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Abstract—Traditionally, the idea of overlapping generations
in network coding research has focused on reducing the com-
plexity of decoding large data files while maintaining the delay
performance expected of a system that combines all data pack-
ets. However, the effort for encoding and decoding individual
generations can still be quite high compared to other sparse
coding approaches. This paper focuses on an inherently different
approach that combines (i) sparsely coded generations configured
on-the-fly based on (ii) controllable and infrequent feedback
that allows the system to remove some original packets from
the pool of packets to be mixed in the linear combinations.
The latter is key to maintain a high impact of the coded
packets received during the entire process while maintaining very
sparsely coded generations. Interestingly, our proposed approach
naturally bridges the idea of overlapping generations with that of
tunable sparse network coding, thus providing the system with a
seamless and adaptive strategy to balance complexity and delay
performance. We analyze two families of strategies focused on
these ideas. We also compare them to other standard approaches
both in terms of delay performance and complexity as well as
providing measurements in commercial devices to support our
conclusions. Our results show that a judicious choice of the
overlapping of the generations provides close-to-optimal delay
performance, while reducing the decoding complexity by up to
an order of magnitude with respect to other schemes.

I. INTRODUCTION

The transmission of large amounts of data to multiple users

in wireless networks requires mechanisms and protocols that

are (i) resilient to packet losses, (ii) able to maintain a low

overhead for transmissions, and (iii) adaptive to the network

devices’ heterogeneous capabilities and channel conditions.

Fountain codes, such as LT [1] and Raptor codes [2], pose

a potential end-to-end solution to this problem. Since they ex-

ploit a belief propagation algorithm for decoding, receivers can

implement a very resource efficient mechanism for decoding

thus catering to a wide variety of devices. A key limitation of

these codes is the fact that encoders need to follow a very strict

density distribution to ensure decodability with low overhead

(delay). Thus, LT and Raptor codes are useful only for end-to-

end applications, which is inefficient in multi-hop scenarios.

Network coding provides an alternative solution by en-

couraging intermediate nodes in the network to operate on

its incoming coded packets in order to generate new coded

packets. The impact of recoding at intermediate nodes, i.e.,

coding in the network, allows to achieve the multicast capacity

in lossless wireline networks and on lossy, multi-hop wireless

networks. The latter comes in part from the ability to generate

redundancy that is tailored to each wireless link, instead of

generating redundancy end-to-end. Random linear network

coding (RLNC) showed that recoding can be carried out in a

distributed fashion by simply generating linear combinations

of received packets using random coefficients drawn from a

finite field [3]. In contrast, recoding capabilities in LT [1] and

Raptor codes [2] at intermediate nodes has proven difficult

to achieve without modifying the underlying code structure,

e.g., [4].

A key limitation in RLNC lies in its decoding complexity,

which is more resource expensive than belief propagation. In

fact, given N packets of size K symbols in the given finite

field, Gaussian elimination requires O(N3+N2K) operations

to decode. Some approaches, such as systematic network cod-

ing [5] provide simple alternatives to reduce this complexity by

sending uncoded packets at first, followed by RLNC packets

later on. However, its applicability is typically limited to a

few hops, as less uncoded packets will be received when

traversing multiple, lossy links. From a practical perspective,

complexity is reduced by splitting larger files into multiple

disjoint generations of packets [6]. Thus, the system retains

its recoding capabilities and maintains a complexity that is

linear on the number of generations (although with a large

constant), but at the cost of increased overhead. Generations

can be transmitted sequentially or in a round-robin fashion [6]

as well as by using a random schedule [7], using more or less

feedback messages and smaller or larger storage, respectively.

The overhead introduced by splitting the file into smaller

generations can be reduced by letting the chunks overlap [8],

[9]. That way, an original packet may be contained within

multiple generations. When a packet gets decoded within

one generation, it may be back substituted into any other

generation that contains it. This insight has spawned a variety

of approaches from considering overlaps of generations with

different sizes [10] to trade-off delay/overhead and complexity,

to codes that use a sparse pre-coder before creating genera-

tions, e.g., BATS codes [11]. Existing approaches have relied

in the use of RLNC for coding within generations and an

attempt to restrict the use of feedback in the transmission

process.

This paper advocates that exploiting sparse coding within

generations, instead of RLNC, and leveraging occasional feed-

back is instrumental to generating overlapping generations on-

the-fly and providing a low complexity, low overhead solu-

tion. More generally, our approach allows us to trade-off the

overhead in the use of the channel with decoding complexity
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(b) Overlapping method with variable n

Figure 1. Example of proposed overlapping generation methods. (m = 11, nmax = 6, r = 4)

to allow resource limited devices to exploit network coding.

Our proposal is inspired in part by the results of [12] in

Tunable Sparse Network Coding (TSNC) and its potential

for recoding sparse codes. In fact, our proposal constitutes a

specific implementation of TSNC, where the coding density is

increased by dropping original packets that have been “seen”

at the receiver as part of the pool of packets considered to

generate coded packets (using the notation in [13]).

This paper proposes and analyzes families of on-the-fly,

sparsely coded generations and compares it to various non-

overlapping and overlapping generations approaches. We focus

our evaluation on delay/overhead performance as well as com-

plexity. For the latter, we consider measurements on commer-

cial platforms to understand the processing time required by

the different approaches. We show that specific configurations

of feedback and sparsity in our approaches can provide a low

overhead solution with several fold to an order of magnitude

gain in processing time compared to all other approaches.

II. MODEL AND PRELIMINARIES

A. System Model

We consider the case of a sender transmitting a large group

of m data packets to a set of receivers over packet erasure

channels. We order the packets with a given index with the

lowest index assigned to the first packet in the file. The sender

organizes the data packets in generations with a smaller subset

of the packets. Coded packets are generated by using linear

combinations of the packets in each generation choosing the

coding coefficients in a sparse fashion, i.e., by choosing only

a limited number of non-zero coefficients.

A receiver transmits feedback packets to signal to the sender

which packets have been seen up to that point, using a similar

notation to [13]. A seen packet constitutes a packet that has

been included in a received linearly independent coded packet.

Each linearly independent coded packet can provide a single

and unique seen packet at the time of sending a feedback

packet. Packets with lower index are prioritized to have a

greater overlap across multiple receivers. If r packets were

not seen in the previous generation, we say that the overlap

between two generations is r packets.

A signaling event, i.e., reception of feedback packets at the

sender, is generated before the transmission of all packets

in the generation has been completed. The signaling event

triggers the creation of a new generation, which overlaps with

the previous one. The overlap is given by those packets that

were not seen by all receivers. At this point, the sender can

eliminate from its queue all packets that were seen packets by

all receivers. This provides us with a coefficient matrix of the

structure illustrated in Figure 1a. Finally, feedback is assumed

to be lossless and delay free, for simplicity.

B. Proposed Approaches

The use of sparse coding for the overlapping generations

causes the probability of receiving a packet that is linearly

independent of previously received packets to decrease as

more coded packets of the generation are received. The main

idea of letting generations overlap is to increase the innovation

probability of coded packets, i.e., the probability of coded

packets to be linearly independent, such that decoding can be

performed with less received coded packets. Thus, generating

a signaling event more often, i.e., increasing the frequency

of feedback, results in a higher overlap between generations

and, more importantly, in a lower overhead overall. The

latter is a consequence of maintaining a high probability of

receiving linearly independent coded packets during the entire

transmission.

We propose two methods for overlapping generations based

on the above paradigm. First, a method that defines a fixed

generation size of n packets and a target overlap size of r.

The last generation size will be lower or equal to the others

in general. This method is referred to as OG in the remaining.

Figure 1a shows an example of this method in terms of the

senders coding coefficients per sent generation. The example

has m = 11 packets in total, which are split into smaller

equally sized overlapping generations of n = 6 packets plus a

potentially last generation of n packets or less. The generation

overlap is r = 4 packets. Finally, the last generation will be

nlast = 5 packets.

Since the last generation will be responsible for the high-

est overhead, i.e., additional received coded packets, it may

be beneficial to reduce the sizes of the last generations as



illustrated in Figure 1b. This approach will be referred to as

decreasing overlapping generations (DOG), and differs from

overlapping generations (OG) by letting the overlap size, r,

decrease such that generations may shrink in the end.

C. Metrics

We will focus on two performance measures throughout this

paper. First, the number of received packets required to decode

all m data packets. This allows us to measure the overhead of

the different schemes. Second, the decoding time required to

decode the m data packets using commercial devices.

III. ANALYSIS

This section presents an analysis for our proposed overlap-

ping sparse generation schemes described in Section II. We

also provide a similar analysis for comparison schemes. We

will start by defining an upper bound for the estimate of the

probability of a coded packet to be innovative, i.e., linearly

independent, to a receiver that has accumulated i linearly

independent packets. This probability can be calculated for

a generation size of n data packets and a density, d as

P (i, n, d) = Pinnovative(i, n, d) ≥ 1− (1 − d)n−i. (1)

This bound was used in [14].

Using Eq. (1), the expected number of packets needed

to be received to increase a decoders rank by one can be

calculated by 1/P (i, n, d). With that in mind, we can derive

the expected number of packets needed to be received to

decode a generation.

If we use a single generation (SG), the expected number of

received coded packets is

ESG(m, d) =

m−1
∑

i=0

1

P (i,m, d)
. (2)

In contrast, a non-overlapping generation scheme (NOG)

consisting of k disjoint generations, (k − 1) equally sized

and one generation of the same size or smaller. The expected

received packets required to decode can therefore be found as

ENOG(m,n, d) =

(k − 1)

n−1
∑

i=0

1

P (i, n, d)
+

nlast−1
∑

i=1

1

P (i, nlast, d)
. (3)

The number of generations is given by k = ceil(m/n). The

last generation size is found to be nlast = m− ((k − 1)n).
For our proposed OG scheme, if we consider Figure 1a,

we see that only the first n − r packets of each generation,

except the last one, are transmitted. The last generation should

however be transmitted as a normal generation. This means

that the expected number of received coded packets is given

by

EOG(m,n, r, d) =

(k − 1)

(n−1)−r
∑

i=0

1

P (i, n, d)
+

nlast−1
∑

i=0

1

P (i, nlast, d)
. (4)

The number of generations can be calculated as k = 1 +
ceil((m/n)(n− r)), and the last generation will have the size

nlast = m− (k − 1)(n− r).
Four our proposed DOG scheme, there is a decreasing

overlap size and the reduction in generation sizes, which

means that

EDOG(m,n, r, d) =

k−1
∑

j=0





(nj−1)−rj
∑

i=0

1

P (i, n, d)



 . (5)

The number of generations by k = ceil(m/(n− r)). For each

generation j = {0, 1, . . . , k − 1}, we find the j’th generation

size nj = min(n,m− j(n− r)), and the decreasing overlap

rj = max(0, nj − n+ r).
Finally, we consider a systematic approach with overlapping

generations (SR). In each generation, the packets are first

transmitted uncoded, and then finished using RLNC. The

analysis is similar to the NOG scheme, where we have (k−1)
equally sized generations and one generation of same size or

smaller. We complete one generation at a time, so we still

sum the expected received packets required to decode in order

to find a total amount of packets required to decode for m
packets.

However, SR differs from the other methods since it does

not consider a sparsely coded set of generations. Therefore,

we are dependent on which packets are lost, and the packet

erasure, e, has therefore been included into the expression

ESR(m,n, d, e) =

(k − 1)

n
∑

l=0

(

Bi(l, n, 1− e)

(

l +

n−1
∑

i=l

1

P (i, n, drlnc)

))

+

nlast
∑

l=0

(

Bi(l, nlast, 1− e)

(

l +

nlast−1
∑

i=l

1

P (i, n, drlnc)

))

.

(6)

where Bi(l, n, p) represents a binomial distribution, where

n is the generation size, p is the probability of successfully

receiving coded packets, and l = {0, 1, . . . , n} represents the

number of uncoded packets received. We find the number

of generations, k = ceil(m/n), and the last generation size,

nlast = m− ((k − 1)n).

IV. PERFORMANCE EVALUATION

This section will be used to present the performance of

our proposed methods, OG and DOG. The proposed methods

will be compared to three other methods for transmitting

a large group of packets: (1) transmitting all packets in a

single generation using a 3-sparse density, named SG; (2)

transmitting packets in smaller non-overlapping generations

one generation at a time using 3-sparse, named NOG; (3)

transmitting non-overlapping generations one at a time as in

(2), but using systematic coding with RLNC to complete each

individual generation that experienced packet losses. We refer

to this method as systematic RLNC (SR).

We have measured the average time spend decoding a gen-

eration until a given rank i is obtained. These measurements
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Figure 2. Results using GF (28)/{0}.

were performed on a decoder implemented in KODO [15].

Because we have the time spend to achieve a given rank,

the measurements can simply be inserted in the equations of

Section III to archive an estimate of the decoding time of the

schemes given that they were implemented.

More specifically, we implemented a single-hop, single

receiver setup and measured the time spend and the average

number of symbols received by the decoder at each obtained

rank. This was done for a single generation of size ranging

from 1 to 1024 symbols, and a 3-sparse coding density such

that d = min
(

0.5, 3
n

)

for GF (2)/{0} and d = min
(

1, 3
n

)

for

GF (28)/{0}. All measurements have been performed with

packets of size 1500 bytes in GF (2) and GF (28), but the

results will only be presented for GF (28) since both fields

show the same tendencies.

Given the measurement data, we can plot the packets re-

quired to decode an outer-generation of various sizes for each

methods using the results from Section III. This is illustrated

in Figure 2b, where the inner generation is n = 128 symbols

is kept constant.

Figure 2a shows that even with a density as low as 3-

sparse, we obtain a performance that is far below SG and

NOG, while performing only slightly worse than SR, which

is optimal in terms of delay performance. Furthermore, DOG

seem to perform slightly better than OG in terms of overhead,

i.e., received coded packets.

Figure 2b measures the decoding time of the same schemes.

This time only measures the time invested in processing and,

thus, is not affected by packet erasures on the communication

channel. The packet erasures do however punish the SR

method since an increased packet loss probability will cause

more systematic packets to be lost and eventually replaced by



RLNC packets. This is due to the fact that systematic packets

require essentially no processing time, while RLNC packets

are very dense and thus very time consuming to decode.

Figure 2b shows also that SR performs better with low

erasure probabilities, as expected, while OG and DOG perform

better in case of increased erasures (> 5 %). We also see that

a higher overlap is better in terms of decoding time. This may

however change in a final implementation due to changes in

the back-substitution and book-keeping mechanisms [16].

Figure 2c considers the average decoding time it takes to

obtain a given rank during transmission of an outer-generation

of size m = 1024 packets. It is based on time measurements

and generated using the equations presented in previous sec-

tions. Obtaining a rank is essentially the same as receiving

an innovative packet, but does not mean that the packets can

be decoded yet. Again, we see the same tendencies as in the

previous figures. The SR is very dependent on the erasure

probability and will perform better in case of low erasures,

but even with a relative small erasure probability it will be

outperformed by OG and DOG.

Finally, Figure 2d shows the explicit trade-off between

received coded packets as a function of decoding (processing)

time, considering the effect from the overlap size, r, and

channel erasures on OG, DOG, and SR. The performance

of SG is mediocre both in overall processing and delay

performance, while the NOG method performance has similar

performance to our proposed OG and DOG without overlap,

r = 0. Increasing the overlap between generations, decreases

the processing time on the overlapping methods due to less

dependent packets. SR has the lowest probability of receiving

dependent packets, but increasing the erasure even mildly will

cause its decoding processing time to increase dramatically

by more than an order of magnitude. Thus, DOG can provide

close-to-optimal performance in delay (overhead) performance

while providing a significantly smaller processing effort on

the receivers. The feedback requirements for DOG and OG

are mild and comparable in many cases to those of SR, i.e., a

single feedback per generation used.

V. CONCLUSIONS

This paper advocates for an on-the-fly strategy for overlap-

ping generations of data packets, while maintaining a sparse

coding over the packets of each generation. More specifically,

we propose two families of solutions that leverage a small

amount of feedback to provide a controllable complexity-delay

trade-off. Inherently, this article brings together the problems

of overlapping generations and the tunable sparse network

coding in a common setting.

Our comparison to alternative schemes were based on both

delay/overhead performance and processing time on commer-

cial devices. Our results showed that our proposed overlapping

of sparse generation significantly decreases the number of

received packets required to decode a large group of data pack-

ets. The level of overlap between generations has an important

effect on performance, where a higher overlap maps into a

better delay performance. We also showed that our proposed

methods are very dependent on the last generation size, thus

opening the door for future research in optimizing the gen-

eration sizes of the generations along the entire transmission

process. Overall, we showed that our proposed methods can

provide close-to-optimal delay performance, while reducing

the processing effort by orders of magnitude in real systems.

Future work shall focus on more complex network settings,

considering the effect of imperfect feedback, and considering

the effect of recoding coded packets at intermediate nodes.
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