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Abstract—Index coded PSK modulation over an AWGN broad-
cast channel, for a given index coding problem (ICP) is studied.
For a chosen index code and an arbitrary mapping (of broadcast
vectors to PSK signal points), we have derived a decision rule
for the maximum likelihood (ML) decoder. The message error
performance of a receiver at high SNR is characterized by a
parameter called PSK Index Coding Gain (PSK-ICG). The PSK-
ICG of a receiver is determined by a metric called minimum inter-
set distance. For a given ICP with an order of priority among
the receivers, and a chosen 2

N -PSK constellation we propose an
algorithm to find (index code, mapping) pairs, each of which gives
the best performance in terms of PSK-ICG of the receivers. No
other pair of index code (of length N with 2

N broadcast vectors)
and mapping can give a better PSK-ICG for the highest priority
receiver. Also, given that the highest priority receiver achieves
its best performance, the next highest priority receiver achieves
its maximum gain possible and so on in the specified order of
priority.

I. INTRODUCTION AND BACKGROUND

A. Background

Network coding technique has significantly improved the

performance of communication networks, and has been studied

extensively in the past two decades. Index coding problem

(ICP) can be considered as a special case of network coding

problem [1]. ICP has emerged as an important topic of recent

research due to its applications in many of the practically rele-

vant problems including that in satellite networks, topological

interference management, wireless caching and cache enabled

cloud radio access networks for 5G cellular systems.

The noiseless index coding problem with side information

was first studied in [2] as an Informed-Source Coding-On-

Demand (ISCOD) problem, in which a central server (sender)

wants to broadcast data blocks to a set of clients (receivers)

which already has a proper subset of the data blocks. The

problem is to minimize the data that must be broadcast, so

that each receiver can derive its required data blocks. Consider

the case of a sender with n messages denoted by the set X =
{x1, x2, ..., xn}, xi ∈ Fq , Fq is a field with q elements,

which it broadcasts as coded messages, to a set of m receivers,

R = {R1, R2, ..., Rm}. Each receiver Ri ∈ R wants a subset

Wi of the messages, knows a priori a proper subset Ki of the

messages, where Wi ∩ Ki = φ, and is identified by the

pair (Wi,Ki). The noiseless index coding problem is to find

the smallest number of transmissions required and is specified

by (X ,R). The set Ki is referred to as the side information

available to the receiver Ri.

Definition 1. An index code (IC) for a given ICP (X ,R)
is defined by an encoding function, g : F

n
q → F

l
q, and a

set of m decoding functions Di : F
l
q × F

|Ki|
q → F

|Wi|
q ,

∀ i ∈ {1, 2, ...,m} corresponding to the m receivers, such

that,

Di(g(x),Ki) =Wi, ∀ x ∈ F
n
q , ∀ i ∈ {1, 2, ...,m}.

In this paper, we consider ICP over binary field (q = 2).

The integer l, as defined above is called the length of the

index code. For noiseless broadcast channels, an index code

of minimum length is called an optimal index code [3], [4].

Even though this is interesting theoretically, index coding over

noisy channels is more practical. Noisy index coding over a

binary symmetric channel was considered in [5], [6]. Binary

transmission of index coded bits were assumed. For this set up

the problem of identifying the number of optimal index codes

possible for a given ICP is important and that was studied in

[7], [8].

A special case of ICP over Gaussian broadcast channel,

based on multidimensional QAM constellation with 2n points,

where every receiver demands all messages (which it does not

have) from the source, was considered in [9]. The case of

noisy index coding over AWGN broadcast channel, along with

minimum Euclidean distance decoding, was studied in [10],

where the receivers demand a subset of messages as defined in

[2]. An algorithm to map the broadcast vectors to PSK signal

points so that the receiver with maximum side information

gets maximum PSK side information coding gain, was also

proposed. The algorithm assumes that an index code is given

and is applicable only for one specific order of priority (in the

non increasing order of amount of side information) among

the receivers. Minimum Euclidean distance of the effective

broadcast signal set seen by a receiver, was considered as the

basic parameter which decides the message error probability

of the receiver and the proposed algorithm tries to maximize

the minimum Euclidean distance.

In this paper, we discuss the maximum likelihood (ML)

decoder for index coded PSK modulation. Further, we study

the case in which the length of the index code is specified

for the ICP but not necessarily the index code. The receivers

can have any a priori defined arbitrary order of priority

among themselves. For a chosen priority order, we consider

all possible index codes, to obtain the mappings to appropriate

PSK constellation which will result in the best message error
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performance in terms of PSK index coding gain (PSK-ICG,

defined in Section IV) of the receivers, respecting the defined

order of priority.

B. Our Contribution

Consider a noisy index coding problem with n messages,

over F2 which uses an AWGN broadcast channel for transmis-

sion. For the ICP (X ,R), consider index codes of length N ,

N < n, which will generate 2N broadcast vectors (elements

of FN
2 ). The broadcast vectors are mapped to 2N -PSK signal

points, so that 2N -PSK modulation can be used, to minimize

the bandwidth requirement. Note that, transmitting one 2N -

PSK signal point instead of N binary bits (as in noiseless

index coding), results in N/2 fold saving in bandwidth.

Our contributions are summarized below:

• We derive a decision rule for maximum likelihood de-

coding which gives the best message error performance,

for any receiver Ri, for a given index code and mapping.

• We show that, at very high SNR, the message error

performance of the receiver employing ML decoder,

depends on the minimum inter-set distance (defined in

Section IV). The mapping which maximized the mini-

mum inter-set distance is optimal for the best message

error performance at high SNR.

• For the ICP (X ,R), when the receivers are arranged in

the decreasing order of priority, we propose an algorithm

to find (index code, mapping) pairs, each of which gives

the best message error performance for the receivers,

for the given order of priority. Using any one of the

above (index code, mapping) pairs, the highest priority

receiver achieves the maximum possible gain (PSK-ICG)

that it can get using any IC and any mapping for 2N -

PSK constellation, at very high SNR. Given that the

highest priority receiver achieves its best performance,

the next highest priority receiver achieves its maximum

gain possible and so on in the specified order of priority.

II. PRELIMINARIES AND NOTATION

Let [n] , {1, 2, ..., n}. For a vector z = (z1 z2 ...zn) ∈
F
n
2 and a subset B = {i1, i2, ..., ib} of [n] (for any integer

b, 1 ≤ b ≤ n), where i1 < i2 < ... < ib, zB denote the vector

(zi1 zi2 ... zib).
We consider the noisy index coding problem over F2 with a

single sender having a set of messages X = {x1, x2, ..., xn},
xi ∈ F2, and a set of m receivers, R = {R1, R2, ..., Rm},
where each receiver Ri is identified by (Wi,Ki), the want

set and the known set. Let, Ii , {j : xj ∈ Ki} be the

set of indices corresponding to the known set. It is sufficient

to consider the case where each receiver demands only one

message. If there is a receiver which demands more than one

message, it can be considered as |Wi| equivalent receivers

each demanding one message and having the same side

information. Each Ri, i ∈ [m] wants the message xf(i), where

f : [m]→ [n] and xf(i) /∈ Ki, ∀i ∈ [m].
For the given ICP, we consider scalar linear index codes of

length N (not necessarily the minimum or optimum length),

such that the set of all broadcast vectors gives F
N
2 . Let L be

an n × N encoding matrix for one such index code, C. Let

x = (x1 x2 ... xn) and y = (y1 y2 ...yN ) denote the message

vector and the broadcast vector respectively, where y = xL.

Example 1. Consider the following ICP with n = m = 5 and

Wi = xi, ∀i ∈ {1, 2, ..., 5}. The side information available

with the receivers is as follows: K1 = {x2, x3}, K2 =
{x3, x4, x5}, K3 = {x2, x4, x5}, K4 = {x5}, K5 = {x4}.

For this ICP we can choose a scalar linear index code of

length N = 3, as given by the following encoding matrix L.

L =













1 1 0
0 1 0
0 1 0
1 1 1
1 1 1













.

The index coded bits are given by

(y1 y2 y3) = (x1 x2 x3 x4 x5)L as y1 = x1 +x4 +x5, y2 =
x1 + x2 + x3 + x4 + x5, y3 = x4 + x5.

Instead of using N BPSK transmissions, the N index coded

bits of y are sent as a signal point from a 2N -PSK signal set,

over an AWGN channel, to save bandwidth [10]. In this paper

we consider index coded 2N -PSK modulation for a chosen N
and so when we refer to index codes of length N , we consider

only those index codes for which the set of all broadcast

vectors is F
N
2 . Let the chosen 2N -PSK signal set be denoted

as S = {s1, s2, ..., s2N}. Assume that for the index code C a

mapping scheme specifies the mapping of FN
2 to the signal set

S. All receivers are assumed to know the encoding matrix, L
for the index code C.

Let ai ∈ F
|Ki|
2 be a realization of xIi

. As each receiver Ri

knows some messages (from its side information), Ri needs

to consider only a subset of FN
2 for decoding and this subset

is called the effective broadcast vector set.

Definition 2. For a chosen index code based on the encoding

matrix L, the effective broadcast vector set seen by Ri for

xIi
= ai is defined by,

CL(ai) , {y ∈ F
N
2 : y = xL,xIi

= ai, xj ∈ F2, j ∈ [n] \ Ii}.

The corresponding set of signal points in 2N -PSK con-

stellation is referred to as the effective broadcast signal set

seen by Ri for xIi
= ai and is denoted by SL(ai). For

a chosen index code, all effective broadcast signal sets and

effective broadcast vector sets seen by Ri are of the same

size (|SL(ai)| = |SL(a
′
i)| = |CL(ai)| = |CL(a

′
i)| where

ai, a
′
i ∈ F

|Ki|
2 ).

Half the number of broadcast vectors in an effective broad-

cast vector set corresponds to xf(i) = 0 and the remaining half

corresponds to xf(i) = 1. So, we can partition an effective

broadcast vector set into two subsets as defined below.

Definition 3. The 0-effective broadcast vector set seen by Ri

for xIi
= ai is defined by,

CL0(ai) , {y ∈ F
N
2 : y = xL,xIi

= ai, xf(i) = 0, xj ∈ F2,

j ∈ [n] \ (Ii ∪ {f(i)})}.



The corresponding set of signal points in 2N -PSK constel-

lation is referred to as the 0-effective broadcast signal set seen

by Ri for xIi
= ai and is denoted as SL0(ai).

Definition 4. The 1-effective broadcast vector set seen by Ri

for xIi
= ai is defined by,

CL1(ai) , {y ∈ F
N
2 : y = xL,xIi

= ai, xf(i) = 1, xj ∈ F2,

j ∈ [n] \ (Ii ∪ {f(i)})}.

The corresponding set of signal points in 2N -PSK constel-

lation is referred to as the 1-effective broadcast signal set seen

by Ri for xIi
= ai and is denoted as SL1(ai).

The effective broadcast vector sets, 0-effective broadcast

vector sets and 1-effective broadcast vector sets seen by R2

for the IC in Example 1 is given in Table I. It is clear that,

two different realizations of xIi
may have the same effective

broadcast vector set. However, 1-effective broadcast vector set

for a particular realization of xIi
may become the 0-effective

broadcast vector set of another realization of xIi
and vice

versa. But the way in which the effective broadcast vector set

gets partitioned will be the same. For example consider the

case of CL(011) and CL(100) in Table I.

TABLE I
EFFECTIVE BROADCAST VECTOR SETS AND ITS PARTITIONS (SEEN BY R2)

FOR THE IC IN EXAMPLE 1.

a2 CL(a2) CL0(a2) CL1(a2)
(000) {(000), (010), (110), (100)} {(000), (110)} {(010), (100)}
(001) {(111), (101), (001), (011)} {(111), (001)} {(101), (011)}
(010) {(111), (101), (001), (011)} {(111), (001)} {(101), (011)}
(011) {(000), (010), (110), (100)} {(000), (110)} {(010), (100)}
(100) {(000), (010), (110), (100)} {(010), (100)} {(000), (110)}
(101) {(111), (101), (001), (011)} {(101), (011)} {(111), (001)}
(110) {(111), (101), (001), (011)} {(101), (011)} {(111), (001)}
(111) {(000), (010), (110), (100)} {(010), (100)} {(000), (110)}

Example 2. Consider the following ICP with n =
m = 6 and Wi = xi, ∀i ∈ {1, 2, ..., 6}. The side

information available with the receivers is as follows:

K1 = {x2, x3, x4, x5, x6}, K2 = {x1, x3, x4, x5}, K3 =
{x2, x4, x6}, K4 = {x1, x6}, K5 = {x3}, K6 = {}.

For this ICP we can choose a scalar linear index code

of length N = 4, based on encoding matrix L, with y1 =
x1 + x4, y2 = x2 + x3, y3 = x5, y4 = x6.

Then, the effective broadcast vector sets of R2 for four

different realization of xI2
are as given below.

• CL(0000) = {(0000), (0100), (0001), (0101)}
• CL(0001) = {(0010), (0110), (0011), (0111)}
• CL(0010) = {(1000), (1100), (1001), (1101)}
• CL(0011) = {(1010), (1110), (1011), (1111)}.

Suppose an IC based on an encoding matrix L, and an

effective broadcast vector set, CL(ai) of Ri are given. CL(ai)
can be partitioned into 0-effective broadcast vector set and

1-effective broadcast vector set as follows:

• Identify an x such that xL ∈ CL(ai). Let the correspond-

ing realization of xIi
be ai .

• For ai, partition CL(ai) into CL0(ai) and CL1(ai)

The partitioning of CL(ai) is illustrated in the follow-

ing example. Consider the ICP given in Example 2.

Suppose the effective broadcast vector set, CL(a2) =
{(0000), (0100), (0001), (0101)} of R2 needs to be partitioned

into CL0(a2) and CL1(a2). Choose x = (110100) such that

y = xL = (0100) ∈ CL(a2), and then a2 = (1010). Note that

y2 = x2 + x3, x3 ∈ K2, R2 wants x2, and from a2 = (1010),
x3 = 0. So y2 = x2 and only two broadcast vectors, (0000)
and (0001) in CL(1010) has y2 = 0. So CL0(1010) =
{(0000), (0001)}. Similarly, CL1(1010) = {(0100), (0101)}.
It should be noted that for some other choice of x with x3 = 1,

we may get CL0(a2) = {(0100), (0101)} and CL1(a2) =
{(0000), (0001)}. We are only interested in partitioning the

effective broadcast vector set into two subsets such that all

broadcast vectors in each subset correspond to the same value

of xf(i).

III. MAXIMUM LIKELIHOOD DECODER

In this section we derive a decision rule for the maximum

likelihood decoder for the receiver Ri. We follow an approach

similar to the one used in [11].

LetM be the map from F
N
2 to the signal set S. The received

vector r is given by

r =M(xL) +w

where w = (w1 w2); w1 and w2 are independent Gaussian

variables with zero mean and variance N0/2. The conditional

probability density of r given that M(xL) is transmitted

(likelihood function) is

p(r|M(xL)) =
1

(πN0)
exp

(

−
‖r−M(xL)‖2

N0

)

. (1)

Consider the decoder for a receiver Ri. The minimum

error probability decoder should make a decision x′
f(i) on

the desired message xf(i) based on the received vector r and

the side information xIi
, minimizing the probability of error.

Given xIi
= ai, when xf(i) = 0 the probability of error

in this decision is Pr(xf(i) = 1|xIi
= ai, r) and that when

xf(i) = 1 is Pr(xf(i) = 0|xIi
= ai, r). To minimize the error

probability, the decision x′
f(i) = 0 is taken if

Pr(xf(i) = 0|xIi
= ai, r) ≥ Pr(xf(i) = 1|xIi

= ai, r) (2)

and the decision x′
f(i) = 1 is taken if

Pr(xf(i) = 0|xIi
= ai, r) < Pr(xf(i) = 1|xIi

= ai, r). (3)

Combining (2) and (3), and ignoring ties, the decision rule can

be written as

Pr(xf(i) = 0|xIi
= ai, r)

1
≶
0

Pr(xf(i) = 1|xIi
= ai, r). (4)

Using Bayes rule in (4), we obtain the decision rule in terms

of the likelihood functions as

p(r|xf(i) = 0,xIi
= ai)Pr(xf(i) = 0)

p(r)

1

≶
0

p(r|xf(i) = 1,xIi
= ai)Pr(xf(i) = 1)

p(r)
,
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Fig. 1. 8-PSK mapping and inter-set distance for R1 in Example 1.

which implies

p(r|xf(i) = 0,xIi
= ai)Pr(xf(i) = 0)

1

≶
0

p(r|xf(i) = 1,xIi
= ai)Pr(xf(i) = 1). (5)

SL0(ai), the 0-effective broadcast signal set seen by Ri (for

ai), is the set of all signal points corresponding to broadcast

vectors with xf(i) = 0 and xIi
= ai. Therefore,

p(r|xf(i) = 0,xIi
= ai) = p(r|SL0(ai)). (6)

Similarly,

p(r|xf(i) = 1,xIi
= ai) = p(r|SL1(ai)). (7)

Assuming that all the messages take values 0 or 1 with equal

probability, from (5), (6) and (7) we obtain the decision rule

as
∑

k:sk∈SL0(ai)

p(r|sk)
1

≶
0

∑

k:sk∈SL1(ai)

p(r|sk). (8)

From (1) and (8),

∑

k:sk∈SL0(ai)

(

1

(πN0)
exp

(

−
‖r− sk‖

2

N0

))

1
≶
0

∑

k:sk∈SL1(ai)

(

1

(πN0)
exp

(

−
‖r− sk‖

2

N0

))

.

Thus we obtain the ML decision rule as,

∑

k:sk∈SL0(ai)

(

exp

(

−
‖r− sk‖

2

N0

))

1

≶
0

∑

k:sk∈SL1(ai)

(

exp

(

−
‖r− sk‖

2

N0

))

. (9)

It is clear that the ML decoder decision is based on the

Euclidean distance of all signal points in 0-effective broadcast

signal set to the received vector r relative to that of the signal

points in 1-effective broadcast signal set. This indicates that,

to reduce the message error probability, the signal points in 0-

effective broadcast signal set and 1-effective broadcast signal

set must be as separated as possible in terms of Euclidean

distance.

IV. INTER-SET DISTANCE AND PSK INDEX CODING GAIN

Definition 5. Inter-set distance of an effective broadcast signal

set seen by a receiver Ri is the minimum among the Euclidean

distances between a signal point in the 0-effective broadcast

signal set and a signal point in the 1-effective broadcast signal

set.

dIS(SL(ai)) , min{d(sa, sb) :sa ∈ SL0(ai), sb ∈ SL1(ai)}

where d(sa, sb) denotes the Euclidean distance between 2N -

PSK signal points, sa and sb.

A labeled 8-PSK constellation which can be used for the

ICP discussed in Example 1 is shown in Fig. 1(a) and the

inter-set distance of the effective broadcast signal set seen by

R1 for xIi
= (00), SL(00) is shown in Fig. 1(b). For this

example, SL(00) = {s1, s2, s5, s6}, SL0(00) = {s1, s2} and

SL1(00) = {s5, s6}.

Definition 6. For a given index code and mapping, the mini-

mum inter-set distance for a receiver Ri, denoted by d
(i)
IS,min,

is defined as the minimum of the inter-set distances among all

the effective broadcast signal sets seen by Ri.

d
(i)
IS,min , min{dIS(SL(ai)) : ai ∈ F

|Ki|
2 }

In the case of Example 1, the minimum inter-set distance for

R1 is shown in Fig. 1(b) and 1(c) for two different mappings.

Clearly, the mapping shown in Fig. 1(b) has a larger minimum

inter-set distance for R1.

In (9), the term with the signal point closest to r is dominant

in the summations at very high SNR. The decoder makes an

error if the broadcasted signal point is in 0-effective broadcast

signal set but r is closest to a signal point in 1-effective

broadcast signal set or vice versa. The probability of this event

is more when the minimum inter-set distance is less. At high

SNR, this error is dominant and so an optimal mapping for the

best message error performance must maximize the minimum

inter-set distance. Among the mappings which has the same



minimum inter-set distance, the one which has more second

minimum inter-set distance will perform better and so on.

Definition 7. The PSK Index Coding Gain (PSK-ICG) of a

receiver Ri, for a given IC and mapping is defined as

gi , 20 log

(

d
(i)
IS,min

dmin,n

)

where d
(i)
IS,min is the minimum inter-set distance for Ri and

dmin,n is the minimum Euclidean distance between any two

signal points in a 2n-PSK constellation.

V. MAPPING BASED ON INTER-SET DISTANCES

For mapping, it is more appropriate to consider the min-

imum inter-set distance than to consider the minimum Eu-

clidean distance of the effective broadcast signal sets. For

example, consider the mappings given in Fig. 1(b) and Fig.

1(c). With the mapping shown in Fig. 1(b), the minimum

inter-set distance for R1 is more but the minimum Euclidean

distance of its effective broadcast signal sets is less, compared

to that with the mapping shown in Fig. 1(c). The simulation

results (discussed in Section VI) show that R1 performs better

with the mapping in Fig. 1(b) than with the mapping in Fig.

1(c).

For the given ICP and 2N -PSK constellation, when the

receivers are arranged in the decreasing order of priority, we

propose an algorithm which maximizes the minimum inter-set

distance, to find (index code, mapping) pairs, each of which

gives the optimal message error performance for the receivers,

for the given order of priority. Assume that the decreasing

order of priority for the receivers is (R1, R2, ..., Rm). Here

optimality is based on minimum inter-set distance and is in

the following sense:

• No other mapping of 2N -PSK constellation for any index

code, can give PSK-ICG > g1 for R1.

• Any mapping for any index code which gives the PSK-

ICG gi for receiver Ri, i ∈ {1, 2, ..., j − 1} cannot give

a PSK-ICG > gj for Rj , j ≤ m.

It may so turn out that maximizing the gain of a receiver Ri,

minimizes the gain that can be achieved by a lower priority

receiver Rj . With this mapping it is not necessary that a higher

priority receiver will get higher PSK-ICG compared to that

of the lower priority receivers. The PSK-ICG achieved by a

receiver Rj depends on its priority, Wj , Kj , Wi and Ki ∀i
such that Ri is a higher priority receiver than Rj .

In the following subsections, we explain the mapping algo-

rithm and then illustrate it with examples.

A. Mapping Algorithm

Without loss of generality, assume that the decreasing

order of priority among the receivers is (R1, R2, ..., Rm). For

a given index code based on encoding matrix L, optimal

mapping for a receiver Ri is obtained as follows:

1) Find all effective broadcast vector sets for ai ∈ F
|Ki|
2 .

These sets partition F
N
2 .

2) Consider an effective broadcast vector set, CL(ai).
3) Partition the effective broadcast vector set into 0-

effective broadcast vector set (CL0(ai)) and 1-effective

broadcast vector set (CL1(ai)).
4) All the broadcast vectors in CL0(ai) must be mapped

to adjacent signal points. Let the set of signal points

corresponding to CL0(ai) be SL0(ai).
5) All the broadcast vectors in CL1(ai) must be mapped to

signal points diametrically opposite to signal points in

SL0(ai). This will result in a mapping with broadcast

vectors in CL1(ai) mapped to adjacent signal points.

6) Repeat steps 3 to 5 by considering the remaining effec-

tive broadcast vector sets one by one.

For a receiver Ri, when we compare the optimal mappings

for two different index codes, the code which has less |SL(ai)|
will perform better as the minimum inter-set distance will

be more (note that for both the index codes we do optimal

mapping).

The mapping algorithm is explained below. Index codes are

identified using the corresponding encoding matrices.

1) The algorithm starts by considering LN , the set of all

index codes of length N , for the given ICP. For Ri

define,

ηi , min
L∈LN

|SL(ai)|

2) Find η1. If η1 < 2N proceed to step 4 with i = 1.

3) If η1 = 2N , R1 sees the full 2N -PSK constellation

as the effective broadcast signal set. In such a case

all mappings for all the index codes will give same

PSK-ICG for R1 with d
(1)
IS,min same as the minimum

Euclidean distance between any two points of 2N -PSK

constellation. In such a case, any mapping for any index

code is optimum for R1. Then consider the next highest

priority receiver, R2 and continue until a receiver Ri for

which ηi < 2N is found. If ηi = 2N for all receivers,

do an arbitrary mapping and exit. Now consider the case

where a receiver Ri for which ηi < 2N is found.

4) Let {L : |SL(ai)| = ηi} be {L1, L2, ..., LnL,i
}. For

each Lj , j ∈ {1, 2, ..., nL,i}, find optimal mappings for

Ri. Let there be nM,i optimal mappings for each index

code and denote the mappings corresponding to index

code Lj as Mj1,Mj2, ...,MjnM,i
. Define O, the set

of ordered pairs as,

O , {(L1,M11), (L1,M12), ..., (L1,M1nM,i
),

(L2,M21), (L2,M22), ..., (L2,M2nM,i
), ...,

(LnL,i
,MnL,i1), (LnL,i

,MnL,i2), ...,

(LnL,i
,MnL,inM,i

)}.

The set O contains all the (index code, mapping) pairs

which give the maximum gain possible for Ri. Now

from this set, identify the pairs which give maximum

gain for Ri+1. For this, choose the pairs which have

maximum d
(i+1)
IS,min. Now consider these pairs as set O

and continue until the last receiver Rm is considered



and the pairs which have maximum d
(m)
IS,min is obtained.

These are the (index code, mapping) pairs which are

optimal.

B. Illustration of Mapping Algorithm

We illustrate the mapping algorithm given as Algorithm 1
with an example.

Consider the ICP given in Example 1. Assume that the de-

creasing order of priority is (R1, R2, R3, R4, R5). Let N = 3
which is also the length of the optimal index code in this case.

Since this is a single unicast ICP, we can find all index codes

by considering fitting matrices [4] of rank 3. There are a total

of 32 such matrices. For each of these 32 matrices, choose

any 3 independent rows as a basis for the row space. So we

obtain 32 row spaces (which represents 32 index codes for the

given ICP). Of these, only six row spaces are distinct. From

Corollary 1 in [8], the number of index codes possible with

the optimal length c for a single-unicast IC problem is given

by µ
c!

∏c−1
i=0 (2

c − 2i) where µ is the number of distinct row

spaces of c-ranked fitting matrices.

For the example under consideration, there are a total of

168 index codes (28 index codes for each distinct row space).

So, L3 contains 168 index codes. η1 = minL∈L3
|SL(a1)| =

4. There are 84 index codes with η1 = 4 and 32 optimal

mappings for R1, for each of these index codes. The set O
has 32 ∗ 84 = 2688 (index code, mapping) pairs which are

optimal for R1. One such (L,M) pair has the index code as

given in Example 1 and mapping as given in Fig.1(b). Consider

R2. After all pairs in O are considered, the maximum value

possible for d
(2)
IS,min = 1.414 and there are 336 pairs which

are optimal for R2. Now consider R3. All 336 pairs gives

the same d
(3)
IS,min = 1.414. For R4 and R5 all pairs have

same minimum inter-set distance and these 336 pairs give the

(index code, mapping) pairs which are optimal for the ICP

considered. For illustration, four such (L,M) pairs are given

below. Index code based on encoding matrix L is given in the

form of (y1, y2, y3). M is given as an ordered list of eight

integers, representing the decimal equivalent of the 3-tuple,

which is mapped to (s1, s2, ..., s8) where (s1, s2, ..., s8) are

2N -PSK signal points as shown in Fig. 1.

• ({x1, x2 + x3, x4 + x5}, (0, 1, 2, 3, 4, 5, 6, 7))
• ({x1, x2 + x3, x4 + x5}, (0, 1, 6, 7, 4, 5, 2, 3))
• ({x1, x2 + x3, x1 + x4 + x5}, (0, 1, 2, 3, 5, 4, 7, 6))
• ({x1, x1 + x2 + x3, x4 + x5}, (0, 1, 2, 3, 6, 7, 4, 5))

Claim 1: Algorithm 1 guarantees that no other mapping of

2N -PSK constellation for any index code, can give PSK-ICG

> g1 for R1.

Proof. The coding gain (PSK-ICG) achieved by a receiver is

maximized when the minimum inter-set distance is maximum.

Consider an index code of length N . Using Algorithm 1,

for each of the effective broadcast signal sets of the highest

priority receiver, the broadcast vectors in 0-effective broadcast

vector set are always mapped to adjacent points. Similarly, the

broadcast vectors in 1-effective broadcast vector set are always

mapped to adjacent points. These sets of points are placed

Algorithm 1 Algorithm to find optimal (index code, mapping)

pairs for a given ICP.

1: i← 1
2: Find ηi = minL∈LN

|SL(ai)|
3: if (ηi = 2N ) then

4: i← i+ 1
5: if (i > m) then

6: Do an arbitrary mapping and Exit.

7: else

8: Goto 2

9: else

• Consider the set of index codes {L1, L2, ..., LnL,i
} =

{L : |SL(ai)| = ηi}
• Find O, the set of all (index code, optimal mappings)

pairs for Ri.

10: i← i+ 1
11: if (i > m) then

12: Output O and Exit.

13: else

14: Choose any (L,M) ∈ O

15: Oi ← {(L,M)}. Find δ = d
(i)
IS,min.

16: O ← O \ {(L,M)}
17: if (O = {}) then

18: O ← Oi

19: Goto 10

20: else

21: Consider any (L,M) ∈ O. Find d
(i)
IS,min.

22: if (d
(i)
IS,min > δ) then

23: Oi ← {(L,M)}, δ = d
(i)
IS,min. Goto 16.

24: else

25: if (d
(i)
IS,min = δ) then

26: Oi ← Oi ∪ {(L,M)}. Goto 16.

27: else

28: Goto 16.

diametrically opposite to each other. Thus, the minimum inter-

set distance is maximized for the chosen index code and the

mapping is optimal.

When we compare the message error performance of R1

with respect to different possible index codes, the code which

has less |SL(ai)| performs better. Index codes with minimum

|SL(ai)| are only considered for mapping in Algorithm 1. So,

the pairs considered by Algorithm 1 has index codes with

minimum |SL(ai)| and mappings which are optimal. No other

mapping of 2N -PSK constellation for any index code of length

N , can give PSK-ICG > g1 for R1. �

Claim 2: Algorithm 1 guarantees that, any mapping for any

index code which gives the PSK-ICG gi for receivers Ri, i ∈
{1, 2, ..., j − 1} cannot give a PSK-ICG > gj for Rj , j ≤ m.

Proof. Algorithm 1 finds all (index code, mapping) pairs

which are optimal for R1. In the next step, among these pairs,

which ever gives the maximum gain for R2 are chosen. So,

given that R1 has the same PSK-ICG, it is not possible to find



another pair for which R2 performs better. Same argument

extends to other receivers as well. �

Algorithm 1 can also be used to obtain optimal (index code,

mapping) pairs for a given set of index codes of length N .

In this case the algorithm must be run by considering the

given set of index codes instead of all possible index codes

of length N . This can be illustrated using the ICP given in

Example 2. Assume that the decreasing order of priority is

(R1, R2, R3, R4, R5, R6). Let N = 4 and assume that only

one index code as given in Example 2 need to be considered

(the given set of index codes is a singleton set). Consider the

highest priority receiver R1. Obtain the effective broadcast

vector sets seen by R1 for a1 ∈ F
5
2 and partition these sets.

The effective broadcast vector sets and its partitions for R1

are given in Table II. For any realization of xI1
= a1 which

is not listed in Table II, the effective broadcast vector set is

same as one of the effective broadcast vector sets given in the

table.

TABLE II
EFFECTIVE BROADCAST VECTOR SETS AND ITS PARTITIONS (SEEN BY R1)

FOR THE IC IN EXAMPLE 2.

a1 CL(a1) CL0(a1) CL1(a1)
(00000) {(0000), (1000)} {(0000)} {(1000)}
(00001) {(0001), (1001)} {(0001)} {(1001)}
(00010) {(0010), (1010)} {(0010)} {(1010)}
(00011) {(0011), (1011)} {(0011)} {(1011)}
(01000) {(0100), (1100)} {(0100)} {(1100)}
(01001) {(0101), (1101)} {(0101)} {(1101)}
(01010) {(0110), (1110)} {(0110)} {(1110)}
(01011) {(0111), (1111)} {(0111)} {(1111)}

There are 645120 optimal mappings for R1. The set O has

645120 (index code, mapping) pairs which are optimal for R1,

with the index code being the same for all the pairs. Consider

R2. After all pairs in O are considered, the maximum value

possible for d
(2)
IS,min = 1.847 and there are 128 pairs which are

optimal for R2. Now consider R3. There are 24 pairs which

are optimal with d
(3)
IS,min = 0.765. For R4 there are 16 optimal

pairs with minimum inter-set distance d
(4)
IS,min = 0.765. For

R5 and R6 all these pairs give the same minimum inter-set

distance. These 16 pairs are the optimal mappings for the IC

considered. One of these mappings is given in Fig. 2(a).

VI. SIMULATION RESULTS

We have considered the ICP given in Example 1 and used

Algorithm 1 to obtain all optimal (index code, mapping) pairs.

One such pair, (L1,M1) has the index code as given in

Example 1 and mapping as given in Fig. 1(b). We compared

this optimal mapping with another mapping M2 (shown in

Fig. 1(c)) which is not optimal for the same index code, L1.

The pair (L1,M2) /∈ O, the output set obtained from the

execution of the algorithm. We obtained the message error

probability of the receivers for the two different mappings, by

simulation. The first mapping, (M1) used Algorithm 1 and the

second mapping (M2) used an algorithm based on maximizing
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Fig. 2. Two 16-PSK mappings for the IC in Example 2.
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Fig. 3. Simulation results comparing the performance of receivers for two
different mappings (Example 1).

the minimum Euclidean distances [10]. Simulation results are

given in Fig. 3.

The performance of receivers R1, R2 and R3 is significantly

better with M1 than with M2 at high SNR. The minimum

inter-set distances are more for M1 (Fig.1(b)) than for M2

(Fig.1(c)). For receivers R4 and R5, the minimum inter-set

distances are same for both the mappings.

We have carried out simulation based studies to compare

the performance of the receivers for the ICP and the IC given

in Example 2 for two different mappings as given in Fig.

2. The mapping (M1) given in Fig. 2(a) used Algorithm 1

and the mapping (M2) given in Fig 2(b) used the algorithm

based on maximizing the minimum Euclidean distances [10].

Simulation results are given in Fig. 4.

For R1, R3, R4, R5 and R6, the minimum inter-set dis-

tances and hence the performances are the same for both the

mappings. But the performance of receiver R2 is significantly
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Fig. 4. Simulation results comparing the performance of receivers for two
different mappings (Example 2).

better with M1 than with M2 at high SNR.

The simulation results indicate the effectiveness of the

algorithm based on minimum inter-set distances (Algorithm

1) for mapping the broadcast vectors to PSK signal points.

It should be noted that Algorithm 1 does not guarantee that

all the receivers will perform better or as good as that with any

other algorithm. It is possible that, a mapping based on some

algorithm (say, Algorithm 2) gives a better performance to a

receiver Rj than that with Algorithm 1. But then there will

be a receiver Ri which performs better with Algorithm 1 than

with Algorithm 2, where Ri is a higher priority receiver than

Rj . In other words, Algorithm 1 attempts to maximize the gain

achieved by the receivers by considering the receivers in the

given order of priority. This is further illustrated in Example

3.

Example 3. Consider the following ICP with n = m = 5 and

Wi = xi, ∀i ∈ {1, 2, ..., 5}. The side information available

with the receivers is as follows: K1 = {x2, x3, x4, x5}, K2 =
{x1, x4, x5}, K3 = {x1, x4}, K4 = {x2}, K5 = {}.

For this ICP a scalar linear index code of length N = 4
(not optimal), is specified as y1 = x1 + x2, y2 = x3, y3 =
x4, y4 = x5. Assume that the decreasing order of priority is

given as (R1, R2, R3, R4, R5).

Using Algorithm 1, optimal mappings for the specified IC

is obtained, of which one mapping (M1) is given in Fig.

5(a). Another mapping M2, is found by using the algorithm

based on maximizing the minimum Euclidean distances [10]

and is given in Fig. 5(b). Simulation results comparing the

performance of the receivers for these two mappings are given
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Fig. 5. Two 16-PSK mappings for the IC in Example 3.
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Fig. 6. Simulation results comparing the performance of receivers for two
different mappings (Example 3).

in Fig. 6.

It is clear from Fig. 6 that, R2 performs better with M1

than with M2. But R3, which is of lower priority than R2,

has better performance with M2.

VII. DISCUSSION

In this paper we have considered index coded PSK modula-

tion and have derived a decision rule for the ML decoder which

minimizes the message error probability of the receivers, for

a given ICP. We have introduced the concept of inter-set

distances and illustrated its importance in noisy index coding

problems. It was also shown that at high SNR the dominant

factor which decides the message error is the minimum inter-

set distance and so an optimal mapping must maximize the

minimum inter-set distance.

Subsequently, we have considered the problem of finding

optimal (index code, mapping) pairs across all possible map-



pings for all possible index codes of length N , for a chosen

2N -PSK modulation. This problem was not addressed so far

in literature. The algorithm which is proposed for a given ICP,

can find (index code, mapping) pairs, each of which gives the

best PSK-ICG for the receivers, for any given order of priority.

Finding all index codes of a chosen length (greater than

or equal to the optimal length) for a given ICP is in general

NP hard. If it is too complex to find all the index codes, the

algorithm can be executed by considering a chosen set of index

codes. But the complexity of the proposed algorithm increases

exponentially with the length of the index code.
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