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Abstract—The development of context-aware applications is a
difficult and error-prone task. The dynamics of the environmental
context combined with the complexity of the applications poses
a vast number of possibilities for mistakes during the creation of
new applications. Therefore it is important to test applications
before they are deployed in a life system. For this reason, this
paper proposes a testing tool, which will allow for automatic
generation of various test cases from application description
documents. Semantic annotations are used to create specific
test data for context-aware applications. A test case reduction
methodology based on test case diversity investigations ensures
scalability of the proposed automated testing approach.

I. INTRODUCTION

Context-aware applications promise to adapt to the situa-
tion of an entity (person, place, physical or computational ob-
ject). This requires reliable techniques for information extrac-
tion gathered from physical or virtual sensors and consecutive
adaptation of the application to the current context. Context-
aware applications interact with the real world and have to cope
with harsh environments where the provided information may
be incomplete or erroneous. This demands for sophisticated
evaluation and testing of context-aware applications before
deployment. This is particularly true for recommender and
actor systems in a productive environment (e.g. traffic control
system not working properly). However, testing of context-
aware applications differs from classical application testing:

• Specific real world situations may not be available for
testing and need to be emulated.

• The time constrains of real world processes hinder fast
testing.

• Sensor devices are often resource constrained (e.g. bat-
tery) thus forbidding extensive testing.

• Context-aware applications controlling actors need critical
testing without/before attaching the actors.

Hence, the strong interaction with the physical world needs
to be addressed by the test environment. Furthermore, the
scalability and time efficiency of the approach needs to be
estimated realistically. Previous testbed approaches handle ex-
ternal resources in different ways (e.g. WISEBED [1], Kansei
[2] cf. Gluhak et al. [3] for a comprehensive comparison of
testbed features):

• physical resources (e.g. sensors) in a testbed
• virtual resources (e.g. emulated sensors or data bases) in

a testbed

• a combination of physical and virtual resources
• gateways to generically connect physical resources

The main drawback of the first approach including physical
resources is the limited scalability and ability to test specific
situations (e.g. room temperature < −20 ◦C ). Improved
scalability as well as larger control of test situations can
be achieved with virtual resources. Most approaches build
a virtual machine that represents the external resource. The
target platform can then be directly deployed in this virtual
machine. Tests can therefore be run from the perspective of
the virtual resources as well as from the connected context-
aware applications. Although, concepts combining virtual and
physical resources in the testbed have a great coverage of
hardware and software-related failures, they show limitations
with regard to scalability. To overcome the heterogeneity of
context-provisioning resources Diaz et. al [4] suggest a sys-
tematic implementation of gateways to lower the testing costs
by connecting the application, i.e. System Under Test (SUT),
and testing tool. As a result, complexity of interaction between
the SUT and the external resources is hidden from the test
framework but still needs to be modelled within the gateway.
Model-based testing is a well-investigated research area whilst
the allowance of the integration of resource constrained devices
is not solved. Especially concerning emulation and simulation
due to the avoidance of device specific costs [5].

To overcome the complexity and drawbacks of these ap-
proaches this paper proposes an automated process of test case
generation based on application description documents. The
main novelties of the proposed solutions are as follows:

• A new context-aware application model designed for
automated test case creation and execution is presented.
It reflects the differences of the context-aware application
behaviour to other applications.

• The test approach enables an early and simplified test-
ing of context-aware applications by encapsulation and
separation of application and external (physical or vir-
tual) resources based on interface emulations during SUT
execution in a sandbox environment. As test specification
language and for test control the Testing and Test Control
Notation Version 3 (TTCN-3) [6] is employed. TTCN-3
is a European Telecommunications Standards Institute
(ETSI) standard [7] that supports black-box testing of
distributed systems.

• A complete automation of test case generation is pro-
vided that i) analyses machine interpretable application



descriptions to ii) generate an Application Behaviour
Model (ABM) based on extended finite state machines.
The ABM is exploited to iii) extract TTCN-3 test cases
employing the script engine Velocity [8]. The automation
ensures that context-aware applications can be tested
systematically without the need for human intervention
during test design and execution, thereby ensuring scala-
bility and efficiency.

• The problem of test case explosion is addressed by
computing the similarity between Test Cases (TCs). New
optimisation techniques based on a Greedy algorithms are
utilised to optimise the test case group selection.

• Data types are restricted based on guard dependency
analysis for each test case individually. The data values
are generated prior to test execution. This allows an
efficient way of integrating data values into the test case
diversity optimisation.

The remainder of this paper is structured as follows:
Section II provides an overview of the test concept for context-
aware applications. Section III describes the automated test
case derivation from an application description. Section IV
deals with reduction of test cases. In Section V the test cases
are executed and the results are discussed. Finally Section VI
concludes this paper.

II. TEST CONCEPT

A. Categorisation of Context-Aware Applications

To ease the generation of new context-aware applications
the suggested approach supports service oriented architectures
(SOA). SOA supports reuse of service components and com-
position during run-time. The service logic, i.e. workflow,
can be described with Business Process Model and Notation
(BPMN). Here the service employs RESTful interfaces based
Get, Post, Put, and Delete request methods, whose invocation is
defined in a Web Application Description Language (WADL)
document [9]. The implemented service can be deployed in a
run-time environment for web services.

As defined in [10], two types of context-aware services
can be specified to ensure direct consumption and composi-
tion of external resources without dealing with heterogeneous
interfaces:

• An Atomic Service (AS) accessing 0 - n external re-
sources via their own individual interfaces and radio
technologies. It provides access to these resources via its
standardised service interface.

• A Composite Service (CS) enables a business process
based composition of various AS and CS. It can provide
an interface for services that do not directly connect to
external resources. It employs only AS and other CS to
acquire sensor information and to control actuator nodes.

Please note that the suggested approach is not limited to
SOA and the following test automation can be realised with all
kinds of documents which include information to derive a state
machine model of the application (e.g. provides information
about, Input, Output, Precondition and Effect (IOPE)). For
matter of demonstration purposes, the developed testing tool
is based on BPMN and WADL documents.

B. Overall Test Architecture

The architecture supports testing by specific components
for test design and execution in a test environment i.e. Sand-
box, that provides the context instead of the real world:

• The Test Design Engine (TDE) is responsible for storing
the application behaviour model of the SUT, enabling the
interaction with the test designer, analysing the applica-
tion behaviour model, and for deriving executable TCs.

• The Test Execution Engine (TEE) executes the tests and
ensures that the Run-Time Sandbox environment is set up
according to the current test case. It provides emulated AS
based on the specified tests.

• The Run-Time Sandbox environment hosts the SUT and
manipulates the communication to ensure that the CS
can be tested without the need for interaction with the
connected ASs and their links to sensors and actuators.

C. Test Generation Process

The test case derivation and execution is divided in five
steps as described in the following sections:

• The application description provides information about
the application in a machine interpretable format (Section
III-A).

• The application description is processed to derive an
ABM (Section III-C).

• Test Cases are derived from the ABM (Section III-D).
• Test case reduction selects distinct test cases to keep

testing time in limits while preserving test coverage
(Section IV).

• The selected test cases are executed in a Sandbox. (Sec-
tion V)

III. TEST CASE DERIVATION

A. Application Description Documents

For automation purposes documents describing the appli-
cation and its behaviour are utilised. The available methods
of a simple AS are described using the WADL format. The
input parameters and return values are further described in
referenced XML Schema Definition (XSD) documents. Here,
technical limits of the datatypes used as the parameters and
return values are stated. Such technical limitations include
value ranges, lists of mandatory and optional paramters etc..
Knowledge about the context of a parameter can help to
limit them further. Therefore a link between a parameter
and an instance in an upper ontology (e.g. the Suggested
Upper Merged Ontology (SUMO) ontology) is created by
using the type attribute within the parameter node in the
WADL document. A prominent example are temperatures. A
parameter expecting a float value has an absolute minimum of
2−149 (in the programming language JAVA), but the knowledge
that this parameter represents a temperature allows confining
the minimum at -273.15 degree Celsius. The knowledge can
be used to either generate meaningful test data for each
parameter or to evaluate the plausibility of the output by an
AS. Finally, BPMN is used to compose multiple AS for a
complete application.



B. Application Behaviour Model

For the ABM, state machine concepts of states and tran-
sitions are re-used. In addition, the inclusion of concepts of
TTCN-3 (e.g., Ports, Components, MessageTemplates) enables
an easy model transformation. The basic model objects are
shown in Figure 1 and can be described as follows:

States represent different logical conditions of the SUT and
limit the number of correct functionality.

Events characterise the starting of an activity, which might
result in actions or a state change. Events can be either
from the type timer or input message. One or more events
are attached to a transition.

Actions describe the reaction of the system to an event. An
Action can be either a response message (output) or can
result in a request sent to an external resource. Actions
are attached to a transition.

Transitions can be divided into two types. Active transitions
(those containing an action) describe how the SUT reacts
to a certain event and at a specific state. Passive transitions
(those containing only events) describe how a user or the
test environment might interact with the SUT. Both types
connect different states within the model.
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Fig. 1. Major elements of ABM.

C. Application Behaviour Model Generation

The starting point for the generation of the ABM is
the applications BPMN description document. The business
logic is parsed and an ABM instance is build iteratively.
Invocations and Receptions in BPMN are mapped to transitions
and states are inserted in between. Loops are realised by
transitions pointing at a previous state and conditions lead
to multiple transitions leaving from a single state. All in-
volved AS, required to execute the application, are included
as service endpoints in the BPMN. They reference to the
corresponding WADL document, describing the AS. Each
WADL itself references the XSD descriptions and optionally
an ontology describing the parameters and return values. This
information is utilised to define the test data as Action or Event,
depending on the SUT acting as the sending or receiving party,
respectively. Consecutively, Actions and Events are attached to
the corresponding transition.

Figure 2 shows an example ABM displayed in the editor
of the developed testing tool. The test developer can view and
modify the created model but no intervention is required since
the model is created in a fully automated way.

D. Test Case Extraction

The ABM is used to derive test cases. In the first stage each
possible path in the state machine, from a start point to an end
point is considered an individual test case. A configuration of

Fig. 2. ABM evaluation in developed testing tool.

the test case generation allows transition coverage or transition
and state-coverage based on the W method [11].

The Model transformation from ABM to standardised
TTCN-3 ensures explicit representation and reproducibility of
test cases. During the model transformation each element is
inspected and the required TTCN-3 elements are created. The
actual writing of the TTCN-3 code is realised with a template
engine. This enables the separation of syntactical details of
the TTCN-3 language from the analysing logic thus reducing
the complexity and enhancing the manageability. The followed
approach uses the Java-based template engine Velocity [8]. In
the following the transformation step is outlined with some
detail. The model object InitialState is used to create the
general test case structure and assures that the test case stops
after a defined time by adding a timer. Afterwards, the TTCN-3
element function is created and added to the test case. TTCN-3
functions are utilised to separate different steps of the test
execution. These reusable functions are used to represent the
different states of the SUT.

The next element Transition consists of an Event that can
describe that an input is received by the SUT and an Action
that describes the output reaction of the SUT to this input
message. Table I sketches the transformation from the model
object event to a send operation and the storage of the sent
values for later usage. Since the ABM is created from the
service point of view the translator inverts certain expressions
for the purpose of testing. In this case the event of a transition
becomes a send call.

TABLE I. TTCN-3 Translation of ABM Object Event.

Action: TTCN-3 Output:

Create send
call and local
variable

template HttpRequest req_setPan_1_0 := {
postRequest := {

url := "http://10.1.1.42:80/CameraService/
iot/Camera/pan/10.11.127.6/19.27", ...
} }

v_PositionResponse_pan := 19.27;
f_request(p1, req_setPan_1_0);
v_req_setPan_1_0 := req_setPan_1_0;

Subsequently, the action part of the transition is utilised to
derive TTCN-3 code. Initially a new function for the next state
is created. Afterwards the defined response of the SUT is trans-
lated into TTCN-3. Then, the TTCN-3 element alt is used to
form the possibilities of the SUT behaviour. At first, the failure
case for delayed or unexpected service responses is modelled.



After that the followed approach assumes deterministic service
behaviour with only one possible valid reaction. This expected
behaviour is included in the alt element of TTCN-3 including
the jump to the next TTCN-3 function (state) created before.
Table II shows the discussed transformation process of the
model object action.

TABLE II. TTCN-3 TRANSLATION OF ABM OBJECT ACTION.

Action: TTCN-3 Output:

Create Target Call S1_1_2();

Create expected re-
sponse message

var template GETResponse resp_setPan_1_0
:= {

statusCode := (200 .. 299),
content := {rawContent := omit,

plainTextContent :=?},
headers := ? }

Form alt for Mes-
sage

alt {
[] testcaseMaxExecutionTimer.timeout {

tcMaxExecutionTimeout_1();}
[] any port.receive {

unexcepctedStateReached_1(); }
}

Create reply ele-
ment in alt

alt {
[ischosen(req_setPan_1_0.postRequest)]

p1.getreply(POSTreq: {req_setPan_1_0
.postRequest} value resp_setPan_1_0)
-> value v_resp_setPan_1_0 { S1_1_2
();}

...}

While the link to the next function has been created during
the action transformation, in the last step the function itself
is created at the time the next element (NormalState) of the
Test Case (TC) is inspected. The test case is completed when
the model object EndState is reached. This completes the
TTCN-3 code creation by setting the verdict to pass. If all
functions, corresponding requests and response messages have
been transmitted during the TC execution this final statement
indicates that the SUT has the expected behaviour for this TC.

IV. TEST CASE REDUCTION

The followed model-based testing approach enables an
automated Test Case (TC) creation and execution based on
machine interpretable application descriptions. However, the
derivation process creates lots of TCs, which can not be
executed within a reasonable time. Therefore, it is eminent to
identify which TCs should be selected for execution to ensure
the best target test coverage within given time and resources.

The present work follows a similarity investigation ap-
proach, which tries to identify the most diverse TCs for test
execution based on a pairwise similarity between all TCs.
For the followed TC reduction approach it is necessary to
identify the similarity between TCs. The result of the similarity
computation is a similarity score matrix which contains the
pairwise similarity score between all TCs. Afterwards, the
target number of TCs is selected based on the similarity score
matrix. The objective is to find the group of TCs which have
the lowest average similarity between the TCs of the selected
group. Note, that this is a NP-hard problem [12] and the
optimum can therefore not be found in polynomial time.

The similarity score is computed based on the Levenshtein
algorithm. Based on the basic operations of add, del, mod-
ify the sequence of symbols (e.g, states, transitions) of the
FirstTestCase is compared to the sequence of symbols of the
SecondTestCase. It computes the number of operation steps
required to alter the FirstTestCase for reaching the second one.
The computed distance is then converted to a similarity score
and normalised to the maximum number of symbols. Different
to the realisation of Hematie et. al [13], counting only matches,
this algorithm is able to measure the distance between two TCs
as intended by the Levenshtein algorithm. Further information
about the realisation can be found at [14].

An example state machine with 5 states, 10 transitions (and
one transition for initiation), 2 input messages and 2 output
messages is implemented and Path Finder creates 132 TCs
with full state and transition coverage. The experiment has
been repeated 10,000 times to ensure converging results. Fig.
3 shows the Empirical Cumulative Density Function (ECDF)
of the similarity score based on the similarity score matrix,
computed with the Levenshtein algorithm. If the sample quan-
tiles are connected with a regression, the slope of the resulting
function is high, i.e., between 0.1 and 0.5 (axis of abscissae).
Therefore, the test case optimisation algorithm needs to handle
similarity score values with small differences.
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Fig. 3. Empirical cumulative density function of the Levenshtein similarity
score algorithm

As the baseline, the random selection of a group of TCs
has been implemented. It starts with the input of the Similarity
Scores matrix, all TCs, the target number of TCs and the
number of trials (numTrials). The output of the algorithm is
the list of selected TCs for the execution. For each trial, the
target number of TCs is selected out of all TCs. Afterwards,
the summarized similarity score between all selected TCs
is computed based on the pairwise similarity scores. For
each iteration, the computed summarized similarity score is
compared to the lowest previous summarized similarity score.
After the defined number of trials the group of TCs with the
lowest summarized similarity score is selected for the test
execution. This approach converges slowly and finds the best
group of TCs if the number of trials is infinite. Hence another
algorithms should be favoured, that finds better groups of TCs
in shorter time.

Within this paper the selection of a group of TCs is
based on an extension of the Greedy algorithm. The Greedy
algorithm is a heuristic problem solving approach where in
each step an optimal solution is selected. It can be utilised to
approximate a global optimum based on local optima [15]. For
TCs reduction, the goal is to remove the worst TCs from all
available TCs until the target amount of TCs is reached. As



proposed by Hematie in [16], the comparison can be realised
by applying a pairwise comparison between TCs. While the
target number of TCs is not reached, the two most equal TCs
are identified and the shorter TC is removed (assuming that
longer TCs can find more failures). A drawback of the Greedy
algorithm is that the decision which TCs should be removed
relies on a pairwise comparison of TCs [16]. This type of
Greedy algorithm does not support the goal of optimising a
group of TCs. To overcome this, a new Greedy algorithm
called Group Greedy is proposed. At first, the algorithm selects
one TC as the first element of the target TC group. Then,
for each unselected TCs the total similarity score between the
selected TCs and the unselected TCs is computed. The two
unselected TCs with the lowest total similarity to the selected
group are identified and the longer of these two TCs is added
to the target TC group. The selection process is repeated until
the desired target TC group size is reached.

V. TEST CASE EXECUTION

After compilation of the TTCN-3 test cases the whole test
flow can be executed by a web service interface or manually
using the TTworkbench [17]. It enables a visualised logging
of test execution in a log report, which can be used to evaluate
the detailed test results.

The goal to reduce the average similarity for a dedicated
number of selected TCs is based on the assumption, that
a lower average similarity results in more diverse TCs and
therefore can find more failures. To verify this assumption,
a generic service and the correspondent ABM is created.
Afterwards, failures are inserted into the ABM and the TCs
are executed. Due to failure insertion, the created service and
the ABM differ and those failures can be detected during
execution. Figure 4 shows the failure detection rate with
different target number of TCs and compares the performance
of the random selection (RS) algorithm with 100 trials with
Group Greedy (GGr) selection. The results show, that GGr
can increase the failure detection rate (doubled from 27% to
55% with 60 TCs) while requiring less computation time (not
shown in the figure) compared to random search selection.
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Fig. 4. Failure detection rate for test case group selection with random and
group Greedy selection

VI. CONCLUSION

The development of reliable context-aware applications
requires sophisticated testing. This paper suggests to foster
testing by a semi-automated test case generation and test case

execution. It addresses the particular requirements of context-
aware applications that rely on external resources to provide
context information. It separates the context provisioning of
the real world from the application, i.e. system under test.
This allows controlled and faster replay of specific situations to
test the functional behaviour of context-aware applications. It
was shown that test cases can automatically be extracted from
an application behaviour model. Good test coverage, while
keeping test time low, was achieved by selecting test cases
using Group Greedy algorithm and Levenshtein similarity.
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