum channels is of particular
significance. This idea was conceived by Bennett [2] in
his widely-cited2-qubit Superdense (2SD) coding protocol,
which transmits2 classical bits per channel use (cbits/use)
of a noiseless quantum channel with the aid of a pre-shared
maximally entangled qubit. The corresponding Entanglement-
Assisted Classical Capacity (EACC) of the so-called quantum
depolarizing channel was quantified in [3], [4]. Analogous
to Shannon’s well-known capacity theorem conceived for
classical channels, EACC quantifies the capacity limit of
reliable transmission of classical information over a noisy
quantum channel, when an unlimited amount of noiseless
entanglement is shared between the transmitter and the
receiver.

Recently, Chiuriet al. [5] experimentally demonstrated
the achievable entanglement-assisted classical capacityof
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a quantum depolarizing channel, which paves the way
for the practical implementation of future quantum-based
communication systems. However, reliable transmission over
quantum systems is impossible without efficient error
correction codes. In our prior research [6], we exploited
the efficient near-capacity classical code designs of [7]–[9] for
designing a bit-based concatenated code operating close tothe
bit-based EACC of the quantum depolarizing channel. More
explicitly, the code design presented in [6] incorporates an
Irregular Convolutional Code (IRCC), a symbol-based Unity
Rate Code (URC) and a soft-decision aided Superdense Code
(SD), which is hence referred to as an IRCC-URC-2SD
arrangement, when 2SD is used. Since the design of [6]
uses a bit interleaver and hence bit-based iterative decoding,
symbol-to-bit conversion is invoked before the related soft-
information is fed from the inner decoder (URC-SD) to the
outer decoder (IRCC). This in turn incurs an inherent capacity
loss, which cannot be recovered by the bit-based coding
scheme of [6]. This capacity loss was previously identified
in [10] for classical discrete-memoryless channels and a
modified binary LDPC code was proposed to circumvent
this issue. By contrast, in this paper we have conceived
an iterative code design for symbol-based CC-URC-2SD to
overcome the capacity loss. Our proposed design incorporates
a single Convolutional Code (CC) as the outer component,
while the URC and 2SD schemes constitute the amalgamated
inner code. We have optimized our design with the aid
of non-binary EXtrinsic Information Transfer (EXIT) charts
of [7]–[9]. Our simulation results demonstrate that, despite
its lower encoding/decoding complexity, the symbol-based
CC-URC-2SD provides a significant Bit-Error-Rate (BER)
performance improvement over the bit-based IRCC-URC-
2SD. Quantitatively, after 2 iterations, our proposed design
incorporating a memory-4 CC outperforms the IRCC-URC-
2SD scheme of [6] by3.7 dB at a BER of10−4. Furthermore,
the IRCC-URC-2SD arrangement of [6] requires around60%
more iterations than the CC-URC-2SD for achieving perfect
decoding convergence. We also demonstrate that the decoding
complexity can be further reduced by using memory-2 and
memory-3 convolutional codes, which rely on only4 and 8
states, respectively, per iteration.

This paper is organized as follows. We commence with
a comparison of the symbol-based and bit-based EACC in
Section II. Our system model will be presented in Section III,
while the EXIT-chart aided design will be detailed in
Section IV. Finally, our results will be discussed in Section V
and our conclusions are offered in Section VI.
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Fig. 1. Classical-quantum-classical transmission model employing 2SD.

II. SYMBOL -BASED VERSUSBIT-BASED
ENTANGLEMENT-ASSISTEDCLASSICAL CAPACITY

The classical-quantum-classical transmission model,
whereby classical information is transmitted over a quantum
channel with the aid of superdense coding protocol [2], is
depicted in Fig. 1. Here, Alice intends to transmit her2-
bit classical messagex to Bob using a2-qubit maximally
entangled state|ψx〉AB = 1√

2

(

|0A0B〉+ |1A1B〉
)

, where
A denotes the information qubit, whileB is a pre-shared
entangled qubit transmitted over a noiseless quantum channel.
The classical messagex is encoded by the blockE of Fig. 1
into the corresponding quantum state using the 2SD coding
protocol of [2]. The processed qubitA′ is passed through a
quantum depolarizing channel1, which is denoted asNA′→B′

.
Here,NA′→B′

can be viewed as a Completely Positive Trace-
Preserving (CPTP) mapping, which maps a stateρ onto a
linear combination of itself and of the maximally entangled
state. More explicitly, for a depolarizing probabilityp, this
mapping is given by [1]:

Np(ρ) = (1− p)ρ+
p

3
XρX+

p

3
YρY +

p

3
ZρZ, (1)

where X, Y and Z are Pauli matrices. Therefore, a
depolarizing channel characterized by the probabilityp inflicts
either a bit flip (X), a phase flip(Z) or both (Y) on the
transmitted qubit with a probability ofp/3.

The receiver Bob performs symbol-by-symbol Bell-basis
measurement [1], [12] on the received state|ψy〉

B′B in block
D of Fig. 1, which yields the2-bit classical messagey.
Thus, the overall transmission model reduces to a classical
discrete-memoryless channel. Consequently, theith bit of x is
related to that ofy as follows:

yi = xi ⊕ ei or ei = yi ⊕ xi, (2)

where ⊕ denotes modulo-2 addition ande can be viewed
as the 2-bit classical equivalent of the quantum error
encountered during transmission over the depolarizing channel
characterized in Eq. (1). More specifically, the channel
transition probabilities of the induced classical channelare
given by:

P (y|x = x(m)) =

{

1− p, if E = 0
p/3, if E ∈ {1, 2, 3},

(3)

wherex(m) is the hypothetically transmittedmth symbol for
m ∈ {0, 1, 2, 3} andE is the decimal equivalent of the2-bit
classical errore of Eq. (2). The resultant entanglement-assisted
classical capacity is quantified as follows [3]:

C2sd = 2 + (1− p) log2(1− p) + p log2(p/3) cbits/use. (4)

1A quantum channel can be used for modeling imperfections in quantum
hardware as well as quantum-state flips imposed by the transmission
medium, including free-space wireless channels and optical fiber links,
when qubits are transmitted across these media [11].
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Fig. 2. Classical information rate (cbits/use) versus quantum depolarizing
probability for 2SD.
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Fig. 3. Schematic of the proposed symbol-based CC-URC-2SD classical-
quantum communication system.

The corresponding bit-based capacity may be computed by
marginalizing the symbol-based channel transition proba-
bilities P (y|x) of Eq. (3) to the bit-based probabilities
P (yi|xi) for i ∈ {0, 1}, assuming that the constituent bits
are independent [6]. More specifically, we get:

P (yi = xi|xi) = 1−
2

3
p, P (yi 6= xi|xi) =

2

3
p, (5)

and the symbol-based capacity of Eq. (4) is reduced to:

Cbit
2sd = 2×

[

1 + (1−
2

3
p) log2(1−

2

3
p) +

2

3
p log2(

2

3
p)

]

.

(6)
The corresponding capacity loss for the bit-based 2SD scheme
is depicted in Fig. 2, which compares the bit-based and
symbol-based capacities of Eq. (4) and Eq. (6), respectively.
As gleaned from Fig. 2, for a classical information rate of
1 cbit/use, a bit-based system ensures reliable transmission
for p ≤ 0.165, while a symbol-based system would increase
the noise limit top = 0.1875. Therefore, a bit-based error
correction scheme, which ignores the correlation between the
bits, incurs an inherent irrecoverable capacity loss of around
0.6 dB2 as compared to its symbol-based counterpart.

III. SYSTEM MODEL

Fig. 3 shows the proposed system model. At the transmitter,
the system is fed with classical bits{u}, which are encoded
by a 1/2-rate Convolutional Code (CC). The encoded4-ary
coded symbolsv = [v0, v1] are then interleaved by a symbol

2The difference in dB between two channel depolarizing probabilities p1
and p2 is calculated as follows [6], [11], [13]:

(

10× log10
p1
p2

)

.



interleaver (πs), yielding the permuted symbol streamv′,
which is fed to the symbol-based recursive Unity Rate Code
(URC) having a generator polynomial ofG(D) = 1

1+D
[8].

It must be pointed out here that URC is used as a precoder
having an Infinite Impulse Response (IIR), which is invoked
for the sake of efficiently spreading the extrinsic information
without increasing the system’s delay. This allows the inner
decoder component to have an EXIT curve reaching the(1, 1)
point of perfect decoding convergence to a vanishingly low
BER, as detailed in [14]. Then classical to quantum domain
conversion then takes place at the SD encoder of Fig. 3,
which maps the classical symbolsx onto the orthogonal
quantum states|ψx〉A

′B using the maximally entangled state
|ψx〉AB, as discussed in Section II. Hence, the SD encoder
has a function similar to that of the classical PSK/QAM bit-
to-symbol mapper, which maps several classical bits onto a
complex-valued phasor for communication using the classical
electromagnetic waves. Since the resultant system of Fig. 3
has three serially concatenated stages, we simplify it by
intrinsically amalgamating our Superdense code (SD) with the
symbol-based URC, which hence constitutes an amalgamated
inner component, while the CC is our outer component.

The encoded qubits|ψx〉A
′B are serially transmitted over

the quantum depolarizing channel. Recall from Fig. 1 that
the processed qubitA′ is transmitted over the noisy quantum
channel, whileB is shared between Alice and Bob over a
noiseless quantum channel. At the receiver, the SD decoder of
Fig. 3 performs symbol-by-symbol Bell-basis measurement on
the received orthogonal states|ψy〉

B′B, yielding the classical
symbolsy. Furthermore, in contrast to the conventional SD
decoder, which generates the hard-decision outputs, we usethe
SD decoder of [6], which computes the extrinsic probability
E(x) for the transmitted classical symbolx, as follows:

E(x) ≈ P (y|x), (7)

whereP (y|x) is given by Eq. (3). The soft outputE(x) is
then fed to the URC MAP decoder, which engages in iterative
decoding with the CC decoder, as depicted in Fig. 3. Here the
notationsA(b) andE(b) refer to thea priori and extrinsic
probabilities ofb, where we haveb ∈ {x,v,v′}, which are
exploited for achieving decoding convergence to a vanishingly
low BER.

IV. N ON-BINARY EXIT-CHART A IDED CODE DESIGN

EXIT charts [8], [9], [15] are capable of visualizing
the convergence behaviour of iterative decoding schemes by
exploiting the input/output relations of the constituent decoders
in terms of their average Mutual Information (MI) transfer
characteristics. Since our proposed model of Fig. 3 relies
on symbol-based iterative decoding, we invoke non-binary
EXIT chart of [7]–[9], which visualizes the exchange of the
following four MI terms - averagea priori MI betweenv′

andA(v′): IA(v′), averagea priori MI betweenv andA(v):
IA(v), averageextrinsic MI betweenv′ and E(v′): IE(v′),
and averageextrinsic MI betweenv andE(v): IE(v). Here,
IA(v′) and IE(v′) constitute the EXIT curve of the inner
decoder, whileIA(v) and IE(v) yield the EXIT curve of the
outer decoder. For the sake of constructing the inner and
outer EXIT curves, thea priori information,A(v′) andA(v)

respectively, is modeled for a range ofIA(v′), IA(v) ∈ [0, 1]3.
The underlyinga priori channel is modeled using a Gaussian
distribution, which has a mean of zero and a variance ofσ2

A,
assuming that the constituent bits of the4-ary symbol are
independent. The corresponding averageextrinsic MI can be
formulated as [7], [16]:

IE(b) = log2M + E

[

M−1
∑

m=0

E(b(m)) log2(E(b(m)))

]

, (8)

where we haveb ∈ {v,v′}, while M = 4 andm ∈ {0, 3}.
Furthermore, E[.] denotes the expectation (or time average)
operation. The resultant inner decoder EXIT functionTv′ and
the corresponding outer decoder EXIT functionTv are given
by:

IE(v′) = Tv′ [IA(v′), p], IE(v) = Tv[IA(v)]. (9)

More explicitly, unlikeTv, Tv′ is a function of the depolarizing
probabilityp, since the inner decoder depends on the channel
output. Finally, the MI transfer characteristics of both the
decoders encapsulated byTv′ andTv are plotted in the same
graph, with thex andy axes of the outer decoder swapped. The
resultant EXIT chart is capable of visualizing the exchangeof
extrinsic MI as a stair-case-shaped decoding trajectory, as the
iterations proceed.

We have exploited the area property of EXIT charts [17]
for optimizing our code design4. According to this property,
the area under the EXIT curve of the inner decoder is
approximately equal to the attainable channel capacity [17],
provided that the channel’s input symbols are equiprobable.
Since our system model of Fig. 3 transmits classical
information over a quantum depolarizing channel, the
attainable channel capacity of the system is the entanglement-
assisted classical capacity of Eq. (4). Furthermore, the area
under the EXIT curve of the outer decoder is equivalent to
(1 − Ro), whereRo is its coding rate [17]. Therefore, our
design objective is to find the optimal outer code5 C having a
coding rateRo, which gives the best curve-shape match with
the given inner decoder’s EXIT curve. As a result, we have
a marginally open tunnel between the EXIT curves of the
inner and outer decoders at the highest possible depolarizing
probability, which corresponds to the lowest possible SNR for
a classical channel. The smaller the area within the EXIT
tunnel, the closer the system’s performance to the achievable
channel capacity, but this is achieved at the cost of requiring
more decoding iterations for achieving decoding convergence
to an infinitesimally low BER.

V. RESULTS AND DISCUSSIONS

Using the aforementioned non-binary EXIT-chart aided
design criterion, we have optimized our iterative code structure
of Fig. 3 to design a system with a coding rate of1 cbit/use.
According to the symbol-based capacity curve of Fig. 2,

3For non-binary symbols, mutual information can be greater than 1,
i.e. IA(v′), IA(v) ∈ [0, 2] for our case in this paper. However, we have
normalized the mutual information to unity for simplicity.

4The area property was proved only for Binary Erasure Channel(BEC)
in [17]. However, it has been extensively used for designingnear-capacity
codes even when thea priori channel is assumed to be Additive White
Gaussian Noise (AWGN) [8].

5In the context of our paper, ‘optimal code’ means ‘the best possible
code’.
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the corresponding maximum tolerable channel depolarizing
probability for our system isp = 0.1875.

Design Objective I:For the sake of comparing the symbol-
based scheme of Fig. 3 with the bit-based scheme of [6], which
uses a1/2-rate memory-4 IRCC, find the optimal1/2-rate
memory-4 convolutional code, which gives the best match
with URC-2SD in the CC-URC-2SD configuration, when
symbol-based iterative decoding is invoked.

For the sake of achieving this objective, we created
the EXIT curves of all the possible1/2-rate memory-4
convolutional codes by evaluating all legitimate generator
polynomials to find the optimal codeC, which yields a
marginally open tunnel at the highest possible channel
depolarizing probability. The EXIT characteristics of some
of these(2, 1, 4) CCs are plotted in Fig. 4 along with the inner
decoder EXIT curve of the URC-2SD scheme atp = 0.15
and p = 0.16. As gleaned from the figure, all outer decoder
EXIT curves plotted in ‘solid’ lines exhibit a convergence
threshold ofpth = 0.15, i.e. a marginally open tunnel exists
for p = 0.15. If the depolarizing probability is increased
beyond0.15, the inner and outer decoder EXIT curves will
crossover, thereby closing the tunnel. By contrast, the pair
of outer decoder EXIT curves plotted in ‘dashed’ lines have
pth < 0.15. Hence, our desired optimal codeC is one of those
associated withpth = 0.15. It may be further observed in Fig. 4
that the EXIT curve labeled as ‘Optimal Outer’, whose octally
represented generator polynomials are(g1, g2) = (31, 36)8,
converges faster than the others6. Therefore, we have selected
it as our optimal outer component. The corresponding BER
performance recorded for an interleaver length of30, 000
symbols is plotted in Fig. 5. As it can be observed, the
turbo-cliff formulation starts aroundp = 0.15, which matches
the convergence threshold predicted using EXIT charts. More
specifically, atp ≤ 0.15, the system converges to a low BER
as the number of iterations increases, while forp ≥ 0.16,
the performance fails to improve upon increasing the number

6The optimal outer code yields the widest area between the inner and
outer EXIT curves after the(0.5, 0.5)-point. This signifies that less decoding
iterations are required.
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of iterations. This is because, as shown in Fig. 4, the EXIT
chart tunnel closes atp = 0.16. Thus, the system fails to
converge to a low BER forp ≥ 0.16. It may also be observed
that performance only moderately improves with diminishing
returns at higher number of iterations. Furthermore, since
doubling the number of iterations from10 to 20 only improves
the performance slightly at a BER of10−4, we may conclude
that 20 iterations are sufficient to reach the(1, 1)-point of
near-perfect convergence.

We further compare our symbol-based CC-URC-2SD with
the bit-based IRCC-URC-2SD of [6] in Fig. 6, where the
uncoded BER of 2SD is also plotted. It may be observed
that both systems have the same convergence threshold of
p = 0.15, which is within [10 × log10(

0.15
0.1875 )] = 1 dB of

the achievable noise limit. Since an IRCC has a higher
encoding and decoding complexity than a single-component
CC, we can achieve the same convergence threshold at a
lower encoding/decoding complexity using the symbol-based
scheme. Furthermore, the CC-URC-2SD system exhibits an
improved BER performance compared to the IRCC-URC-2SD
scheme, as shown in Fig. 6. After2 iterations, the IRCC-
URC-2SD arrangement yields a BER of10−4 at p = 0.0225,
while CC-URC-SD scheme has a BER of10−4 at p = 0.0525.
Therefore, CC-URC-2SD outperforms the IRCC-URC-2SD
arrangement by[10 × log10(

0.0225
0.0525 )] = 3.7 dB. Moreover, as

demonstrated in [6], the IRCC-URC-2SD scheme achieves
perfect convergence in around32 iterations, while only20
iterations are sufficient for the symbol-based CC-URC-2SD.
We further benchmark the performance against the achievable
symbol-based capacity ofp = 0.1875. At a BER of 10−4

and after a sufficiently high number of iterations (20 for
CC-URC-2SD and32 for IRCC-URC-2SD), the CC-URC-
2SD scheme operates within[10 × log10(

0.149
0.1875 )] = 1 dB of

the capacity, while the IRCC-URC-2SD regime exhibits a
deviation of[10× log10(

0.142
0.1875 )] = 1.2 dB from the capacity.

Thus, the performance of both systems is comparable once
perfect convergence is achieved. However, the IRCC-URC-
2SD scheme requires60% more iterations than the symbol-
based CC-URC-SD arrangement.

Design Objective II: Find the optimal1/2-rate memory-2
and memory-3 convolutional codes, which exhibit the best
EXIT-curve shape match with URC-2SD in the CC-URC-
2SD configuration, when symbol-based iterative decoding is
invoked.

Again, for the sake of finding the optimal memory-2 and
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memory-3 outer components, we created the EXIT curves
for all the possible codes, as in Fig. 4. It was found that
the CC(2, 1, 2) having the generators(g1, g2) = (7, 5)8 and
the CC(2, 1, 3) with generators(g1, g2) = (17, 15)8 yield
the best match. The corresponding EXIT curves are plotted
in Fig. 7. All codes have the same decoding convergence
threshold. The corresponding BER performance is compared
in Fig. 6 after both2 and 20 iterations. The CC associated
with a higher constraint length exhibits a lower BER before
perfect convergence is achieved, e.g. after2 iterations as
shown in Fig. 6. It also has to be noted here that all the
three symbol-based configurations outperform the bit-based
IRCC-URC-SD scheme. Furthermore, after20 iterations, all
codes have a similar performance at a BER of10−4. Codes
having a lower constraint length have the additional benefitof
a lower decoding complexity, since fewer states are invoked
per iteration.

VI. CONCLUSIONS

In this paper, we have proposed an iterative code design for
symbol-based entanglement-assisted classical communication
over quantum depolarizing channels, which is optimized
by exploiting non-binary EXIT charts. It was demonstrated

that our proposed symbol-based scheme provides attractive
performance gains over its bit-based counterpart. Moreover,
we also investigated the impact of using convolutional codes
with lower constraint lengths (i.e. memory2 and 3), thereby
reducing the decoding complexity by invoking fewer trellis
states per iteration.
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