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Abstract—Location awareness in wireless networks may enable
many applications such as emergency services, autonomous
driving and geographic routing. Although there are many avail-
able positioning techniques, none of them is adapted to work
with massive multiple-in-multiple-out (MIMO) systems, which
represent a leading 5G technology candidate. In this paper, we
discuss possible solutions for positioning of mobile stations using a
vector of signals at the base station, equipped with many antennas
distributed over deployment area. Our main proposal is to use
fingerprinting techniques based on a vector of received signal
strengths. This kind of methods are able to work in highly-
cluttered multipath environments, and require just one base
station, in contrast to standard range-based and angle-based
techniques. We also provide a solution for fingerprinting-based
positioning based on Gaussian process regression, and discuss
main applications and challenges.

Index Terms—distributed massive MIMO, positioning, 5G,
fingerprinting, machine learning, Gaussian process regression.

I. INTRODUCTION

1 Massive (or large-scale) MIMO system, a leading 5G
technology candidate, was conceived in [1] and relies on
using a large number of base station (BS) antennas to serve
large numbers of mobile stations (MS) simultaneously. The
main advantages of massive MIMO are that: i) it can provide
uniformly good service to everyone in the cell, and ii) it
can boost spectral efficiencies compared to current standards
by a factor of ten or more. Due to channel hardening,
scheduling and power control can be performed on a slow
time-scale and subcarrier-independently. Massive MIMO relies
on time-division-duplex operation and reciprocity. Calibration
for transmit-receive reciprocity imbalances in the hardware
is necessary, but the array elements need not be mutually
phase-calibrated. Tutorial papers that describe the operation
of massive MIMO and its performance in more detail include
[1], [2]. A potential improvement of massive MIMO could
be achieved by distributing BS antennas over larger space,
e.g., over roof of the building. This type of massive MIMO,
also known as distributed (or cell-free) massive MIMO (DM-
MIMO) [3]–[6], is especially beneficial for positioning due to

1Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
The original version of this manuscript is published in IEEE Proc. of 82nd
Vehicular Technology Conference (VTC2015-Fall).

the better spatial diversity. Therefore, in this paper, we focus
on positioning using DM-MIMO.

In DM-MIMO, the base stations receive on the uplink large
amounts of data and potentially, this data can be exploited for
positioning services. Compared to conventional systems (even
MIMO), potentially more accurate positioning is possible
owing to the increased size of the measurement vector. At the
same time, the amount of data to be processed is huge, so the
design of fast positioning algorithms is an important challenge.
In this paper, we discuss some of the opportunities for accurate
and efficient positioning with DM-MIMO, and outline some
basic positioning techniques that could be used to process the
data in order to obtain position estimates. More specifically,
we discuss range-based, angle-based, and fingerprinting (FP)
techniques. Our main proposal is to use FP techniques based
on a vector of received signal strengths (RSS), since they are
able to work in highly-cluttered multipath environments, and
require just one BS.

The remainder of this paper is organized as follows. In
Section II, we discuss positioning techniques that can be used
with DM-MIMO. In Section III, FP-based positioning using
Gaussian process regression (GPR) is described. In Section IV,
a numerical example is provided. A discussion on potential
applications and the main challenges is provided in Section
V. Finally, conclusions are provided in Section VI.

II. POSSIBLE POSITIONING TECHNIQUES

Although all available positioning techniques [7], [8] for
single-antenna systems may be used with DM-MIMO, most of
them are not preferable. Generally, the positioning techniques
can be divided into the four main classes: i) proximity-based,
ii) angle-based, iii) range-based, and iv) fingerprinting-based.
The proximity-based (or cell-id) techniques can be immedi-
ately ruled out since many BSs would be required, which is not
available, for example, in a suburban environment. The angle-
based techniques may be feasible since the angle of arrival
can be measured using the antenna array on the BS (i.e., using
phase interferometry [8]), which can be then used to find the
position by triangulation. However, this approach may fail in
case of non-line-of-sight (NLOS), and lead to large positioning
errors. The third option is to obtain a range between the MT
and at least three BSs (or one BS, if its antennas are separated
enough), and then find the MT position by trilateration. This
can be done either by using time-of-arrival (TOA), or by using
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received signal strength (RSS) measurements. Since TOA
estimation requires a high signal bandwidth, it is not suitable
for cellular networks (e.g., the bandwidth of 20 MHz would
lead to a ranging resolution of 15 m). The RSS measurements
may be useful in outdoor non-urban environments (in which
the path-loss is expected to monotonically decrease with the
distance), but in most other environments would lead to very
coarse range estimates. These problems can be solved using
fingerprinting (FP) techniques, as will be argued below. The
illustration of positioning techniques for DM-MIMO is shown
in Fig. 1.

In FP-based positioning, the goal is to directly find the
MT’s position using an online measurement and a set of
training samples, also known as fingerprints. The fingerprints
consist of the measurements obtained at known positions
within the deployment area, and they can be obtained either
offline or online. Assuming that the input measurement is
high-dimensional (as in DM-MIMO), one BS with fixed (even
unknown) position is enough for MT positioning. Moreover,
the position estimates are much less sensitive to multipath,
since multipath can be captured during the training phase.
On the other hand, the main drawbacks of FP methods are:
i) higher computational complexity, and ii) possible perfor-
mance degradation in dynamic environments. While the former
problem is not expected to be a big issue with nowadays
computational recourses, the latter problem can be resolved
(or at least, reduced) with online training. Therefore, although
not ideal, we believe the FP-based positioning could be the
right choice for positioning with DM-MIMO. In what follows,
we provide a brief review of few well-known FP methods:

• κ Nearest Neighbors (κNN) [9]: This method assumes
that there are many reference points at which the fin-
gerprints (vectors of RSS) are obtained, and one target
(MT) to be located. The position of the object is found
as a weighted average of the closest κ reference positions.
The distance between the target and the reference points
is measured in the signal space (e.g., Euclidean distance
between corresponding RSS vectors), and then the closest
κ positions are chosen (κ is chosen empirically so as
to minimize positioning error). The weights are usually
equal to the squared inverse of this distance, but other
options are also possible. κNN is able to provide very
good performance if the reference points are uniformly
distributed across the deployment area.

• Support Vector Machines (SVM) [10]: SVM is a su-
pervised machine learning technique based on convex
optimization. It can be used for regression problem, such
as FP-based positioning, in which the goal is to directly
estimate the MT position from an online measurement
and a set of training points (fingerprints). Since it is a
nonparametric approach, it is able to model any arbitrary
nonlinear relationship (assuming that there are enough
fingerprints). Moreover, this method is much cheaper
than other nonparametric methods since the estimation
is based on a subset of the training samples (known as

support vectors).
• Gaussian Process Regression (GPR) [11]: GPR is a

Bayesian nonparametric approach for regression. With
this method, an unknown nonlinear function is assumed
to be random, and to follow a Gaussian process (GP).
In contrast to SVM and κNN, GPR is able to provide
probabilistic output, i.e., the posterior distribution of the
MT position, given an online measurement and a set
of fingerprints. On the other hand, it is much more
computationally complex since, at least in its original
form, it uses all fingerprints for estimation. More details
about this method is available in the following section.

III. FINGERPRINTING-BASED POSITIONING

The goal is to locate MTs using the received signal at BS.
Therefore, we consider the uplink of a multi-user DM-MIMO
system with M antennas on the BS, and K single-antenna
MTs. Assuming that MTs simultaneously transmit K symbols,
s = (s1, . . . , sK)T , the BS receives:

y =
√
ρGs+w (1)

where G is the M × K channel matrix, with entries
gk,m = hk,m

√
βk,m (k = 1, . . . ,K, m = 1, . . . ,M );

w = (w1, . . . , wM ) is the noise vector (typically, wm ∼
CN (0, 1)) and ρ is the SNR seen at MT, assuming that the
input signal power is normalized (i.e., E(‖s‖2) = 1); hk,m
and βk,m are, respectively, small-scale and large-scale fading
between kth MT and mth BS antenna. We assume here that
the large-scale fading (shadowing) is constant with respect
to frequency, and the small-scale fading follows a complex
Gaussian distribution, i.e., hk,m ∼ CN (0, 1) (i.e., |hk,m|
follows Rayleigh distribution). Note that, assuming OFDM
modulation, y = (y1, . . . , yM ) represents the received signal
of one subcarrier. The number of signals that BS receives
within one coherence interval is Nc = NslotNsub, where Nslot
is the number of transmitted symbols, and Nsub is the number
of subcarriers. To keep the notation uncluttered, the indexes
of subcarriers and symbols are omitted.

As we argued in the previous section, the most appropriate
information for positioning is the vector of RSS, given by
‖y‖2 for one subcarrier. However, since this signal includes
the combined power from K terminals, it is not appropriate
for positioning. Therefore, we need the terminals to transmit
an orthogonal set of pilot signals [6], that are already used for
signal detection. Moreover, to ensure that one BS is sufficient
for positioning, the BS antennas should be well separated. That
means that DM-MIMO is required for this kind of problem.2

Another problem is variation of RSS due to the small-scale
fading, which can be reduced by averaging the received power
over all subcarriers (if not enough, the averaging over multiple
symbols would be also required). This procedure, also known
as channel hardening, will ensure that, for Rayleigh channel,
RSS solely depends on the path-loss between the BS and the

2With collocated massive MIMO, multiple BSs (at least, 3) would be
required.



MS. Taking all assumptions into account, the RSS between
the kth MT and mth BS antenna is proportional to large-scale
fading, βk,m. One way to model this power is by using log-
distance path-loss model:

pk,m ∝ log βk,m = p0k,m − 10np log (dk,m/d
0
k,m) + v (2)

where dk,m is the distance between kth MT and mth BS
antenna, p0k,m is the reference power measured at distance
d0k,m, np is the path-loss exponent (typically, 0 < np < 6 de-
pending on environment and the range), and v ∼ N (0, σ2

p) is
the shadowing noise. For urban environments, a multiple-slope
model for path-loss is typically used. Note that this model is
simplified, i.e., the power is not necessarily decreasing with
the distance, and the shadowing is not necessarily Gaussian.
However, the following algorithm will be also valid for any
other model, as long as RSS is variable over space (i.e., each
position has an unique fingerprint).

Given the RSS vector p = (pk,1, . . . , pk,M ), our goal is to
find the position of the MT in the 2-dimensional plane, denoted
by (x1, x2). Since we focus on a single MT, the index k is
omitted. Therefore, we have to solve the following regression
problem:

xi = fi(p) + νi, (i = 1, 2) (3)

where fi(·) is a nonlinear function of the input vector, and
νi is a Gaussian random variable (νi ∼ N (0, σ2

ν,i)) that
represents the error. The problem can be solved using some
of the techniques described in the previous section, but we
focus on GPR since it provides a probabilistic output. In
that case, the function fi(·) is assumed to be random, and
follows a GP: fi(·) ∼ GP(mi,Ci) where mi is a mean
function (typically, mi = 0) and Ci is a covariance function
(also known as a kernel matrix). The kernel matrix is used to
model the correlation between output samples as a function of
the input samples. Although there are many possible options
[12], a widely used kernel is a weighted sum of the squared-
exponential and the linear function:

ci(pl,pj) = θ0e
−θ1‖pl−pj‖2 + θ2p

T
l pj (4)

where ci(pl,pj) is an entry of the Ci, and pl,pj are any two
measurement samples (l, j = 1, . . . , L). The hyperparameters
θ = (θ0, θ1, θ2), along with σν,i, can be estimated from
the training data. The intuition behind this kernel is that the
correlation between the output samples should be higher if the
Euclidean distance between the corresponding input samples
is smaller.

Assuming that we have available a set of i.i.d. training
samples (fingerprints) TL,i = {xi,l,pl}Ll=1 and a single test
measurement p, we would like to determine the posterior
density of the position, i.e., p(xi|p, TL,i) (i = 1, 2). It can
be shown [11] that this distribution is Gaussian, with the
following mean and the variance:

µGPR,i = cTi (Ci + σ2
ν,iIL)

−1xi (5)

σ2
GPR,i = σ2

ν,i + ci(p,p)− cTi (Ci + σ2
ν,iIL)

−1ci (6)

where we define the vectors: ci = (ci(p1,p), . . . , ci(pL,p))
T

and xi = (x1,i, . . . , xL,i)
T . Therefore, the MMSE estimate,

of the ith coordinate of the position, is given by x̂i = µGPR,i,
and the remaining uncertainty by the variance σ2

GPR,i. Thus,
GPR is capable of providing complete statistical information
of the MT position. Another important characteristic of GPR
is that σGPR,i is small in the areas where the training samples
lie, and large in the areas with no (or few) training samples.

Regarding computational complexity of GPR, the offline
phase (based on training samples) is dominated by computa-
tion of the inverse of the matrix Ci + σ2

ν,iIL, which requires
O(Lη) operations, where 2 ≤ η ≤ 3 depends on the type
of approximation. Assuming that this matrix is stored into
memory, the online phase of GPR can be achieved in O(L2)
operations.

IV. NUMERICAL EXAMPLE

We consider the scenario with one BS with M = 36, 64, 100
antennas, and K = 25 MTs. The path-loss exponent is set
to np = 0 for 0 < dk,m < 10 m, np = 2 for 10 m <
dk,m < 50 m, and np = 4 for dk,m > 50 m (k = 1, . . . ,K,
m = 1, . . . ,M ). The shadowing variance is σp = 5 dB,
and the reference power is p0k,m(d0k,m = 10 m) = 0 dB.
Note that, thanks to the channel hardening, the parameters
for the small-scale model in (1) are not required for this
numerical analysis. The BS antennas, MTs and fingerprints
are distributed in grid configurations, as shown in Fig. 2a and
Fig. 2c. We will analyse the root-mean-square-error (RMSE)
of the MT positions, as function of the number of training
samples L, and the number of the BS antennas M . The results
are averaged over 200 Monte Carlo runs, and in each of them
the average is performed over K MTs.

As can be seen in Fig. 2b and Fig. 2d, RMSE error is
decreasing with the number of training samples. However, the
gain is small for L > 400 since the fingerprints become more
correlated as their density is increasing. We also note that
increasing the number of BS antennas leads to an improvement
in performance, which motivates the use of DM-MIMO. By
comparing Fig. 2b and Fig. 2d, in which two different BS
configurations have been used, we can see that there is a
substantial difference in the performance. In general, spreading
the antennas over larger area increases position accuracy, but it
also increases communication overhead due to the backhauling
of the data over larger distances.

V. OPPORTUNITIES AND CHALLENGES

Location information in massive MIMO systems may enable
many applications for future (5G) networks [13]. We discuss
below the most relevant ones.
• GPS-free position awareness: Although the Global Po-

sitioning System (GPS) provides relatively accurate po-
sition estimates (5 to 15 meters), it is not suitable
for indoor, dense urban and other NLOS environments.
Moreover, equipping every user with a GPS is more
expensive than a local positioning system (LPS) based
on radio signals. DM-MIMO would provide, not only the



location awareness, but also increased robustness against
single-antenna failures. This is crucial for location-based
services such as emergency calls, and weather forecasts.

• Increasing spectrum efficiency: Position awareness could
significantly increase spectral efficiency since the fre-
quency slots may be re-used for the MTs that are well
separated. This idea is already used in cognitive networks,
where users may choose the frequency slots that are not
over-crowded.

• Geographic routing: Position information is the main
input for geographic routing, in which a wireless node
attempts to send the data packet to the destination node
in a multi-hop fashion. This can be achieved, if each
node, that holds the packet, forwards the packet to the
closest node (e.g., measured by Euclidean distance) to
the destination. Consequently, the latency of this routing
method depends on the position accuracy.

• Autonomous driving: Position awareness for autonomous
vehicles is crucial since most of the vehicle’s actions
depend on its current location (e.g., computing minimum
distance paths, or avoiding collisions). Since this problem
requires extremely high accuracy and robustness, the
available measurements from DM-MIMO should be fused
with all other available information (especially, from the
GPS and the road maps).

However, since current positioning systems are not ideal,
and require a trade-off between different metrics, there are
still many issues to be addressed. We discuss here the three
most important issues, with a focus on fingerprinting methods.

• Performance in dynamic environments: It is well known
that fingerprinting methods may fail in dynamic envi-
ronments, i.e., if the positions of reflecting/diffracting
surfaces frequently change. In principle, this problem
can be solved with online training, assuming that enough
access points (“sniffing devices”) with known positions
are deployed. Alternatively, the online training can be
perfomed using a mobile vehicle with GPS capability.

• Communication overhead: The positioning system is ex-
pected to use the RSS fingerprints obtained at prede-
fined locations, which would affect the communication
overhead. That means that the frequency of the training
(especially, if it is online), and the number of training
points should be carefully chosen, to avoid an excess in
communication cost. If this is not possible, some efficient
data compression technique should be developed.

• Latency: One of the main problems of fingerprinting
methods is the relatively high computational complexity.
With nowadays microprocessors, this would not create
a latency issue in most situations. However, in certain
scenarios, in which many training points are required,
or if the position estimates are required very frequently,
the latency becomes an important problem. Therefore,
the development of faster fingerprinting algorithms is an
important challenge.

VI. CONCLUSIONS

In this paper, we discussed possible positioning techniques
for DM-MIMO. We argued that FP-based positioning is an
appropriate solution compared with standard (triangulation
and trilateration) methods. We also provided a solution for
FP-based positioning based on GPR. This method is able to
model arbitrary nonlinear relationships and provide probabilis-
tic outputs, in contrast to other FP methods. However, there
remain many challenges that should be addressed. The most
critical problem is to ensure good performance in dynamic en-
vironments, while keeping the latency and the communication
overhead acceptable. In summary, positioning with massive
MIMO is an unexplored problem, with a lot of possibilities
for further research.

ACKNOWLEDGMENT

This work was supported by the project Cooperative Lo-
calization (CoopLoc) funded by the Swedish Foundation for
Strategic Research (SSF), and Security Link.

REFERENCES

[1] T. L. Marzetta, “Noncooperative cellular wireless with unlimited
numbers of base station antennas,” IEEE Transactions on Wireless
Communications, vol. 9, no. 11, pp. 3590–3600, Nov. 2010.

[2] E. G. Larsson, F. Tufvesson, O. Edfors, and T. L. Marzetta, “Massive
MIMO for next generation wireless systems,” IEEE Communications
Magazine, vol. 52, no. 2, pp. 186–195, Feb. 2014.

[3] J. Joung, Y. K. Chia, and S. Sun, “Energy-efficient, large-scale
distributed-antenna system (l-das) for multiple users,” IEEE Journal
of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 954–965,
2014.

[4] Z. Liu and L. Dai, “A comparative study of downlink MIMO cellular
networks with co-located and distributed base-station antennas,” IEEE
Transactions on Wireless Communications, vol. 13, no. 11, pp. 6259–
6274, Nov. 2014.

[5] K. T. Truong and R.W. Heath, “The viability of distributed antennas
for massive MIMO systems,” in Proc. of 45th Asilomar Conference on
Signals, Systems and Computers, 2013.

[6] H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta,
“Cell-free massive MIMO: Uniformly great service for everyone,” in
Proc. of IEEE Intl. Workshop on Signal Proc. Advances in Wireless
Comm. (SPAWC), 2015.

[7] F. Gustafsson and F. Gunnarsson, “Mobile positioning using wireless
networks: possibilities and fundamental limitations based on available
wireless network measurements,” IEEE Signal Processing Magazine,
vol. 22, no. 4, pp. 41–53, July 2005.

[8] G. Mao, B. Fidan, and B. D. O. Anderson, “Wireless sensor network
localization techniques,” Comput. Networks, vol. 51, no. 10, pp. 2529–
2553, 2007.

[9] L. M. Ni, Yunhao Liu, Yiu Cho Lau, and A. P. Patil, “LANDMARC:
indoor location sensing using active RFID,” in Proc. of IEEE Int. Conf.
on Pervasive Computing and Communications (PerCom), 2003.

[10] M. Brunato and R. Battiti, “Statistical learning theory for location
fingerprinting in wireless LANs,” Computer Networks ISDN Systems,
vol. 47, pp. 825–845, April 2005.

[11] F. Perez-Cruz, S. Van Vaerenbergh, J. J. Murillo-Fuentes, M. L. Gredilla,
and I. Santamaria, “Gaussian processes for nonlinear signal processing:
An overview of recent advances,” IEEE Signal Processing Magazine,
vol. 30, no. 4, pp. 40–50, July 2013.

[12] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning, MIT Press, 2006.

[13] R. Di Taranto, L. S. Muppirisetty, R. Raulefs, D. Slock, T. Svensson, and
H. Wymeersch, “Location-aware communications for 5G networks: How
location information can improve scalability, latency, and robustness of
5G,” IEEE Signal Processing Magazine, vol. 31, no. 6, pp. 102–112,
Nov. 2014.



BS1

BS3

BS2

MT1

11
d

21
d

31
d

(a)

MT1

BS1

BS2

BS3

N

N

N

11
a

21
a

31
a

(b)

BS1

MT1

1
fp

2
fp

24
fp

25
fp

(c)
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Fig. 2: (a), (c) The deployment of BS, MTs, and the fingerprints; (b), (d)
RMSE of the MT positions for the deployment from (a) and (c), respectively.
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