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Abstract—In this paper, a mathematical framework for the
analysis of average symbol error probability (ASEP) in millimeter
wave (mmWave) cellular networks with Poisson Point Process
(PPP) distributed base stations (BSs) is developed using tools from
stochastic geometry. The distinguishing features of mmWave com-
munications such as directional beamforming and having different
path loss laws for line-of-sight (LOS) and non-line-of-sight (NLOS)
links are incorporated in the average error probability analysis.
First, average pairwise error probability (APEP) expression is
obtained by averaging pairwise error probability (PEP) over
fading and random shortest distance from mobile user (MU) to
its serving BS. Subsequently, average symbol error probability
is approximated from APEP using the nearest neighbor (NN)
approximation. ASEP is analyzed for different antenna gains and
base station densities. Finally, the effect of beamformingalignment
errors on ASEP is investigated to get insight on more realistic cases.

I. I NTRODUCTION

Demand for mobile data and use of smart phones have been
increasing very rapidly in recent years. According to the UMTS
traffic forecasts, 1000 fold increase in mobile data traffic is
predicted by the year 2020 [1]. In another estimate, more than
50 billion devices may be connected wirelessly by 2020 which
may cause a capacity crisis [2]. To meet this increasing demand,
moving to new frequency bands becomes a necessity. Therefore,
the large available bandwidth at millimeter wave (mmWave)
frequency bands, between 30 and 300 GHz, becomes a good
candidate for the fifth generation (5G) cellular networks and
has attracted considerable attention recently [3], [4], [5], [6].

Evaluating the system performance of mmWave cellular
networks is a crucial task in order to understand the network
behavior. There are several recent studies which analyze the
coverage probability and average rate in mmWave cellular net-
works using results from stochastic geometry and the theoryof
point processes for different base station(BS)-user associations
[7], [8], [9]. Stochastic geometry is a commonly used powerful
mathematical tool to evaluate the average network performance
of spatially distributed nodes [10]. Poisson point process(PPP)
is a widely used model in wireless networks in general and
in cellular networks in particular due to its analytical tractabil-
ity. However, average error probability in PPP-based cellular
networks has only been barely analyzed in the literature. For
instance, there is work focusing on the computation of average
symbol error probability (ASEP) in the presence of Poisson field
interferers (see e.g., [11]). However, none of them are applicable
to cellular networks since the BS to mobile user (MU) cell
association is generally not considered. In [12], a mathematical
framework to compute the ASEP in cellular networks, where the

BS locations are modeled as independent homogeneous PPPs,
is established for the first time. Their approach is based on
the shortest BS-to-MU distance cell association criterion, which
guarantees that the interfering BSs are located farther than the
serving BS, so it is applicable to cellular networks. However,
to the best of our knowledge, average error probability analysis
has not been conducted for mmWave cellular networks yet.

In this paper, we follow a similar approach as in [12] to
develop a mathematical framework for the computation of
ASEP in downlink mmWave cellular networks. First, average
pairwise error probability (APEP) is calculated by averaging
PEP over fading and random shortest distance from MU to
serving BS. Then, ASEP is found using the nearest neighbor
(NN) approximation. The main contribution of this paper is the
combination of the characteristic features of mmWave commu-
nications with the proposed mathematical framework in [12].
One distinguishing feature of mmWave cellular communication
is the directional beamforming at the transmitter and receiver,
which provides an array gain to mitigate the effect of path loss.
In this paper, sectored directional antenna model is used tofind
the effective antenna gain similar to [7], [8], [14]. First,perfect
beam alignment is assumed between the MU and the serving
BS. Then, the effect of beamsteering errors is investigated.
Another distinct feature of mmWave communication is that a
BS can be in the line-of-sight (LOS) or in the non-line-of-sight
(NLOS) of MU and different path loss laws are applied for LOS
and NLOS links. Here, we adopt the equivalent LOS ball model
in [7] to determine whether a BS is LOS or NLOS.

II. SYSTEM MODEL

In this section, we introduce our system model for the down-
link mmWave cellular network consisting of BSs distributed
according to some homogeneous PPPΨ of densityλ in the
Euclidean plane. Without loss of generality, we consider that
a typical MU is located at the origin. A shortest distance cell
criterion is assumed, i.e., MU is served by the nearest BS which
is denoted by BS0. The distance from theith BS to the MU
is denoted byri for i ∈ Ψ. Thus, the distance between the
MU and serving BS (BS0) is r0 which is a random variable
(RV) with PDF fr0(ξ) = 2πλξ exp{−πλξ2} [15]. The set of
interfering BSsi ∈ Ψ−BS0 is still a homogeneous PPP, denoted
by Ψ(\0), according to the Slivnyak-Mecke’s Theorem [10].
We assume that all the interfering BSs are transmitting in the
same frequency band as the serving BS (full frequency reuse),
thereforeΨ(\0) has densityλ as well.
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We have the following two assumptions in the construction
of the system model.

Assumption 1: Antenna arrays at both the BSs and MU
are used to perform directional beamforming such that the
main lobe is directed towards the dominant propagation path
while smaller sidelobes direct energy in other directions.For
tractability in the analysis, antenna arrays are approximated by
a sectored antenna model, in which the array gains are assumed
to be equal to a constantM for all angles in the main lobe and
another smaller constantm in the side lobe [16]. The MU and
serving BS, BS0, are assumed to have perfect beam alignment
and therefore have an antenna gain ofMM . Also, the beam
direction of the MU and each interfering BS can be modeled as
a uniform random variable on[0, 2π]. Therefore, the effective
antenna gain is a discrete RV described by

Gi =







MM with prob.pMM = ( θ
2π )

2

Mm with prob.pMm = 2 θ
2π

2π−θ
2π

mm with prob.pmm = (2π−θ
2π )2

, (1)

whereθ is the beam width of the main lobe.
Assumption 2: A BS can be either LOS or NLOS BS to the

MU according to theLOS probability function p(r) which
is the probability that a link of lengthr is LOS. Using field
measurements and stochastic blockage models,p(r) can be
formulated ase−βd where decay rateβ depends on the building
parameter and density [17].LOS probability function p(r)
can be approximated by a step function in order to simplify
the analysis. In this approach, the irregular geometry of the
LOS region is replaced with its equivalent LOS ball model with
radiusRB [7]. A BS is a LOS BS to the MU if it is inside the
ball, otherwise it is a NLOS BS. Different path loss laws are
applied to LOS and NLOS links. Thus, the path-loss exponent
on each interfering link can be expressed as follows:

αi =

{
αL if r ≤ RB

αN if r > RB
, (2)

whereαL andαN are the LOS and NLOS path-loss exponents,
respectively.

By combining these two assumptions with the described
network model above, the received signal at the MU can be
written as,

y =
√

G0E0r
−αL

0 h0s0
︸ ︷︷ ︸

x

+
∑

i∈Ψ(\0)

√

GiE0r
−αi

i hisi

︸ ︷︷ ︸

Iagg

+n. (3)

wherex is the signal arriving from the serving BS to MU,Iagg

is the aggregate network interference, andn is the Gaussian
distributed noise component with zero mean and varianceN0.
Moreover,G0 is the effective antenna gain of the BS0-MU link
and it is assumed to be equal toMM , E0 is the BSs’ transmit-
energy per transmission,αL is the LOS path-loss exponent
of the BS0-MU link, s0 = a0 exp {jθ0} is the information
symbol transmitted by BS0 with amplitudea0 and phaseθ0,
h0 = |h0| exp {jφ0} is the fading coefficient in the BS0-
MU link where |h0|2 is an exponential RV with parameter
σ0 = E|h0|2 = 1 and the phaseφ0 is a uniformly distributed
RV in the range[0, 2π). A similar notation is used forIagg, but
note that the effective antenna gainGi and path loss exponent

αi are different for different interfering links as describedin (1)
and (2), respectively. Also, considering phase modulation, we
assume thata0 = ai = 1 for i ∈ Ψ(\0).

At the MU, an interference-unaware maximum-likelihood
(ML) demodulator is used as in [12], which can be formulated
as [13]

ŝ0 = argmin
s̃0

{D(s̃0) = |y −
√

G0E0r
−αL

0 h0s̃0|2}. (4)

Inserting (3) into (4) and neglecting some irrelevant constants
after algebraic manipulations, we can express the decision
metric as

D(s̃0) ∝ r−2αL

0 G0E0|∆s,s̃|2|h0|2

+ 2r−αL

0

√

G0E0Re{(Iagg+ n)|h0| exp {−jφ0}∆∗
s,s̃},

(5)

where∆s,s̃ = s0 − s̃0, Iagg =
∑

i∈Ψ(\0)

√
GiE0r

−αi

i hisi and
n ∼ CN (0, N0). Since the effective antenna gain between the
MU and each interfering BS is modeled as an independent
RV, we can employ the thinning property of PPP to split the
aggregate network interferenceIagg into 6 independent PPPs as
follows [14]:

Iagg = (IMM
ΨLOS

+ IMM
ΨNLOS

) + (IMm
ΨLOS

+ IMm
ΨNLOS

) + (Imm
ΨLOS

+ Imm
ΨNLOS

)

=
∑

G∈{MM,Mm,mm}
(IGΨLOS

+ IGΨNLOS
), (6)

where each interfering BS is either a LOS or NLOS BS and the
superscripts represent the discrete random antenna gain defined
in (1). According to the thinning theorem, each independent
PPP has a density ofλpG wherepG is given in (1) for each
antenna gainG ∈ {MM,Mm,mm}.

III. AVERAGE ERROR PROBABILITY ANALYSIS

In this section, we investigate the error performance of a
downlink mmWave cellular network. The first step in obtaining
an approximation of the average error probability is to com-
pute the pairwise error probability (PEP) associated with the
transmitted symbols. Hence, initially we derive an expression
for PEP, conditioned on fading gain (|h0|) and random shortest
distance of the MU-serving BS link (r0), in terms of the char-
acteristic function (CF) of the aggregate network interference
and the noise. A closed-form expression is determined for the
CF of the aggregate network interference for PPP distributed
BSs. Then, APEP is computed by averaging the conditional PEP
over fading and the position of the serving BS. Finally, ASEP
is approximated from APEP using the NN approximation.

A. Derivation of Pairwise Error Probability

The PEP is defined as the probability of deciding in favor of
ŝ0 when actuallys0 is transmitted. It is assumed that these two
symbols are the only two symbols in the signal-constellation,
and therefore decision is made strictly between these two
symbols. Using the decision metric in (5), PEP conditioned on
|h0| andr0 can be computed as

P{s0 → ŝ0||h0|, r0} = P{D(s̃0 = ŝ0) < D(s̃0 = s0)}. (7)

When s̃0 = s0, ∆s,s̃ = s0 − s̃0 becomes zero by definition. As
a result,D(s̃0 = s0) is zero. LetU = Iagg+ n. Note thatU is
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a circularly symmetric RV. Thus,U exp {jφ0}arg{∆∗
s,ŝ}

d
= U

[18]. Thus, PEP can be computed as follows:

P{s0 → ŝ0||h0|, r0} = P{D(s̃0 = ŝ0) < 0}

= P

{

Re{U |h0| exp {jφ0}∆∗
s,ŝ} < −

√
G0E0

2rαL

0

|∆s,ŝ|2|h0|2
}

= P

{

Re{U} < −
√
G0E0

2rαL

0

|∆s,ŝ||h0|
}

= FURe

(

−
√
G0E0

2rαL

0

|∆s,ŝ||h0|
)

(8)

whereFURe denotes the CDF of the RVURe = Re{U}.

Gil-Pelaez inversion theorem can be employed to compute
the CDFFURe by using the CF ofURe, ΦURe(w), as follows
[19]:

FURe(u) =
1

2
− 1

π

∫ ∞

0

Im{e−jwuΦURe(w)}
w

dw

=
1

2
− 1

π

∫ ∞

0

Im{(cos(wu)−jsin(wu))(Re{ΦURe(w)})+jIm{ΦURe(w)})}
w

dw

=
1

2
+

1

π

∫ ∞

0

sin(wu)ΦU (w)

w
dw, (9)

where the last equation follows from the fact that the CF
ΦURe(w) is a real function, i.e., Im{ΦURe(w)} = 0 and
Re{ΦURe(w)} = ΦURe(w), andU(.) is a circularly symmetric
RV, i.e.,ΦURe(w) = ΦU (w).

By inserting (9) into (8), PEP can be written as

P{s0→ŝ0||h0|, r0}= 1

2
− 1

π

∫ ∞

0

sin

(√
G0E0

2rαL

0

|∆s,ŝ||h0|w
)

w
−1ΦU (w)dw.

(10)
In (10), PEP is computed using the CF of the RVU . SinceU
is the summation of two independent RVs,Iagg andn, ΦU (w)
is equal to the product of the CFs of these two RVs, i.e.,
ΦU (w) = ΦIagg(w)Φn(w). Φn(w) = exp{−w2(N0/4)} is the
CF of a Gaussian RV [20] andΦIagg(w) is calculated in the next
subsection.

B. Characteristic Function of the Aggregate Interference Iagg

SinceIagg is the sum of six independent PPPs as seen in (6),
using stochastic geometry, its CF can be written as

ΦIagg(w) =
∏

G∈{MM,Mm,mm}
ΦIG

ΨLOS
(w)ΦIG

ΨNLOS
(w), (11)

whereΦIG

ΨLOS
(w) andΦIG

ΨLOS
(w) are the CFs of LOS and NLOS

components with antenna gainG.

Let zi = sihi = |hi| exp {j(θi + φi)}. The interference
due to a LOS component with a generic antenna gainG can
be written asIGΨLOS

=
∑

i∈ΨLOS

√
GE0r

−αL

i zi. Then, its CF
ΦIG

ΨLOS
(w) = E{exp{jwIGΨLOS

}} can be obtained using the same
steps as those in [21] and can be expressed as in (12) given on
the next page. By using the Taylor series expansion for the
exponential function, one can rewrite the equation in (12) and

further express it using similar steps as in [11] as follows:

ΦIG

ΨLOS
(w)

= exp{λpGπ(R2
B − r20)[−1 + Ezi,ri{exp{jw

√

GE0r
−αL

i zi}}]}
(a)
= exp

{

2λpGπEzi{
∫ RB

r0

(exp{jw
√

GE0r
−αL

i zi} − 1)}ridri
}

(b)
= exp

{

2λpGπ

∫ RB

r0

(Φz(
√

GE0wr
−αL

i )− 1)ridri

}

(c)
= exp

{

2λpGπ

∫ RB

r0

(Φ0(
√

GE0|w|r−αL

i )− 1)ridri

}

(d)
= exp

{

−2λpGπ
(
√
GE0|w|)2/αL

αL

∫ √
GE0|w|r−αL

0

√
GE0|w|R−αL

B

1− Φ0(t)

t2/αL+1
dt

}

(13)

where (a) follows fromri having a PDF of2ri/(R2
B − r20)

if r0 ≤ ri ≤ RB and zero otherwise, (b) originates from the
definition of the CF, (c) follows from the fact thatz has a
spherically symmetric (SS) PDF and its CF is also SS, i.e.,
Φz(w) = Φ0(w) for someΦ0(.), (d) is obtained by applying a
change of variables witht =

√
GE0|w|r−αL

i .

Φ0(t) can be found using the properties of an SS distribution:

Φ0(t) = Φzi(t) = E{ejtzi}
= Exi

{cos(txi)}+ j Eyi
{sin(tyi)}

︸ ︷︷ ︸

0

= Exi
{cos(txi)} (14)

wherexi = Re{zi}, yi = Im{zi} and the second term is zero
becausesin is an odd-symmetric function.

By inserting the result in (14) into (13) and taking the
expectation operatorExi

{.} outside, the integral inside the
exponential function can be calculated as shown at the top of
next page in (15) using the result from [22, Eq. (3.771.4)],
wherepFq is the generalized hypergeometric function. Then, by
inserting the result of the integral in (15) into (13) and applying
similar steps as in [12], we obtain the closed-form expression
for ΦIG

ΨLOS
(w) in (16).

Similarly, a closed-form expression for the CF of the interfer-
ence due to NLOS BSs,ΦIG

ΨLOS
(w), can be obtained by changing

the boundaries of the integral and replacingαL with αN in
(13). More specifically, since NLOS BSs lie outside of the ball,
integral is evaluated fromRB to infinity and the expression for
ΦIG

ΨLOS
(w) is found as shown in (17) on the next page.

Finally, a closed-form expression for the CF of the aggregate
network interference,ΦIagg(w), can be obtained by inserting
equations (16) and (17) into (11).

C. Average Pairwise Error Probability

In this section, APEP is computed by averaging PEP. Aver-
aging can be performed by taking the integral of the conditional

3



ΦIG

ΨLOS
(w) =

∞∑

k=0

exp{−λpGπ(R
2
B − r20)}[λpGπ(R2

B − r20)]
k

k!

(
Ezi,ri{exp{jw

√

GE0r
−αL

i zi}})k. (12)

Ti =

∫ √
GE0|w|r−αL

0

0

1− cos(txi)

t2/αL+1
−
∫ √

GE0|w|R−αL

B

0

1− cos(txi)

t2/αL+1

=
αL

2

(√

GE0|w|
)−2/αL

[

R2
B − r20 + 1F2

(

− 1

αL
;
1

2
, 1− 1

αL
;−GE0|w|2

4r2αL

0

x2
i

)

− 1F2

(

− 1

αL
;
1

2
, 1− 1

αL
;−GE0|w|2

4R2αL

B

x2
i

)]

.

(15)

ΦIG

ΨLOS
(w) = exp{λpGπ(r20 −R2

B)}

× exp

{

−λpGπr
2
02F2

(

−1

2
,− 1

αL
;
1

2
, 1− 1

αL
;−GE0|w|2σ0

4r2αL

0

)

+ λpGπR
2
B2F2

(

−1

2
,− 1

αL
;
1

2
, 1− 1

αL
;−GE0|w|2σ0

4R2αL

B

)}

.

(16)

ΦIG

ΨNLOS
(w) = exp{λpGπR2

B} exp
{

−λpGπR
2
B2F2

(

−1

2
,− 1

αN
;
1

2
, 1− 1

αN
;−GE0|w|2σ0

4R2αN

B

)}

. (17)

PEP over|h0| andr0 as follows:

Pavg{s0 → ŝ0} = E|h0|,r0{P{s0 → ŝ0||h0|, r0}}

= E|h0|,r0

{

1

2
− 1

π

∫ ∞

0

sin

(√
G0E0

2rαL

0

|∆s,ŝ||h0|w
)

w
−1ΦU (w)dw

}

(a)
=

1

2
− 1

π

∫ ∞

0

Er0

{

E|h0|

{

sin

(√
G0E0

2rαL

0

|∆s,ŝ||h0|w
)}

ΦU (w)

}

w
−1

dw,

(18)

where (a) follows from the fact thatΦU (w) depends only on
r0 not |h0|. Hence, the expectation over|h0| can be computed
in closed-form by employing the PDF of Rayleigh distribution
and calculating the resulting integral as [22]

E|h0|

{

sin

(√
G0E0

2rαL

0

|∆s,ŝ||h0|w
)}

=

∫ ∞

0

sin

(√
G0E0

2rαL

0

|∆s,ŝ||h0|w
)

2ν

σ0
exp{−ν2

σ0
}dν

=
√
π

√
G0E0σ0

4rαL

0

|∆s,ŝ|w exp

{

−G0E0σ0

16r2αL

0

|∆s,ŝ|2w2

}

. (19)

By substituting (19) and the PDF ofr0 (i.e.,fr0(ξ)) into (18),
APEP can be expressed as follows:

Pavg{s0→ ŝ0}= 1

2
− 1

π

∫ ∞

0

∫ ∞

0

√
π

√
G0E0σ0

4ξαL

|∆s,ŝ|w exp

{

−G0E0σ0

16ξ2αL

|∆s,ŝ|2w2

}

2πλξ exp{−πλξ
2}ΦU (w)w−1

dξdw. (20)

Finally, substitutingΦU (w) into (20) and after some algebraic
manipulations, APEP can be rewritten as shown at the top of
next page in (21), where we define SNR= E0σ0/4 and

2F2(x, y) = 2F2

(
1

2
,−1

y
;
1

2
, 1− 1

y
;−GSNR|w|2

x2y

)

. (22)

D. Average Symbol Error Probability

In this section, we approximate ASEP from APEP in (21)
by using NN approximation. The advantage of the NN approx-
imation is that it only depends on the minimum distance in
the constellation and the number of nearest neighbors [23].In
Section II,|∆s,ŝ| is defined as the distance between the constel-
lation pointss0 and ŝ0. Hence, we define∆min as the distance
of s0 to its nearest neighbors, i.e.,∆min = minŝ0 6=s0 |∆s0,ŝ0 |.

Also, let kdmin denote the number of nearest neighbors ofs0
having distance∆min. Now, ASEP can be approximated as

ASEP≈ kdminPavg{∆min}. (23)

wherekdmin = 2 when modulation order (γ) is greater than 2,
and∆min = 2 sin(π/γ) assuming multilevel phase shift keying
(MPSK) modulation.

IV. ASEP IN THE PRESENCE OFBEAMSTEERINGERRORS

In Section III, MU and the serving BS are assumed to
be aligned perfectly and ASEP is calculated in the absence
of beamsteering errors. However, in practice, it may not be
easy to have perfect alignment. Therefore, in this section,we
investigate the effect of beamforming alignment errors on ASEP.
We employ an error model similar to that in [24]. Let|ǫ| be the
random absolute beamsteering error of the MU’s beam toward
the serving BS with zero-mean and bounded absolute error
ǫmax ≤ π. It is appropriate to consider the absolute beamsteering
error due to symmetry in the gain G. The PDF of the effective
antenna gain G with alignment error can be explicitly written
as [8]

fG(g) = F|ǫ|

(
θ

2

)2

δ(g−MM)

+ 2F|ǫ|

(
θ

2

)(

1− F|ǫ|

(
θ

2

))

δ(g−Mm)

+

(

1− F|ǫ|

(
θ

2

))2

δ(g−mm), (24)

where δ(·) is the Kronecker’s delta function,F|ǫ|(x) is the
CDF of the misalignment error and (24) follows from the
definition of CDF, i.e.,F|ǫ|(x) = P{|ǫ| ≤ x}. Assume that
the error is distributed according to a Gaussian distribution,
so absolute error|ǫ| follows a half normal distribution and
F|ǫ|(x) = erf(x/(

√
2σBE)), where erf(·) denotes the error

function.
From (21), it is clear that PEP depends on the effective

antenna gain between the MU and the serving BS, and so does
the ASEP. Thus, PEP can be calculated by averaging over the

4



Pavg{s0 → ŝ0} =
1

2
−√

πλ

√
G0SNR
2

|∆s,ŝ|
∫ ∞

0

∫ ∞

0

exp

{

− SNR
4ξ2αL

|∆s,ŝ|2w2

}

exp{−πλξ2} exp{−w2N0/4}

×
∏

G∈{MM,Mm,mm}
[exp{λpGπξ2} exp{−λpGπξ

2
2F2(ξ, αL) + λpGπR

2
B [2F2(RB , αL)− 2F2(RB , αN )]}]pGdξdw. (21)

0 10 20 30 40 50 60
10

−2

10
−1

10
0

SNR (dB)

A
S

E
P

 

 

mmW, λ=10−5

mmW, λ=10−4

mmW, λ=10−3

non−mmW, λ=10−5

non−mmW, λ=10−4

non−mmW, λ=10−3

Fig. 1: ASEP as a function of the SNR= E0σ0/4 for different BS densities

λ (αL = 2.1, αN = 4, M = 10 dB, m = −10 dB, θ = 15, BPSK )

distribution ofG, fG(g), as follows:

Pavg{s0 → ŝ0} = EG{Pavg{s0 → ŝ0;G}}

=

∫ ∞

0

Pavg{s0 → ŝ0; g}fG(g)dg

= (F|ǫ|(θ/2))
2Pavg{s0 → ŝ0;MM}

+ 2(F|ǫ|(θ/2))F̄|ǫ|(θ/2)Pavg{s0 → ŝ0;Mm}
+ F̄|ǫ|(θ/2)

2Pavg{s0 → ŝ0;mm}, (25)

where we definēF|ǫ|(θ/2) = 1− F|ǫ|(θ/2).

V. NUMERICAL RESULTS

In this section, we provide numerical results to evaluate the
error performance of a downlink mmWave cellular network. In
all figures, LOS and NLOS path loss exponents areαL = 2.1
andαN = 4, respectively. In the non-mmW case, all BSs are
assumed to be LOS and the path loss component is equal to 2.1.
Also, the radius of the LOS ballRB is assumed to be equal to
141 meters similarly as in [7].

First, we compare the performance of the mmWave network
with that of the non-mmWave network (antennas are omnidi-
rectional, and all BSs are LOS). In Fig. 1, ASEP versus SNR
is plotted for different BS densities with BPSK modulation.
As shown in Fig. 1, we have better error performance in the
mmWave scenario than in the non-mmWave one. Also, with the
increasing BS density, ASEP is decreasing.

Next, we plot the ASEP with different antenna main lobe
gains and different BS densities. The numerical results in Fig.
2 show that with increasing main lobe gainM , ASEP decreases
significantly. Also, note that different combinations of main lobe
gain and BS density, e.g. (M = 20dB, λ = 10−5) and (M =
10dB, λ = 10−4) lead to the same error performance. Hence,
the same error performance can be achieved by either decreasing
BS density while increasing the main lobe gain, or vice versa.

In Fig. 3, we also compare ASEP for different modulation
orders assuming MPSK modulation. As the modulation order

0 5 10 15 20 25 30 35 40
10

−2

10
−1

10
0

SNR (dB)

A
S

E
P

 

 

M=10 dB, λ=10−5

M=20 dB, λ=10−5

M=10 dB, λ=10−4

M=20 dB, λ=10−4

Fig. 2: ASEP as a function of the SNR= E0σ0/4 for different antenna main

lobe gainsM and BS densitiesλ (αL = 2.1, αN = 4, m = −10 dB, θ = 15,
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0 10 20 30 40 50
10

−2

10
−1

10
0

SNR (dB)

A
S

E
P

 

 

BPSK
QPSK
16−PSK

Fig. 3: ASEP as a function of the SNR= E0σ0/4 for different modulation

orders Mo (αL = 2.1, αN = 4, M = 20, dB m = −10 dB, θ = 15,

λ = 10−4)

increases, the minimum distance between the nearest neighbors
decreases. Thus, as expected, error performance of the network
gets worse with the increase in modulation size.

Finally, the effect of beamsteering errors on the error per-
formance is analyzed in Fig. 4. ASEP versus SNR is plotted
for different standard deviations of the alignment error. As
can be seen, ASEP is getting worse with the degradation in
the alignment angle.σBE = 0 corresponds to the case with
no alignment error and it has the best error performance as
expected. SinceσBE = 2 has the same ASEP withσBE = 0, we
can infer that the alignment error untilσBE = 2 can be tolerated
and ASEP increases significantly forσBE > 2.

VI. CONCLUSION

In this paper, we have analyzed the average error perfor-
mance of downlink mmWave cellular networks, incorporating
the distinguishing features of mmWave communication into
the average error probability analysis. Sectored antenna and

5



0 10 20 30 40 50

10
−0.7

10
−0.6

10
−0.5

10
−0.4

10
−0.3

SNR (dB)

A
S

E
P

 

 

σ
BE

=0°

σ
BE

=2°

σ
BE

=4°

σ
BE

=6°

σ
BE

=8°

Fig. 4: ASEP as a function of the SNR= E0σ0/4 in the presence

of beamsteering error for different standard deviations ofalignment error
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BPSK )
simplified ball-LOS models have been considered to simplify
the analysis. Numerical results show that employing directional
antennas improves the error performance. Also, we show that
better ASEP values can be obtained by increasing BS density
and main lobe gain. Investigating the effects of using different
LOS probability functions instead of the simplified ball-LOS
model, and incorporating more general fading models remain
as future work.
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