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Abstract—In this paper, we investigate linear precoding for
spatial modulation (SM) over multiple-input-multiple-output
(MIMO) fading channels. With channel state information avail-
able at the transmitter, our focus is to maximize the minimum Eu-
clidean distance among all candidates of SM symbols. We prove
that the precoder design is a large-scale non-convex quadratically
constrained quadratic program (QCQP) problem. However, the
conventional methods, such as semi-definite relaxation and it-
erative concave-convex process, cannot tackle this challenging
problem effectively or efficiently. To address this issue, we
leverage augmented Lagrangian and dual ascent techniques, and
transform the original large-scale non-convex QCQP problem
into a sequence of subproblems. These subproblems can be solved
in an iterative manner efficiently. Numerical results show that
the proposed method can significantly improve the system error
performance relative to the SM without precoding, and features
extremely fast convergence rate with very low computational
complexity.

I. INTRODUCTION

Spatial modulation (SM) [1] has been recently proposed
as a novel energy-efficient and low-complexity scheme for
multiple-input-multiple-output (MIMO) transmission [2]. The
philosophy behind SM is to activate only a single antenna
at each time slot, but simultaneously use the original signal
constellation and the additional space of the antenna index
to convey bits of information. The main advantages of SM
over the conventional layered space-time architecture are the
introduction of energy-efficient single-radio frequency chain at
the transmitter and the avoidance of inter-channel interference
(ICI) at the receiver. To harvest this benefit, a large number
of papers strived to design low-complexity SM detectors, such
as sphere decoding [3], the ordered-blocked minimum-mean-
squared-error [4], and the enhanced Bayesian compressive
sensing EBCS [5].

To further improve SM system performance, it is not sur-
prising to see some efforts on preprocessing at the transmitter.
For example, an adaptive SM method [6] was proposed to
select the optimal transmission mode to improve the error
performance while maintaining the target average transmission
rate. The use of transmit antenna subset selection in SM
systems was also reported in [7]. In general, these methods
are relatively complicated to be implemented in practice.

With channel state information (CSI) available at the trans-
mitter, another leap forward of SM improvement comes with
the introduction of linear transmit precoding methods based
on the principle of the maximum minimum Euclidean distance
(MMD) [1], [8]–[10] , due to its simplicity. In [8], the phase

alignment technique was applied to SM systems to improve
the transmit diversity, but this technique is limited to multiple-
input single-output (MISO) channels. The pre-scaling opti-
mization based on semidefinite relaxation (SDR) was proposed
in [9]; however, it is only applicable to the special case of
space shift keying of SM. By quantizing the amplitude and
phase of precoding weights restricted to two transmit antennas,
the precoder designs in [1] can achieve sub-optimal error
performance. More recently, the MMD based linear precoder
[10] for SM was designed by using an iterative concave-
convex process. Though the method can achieve much better
error performance, it needs to solve multiple convex opti-
mization subproblems before reaching convergence, and the
convergence rate is found to be very slow, resulting in high
computational complexity. This motivates us to design a low-
complexity and high-performance precoding method for SM.

In this paper, we propose a novel linear precoding method
for SM systems based on the MMD criterion. We first prove
that the precoder design to be a large-scale non-convex
quadratically constrained quadratic program (QCQP) problem,
which is highly challenging. We propose to address this QCQP
problem by leveraging augmented Lagrangian and dual ascent
techniques. The proposed algorithm transforms the original
large-scale non-convex QCQP problem into a sequence of
unconstraint subproblems in an iterative manner, while each
subproblem can be efficiently solved by the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm [11]. Numerical results
show that our proposed algorithm can significantly improve
the error performance of SM, and features extremely fast
convergence rate with very low computational complexity.

The rest of this paper is organized as follows. Section
II presents the SM system model. Section III describes the
precoding design criterion and conventional precoding meth-
ods. Section IV describes the proposed precoding method.
In Section V, simulation results are provided to validate the
benefits of our proposed method. Finally, conclusions are
drawn in Section VI 1.

1Notation: (·)T and (·)H denote transpose and conjugate transpose, re-
spectively. IN denotes an N×N identity matrix, and 0N denotes an N×N
all-zero matrix. ‖a‖ denotes the 2-norm of a vector a. Tr (A), rank (A),
and ‖A‖F denotes the trace, the rank, and the Frobenius norm of a matrix
A, respectively. [x]+ represents max(x, 0). Re{x} and Im{x} represent the
real and imaginary parts of x, respectively. Λ = diag (a) changes a vector
a into a diagonal matrix Λ. CN (µ,Σ) denotes the complex vector normal
distribution with a mean vector µ and a covariance matrix Σ. In addition, all
the subscripts and indices in this paper begin with zero.



II. PRELIMINARY

A. System Model

Consider a MIMO system with Nt transmit and Nr receive
antennas. For ease of exposition, we assume Nt = 2n with
n a positive integer. In contrast to the conventional spatial
multiplexing, SM uses both the spatial and signal constella-
tions to convey information bits. At each time slot, the first
n = log2Nt bits of information are mapped to a spatial
constellation point drawn from the set with the cardinality Nt

Sspatial = {e0, e1, · · · , eNt−1}, (1)

where en ∈ RNt , n = 0, · · · , Nt−1 is the n-th column of INt
.

In other words, only a single transmit antenna is activated at
each time slot. Then, the last m = log2M bits of information
are mapped to a signal constellation point drawn from the set
with the cardinality M

Ssignal = {s0, s1, · · · , sM−1}, (2)

where sm ∈ C, m = 0, · · · ,M − 1 is a power normalized
M -PSK or M -QAM symbol.

The resulting transmit codebook S with the cardinality
NtM is the Cartesian product of Sspatial and Ssignal. Specifi-
cally,

S = {s0e0, s1e0, · · · , sM−1e0, · · · , sM−1eNt−1}. (3)

A transmitted SM symbol x ∈ CNt is chosen from S, i.e.,
x = smen. With channel state information (CSI) available
at the transmitter, x is precoded by a diagonal matrix
Q = diag(q) with precoding weights q = [q0, · · · , qNt−1]T ∈
CNt . Different from the conventional full precoding matrix in
spatial multiplexing, SM precoding needs a diagonal matrix
as a precoder to preserve the property of single antenna
activation. Clearly, there are Nt unknown precoding weights
to be optimized to enhance the error performance.

Assuming a quasi-static frequency-flat fading channel, the
received signal vector y ∈ CNr is given by

y = HQx + w, (4)

where H = [h0, · · · ,hNt ] ∈ CNr×Nt denotes the flat-fading
MIMO channel matrix, whose entries follow an i.i.d circularly
symmetric complex Gaussian distribution CN (0, 1), and w ∼
CN (0, σ2INr

) is the additive noise vector.

B. Maximum Likelihood Receiver

For SM systems, the ML detector provides the optimal
performance by exhaustively searching through all candidates
of SM symbols x in the codebook S as

x̂ML = arg min
x∈S
‖y −HQx‖22. (5)

Based on the ML detector, the error performance for a given
channel H can be approximated by the sum of the pariwise
error probability given by [1]

Pe ≤ P oe =

NtM∑
i=1

NtM∑
j=1,j 6=i

Q

(√
1

2σ2
di,j(q)

)
, (6)

where Q(x) = 1√
2π

∫∞
x
e−

y2

2 dy, and di,j(p) = ‖HQ(xi −
xj)‖2 is the squared Euclidian distance between two SM
symbols xi and xj .

At high signal-to-noise ratio (SNR), P oe in (6) can be
simplified as

P oe = λ ·Q

(√
1

2σ2
dmin(q)

)
, (7)

where λ is the number of neighbor points [12], and dmin =
min∀i,j,i 6=j di,j(q) is the minimum squared Euclidian distance
among the codebook S .

III. PRECODING DESIGN CRITERION

The objective of the precoding design is to minimize the bit
error rate (BER) of SM systems over MIMO fading channels.
Since P oe in (7) is a monotonically decreasing function of dmin,
the precoding design can be formulated as the following MMD
problem

(P0) max
q∈CNt

dmin(q)

s.t. ‖q‖2 ≤ Pt,

where Pt is the total power constraint at the transmitter.
We now derive a more detailed form of the objective

function in (P0). The squared Euclidian distance di,j(q) in
(6) can be calculated as

di,j(q) = ‖HQ(xi − xj)‖2

= (xi − xj)
HQHHHHQ(xi − xj)

(a)
= Tr(QHHHHQ∆xi,j)
(b)
= qH(HHH�∆xTi,j)q

= qHRi,jq, (8)

where ∆xi,j , (xi − xj)(xi − xj)
H , Ri,j = qH(HHH �

∆xTi,j)q,
(a)
= uses the trace property Tr(AB) = Tr(BA) for

matrices A and B, and
(b)
= uses the matrix rule in [13] where

� denotes the Hadamard product. At this stage, (P0) can be
rewritten as

(P0) max
q∈CNt

min
∀i,j,i 6=j

qHRi,jq

s.t. ‖q‖2 ≤ Pt.

By introducing an auxiliary variable t, the equivalent epigraph
form [14] of (P0) can be shown as

(P1) max t

s.t. qHRi,jq ≥ t, ∀i, j, i 6= j

‖q‖2 ≤ Pt.

We can further show that (P1) is equivalent to the following
problem

(P2) min
q∈CNt

‖q‖2

s.t. qHRi,jq ≥ dmin, ∀i, j, i 6= j,



where dmin is the desired minimum squared distance. The
rationale behind (P2) is to guarantee the minimum squared
distance among the codebook S, while pursuing the minimum
power usage as the objective.

Taking a close look at (P2), we can treat it as a large-
scale non-convex QCQP problem. It can be calculated that the
number of the quadratic constraints in (P2) is NtM×(NtM−
1)/2, which is very large for a large number of antennas
and a high-order modulation. For example, in a moderate SM
system with Nt = 8 with M = 16, there are 8128 quadratic
constraints. Naturally, it is extremely difficult to obtain the
global optimal solution to such problem. A prevailing method
to tackle a small-scale non-convex QCQP problem is to
approximate it as a convex semi-definite programming (SDP)
problem via semidefinite relaxation. By setting C = qqH and
relaxing the problem through dropping the rank 1 constraint of
the matrix C, a globally optimal Ĉ can be obtained by many
convex optimization methods such as the interior point method
[14]. When rank(Ĉ) = 1, optimal q is derived through the
decomposition of Ĉ. However, with the increased number
of quadratic constraints, the probability of achieving rank-
one solutions by SDR is extremely low, making the method
ineffective.

Recently, the authors in [10] proposed a convex relaxation
method to approximate (P2). Following [10], the approxi-
mated MMD problem (AMMD) is given by

min
q∈CNt

‖q‖2

s.t. Re
{

2(qk)HRi,jq− (qk)HRi,jq
k
}
≥ dmin.

(9)

Given qk, the solution to (9) is qk+1. As 2(qk)HRi,jq −
(qk)HRi,jq

k is an affine function of q, (9) is a convex
optimization problem. Initializing an point q0 and iteratively
solving (9) for K times until convergence, we can obtain a
sequence of solutions {qk}Kk=1, and the last one qK serves
as the approximated solution to (P2). The AMMD precoding
method is able to achieve a favorable error performance in
the simulations; however, our further investigations found
that the weakness of this method lies in its high computa-
tional complexity. On the one hand, the complexity of the
primal-dual interior point method to solve (9) each time
is O

(
N2
t Nr

)
+ O

(
N4
t

)
, which increases dramatically with

increasing Nt. On the other hand, we need to solve (9)
for K times but K is usually very large. Therefore, the
aforementioned two issues impose a great burden in the real-
time precoding design at the transmitter. This motivates us to
design a novel low-complexity precoding method for SM.

IV. THE PROPOSED PRECODER DESIGN

In this section, we develop a novel algorithm to address
(P2) by leveraging augmented Lagrangian together with dual
ascent techniques. We first review the basic principle of the
dual ascent technique [14].

Algorithm 1 Proposed Precoding Algorithm
Initialization: Initialize I2Nt

← m0,∀i, j, i 6= j, 0.5 ← λi,j ,
10← µ0. Repeat

1) Update the primal vector mk+1

mk+1 = arg min
m

L(m,λk, µk). (16)

2) Update the dual vector λk+1

λk+1
i,j =

[
λki,j − µk((mk)TGi,jm

k − dmin)
]+
. (17)

3) Update the penalty parameter µk+1

µk+1 = 2µk. (18)

4) Set k ← k + 1.
Until convergence criterion is met.

A. Dual Ascent

Consider an equality-constrained convex optimization prob-
lem

min
x∈R

f(x)

s.t. Ax = b. (10)

The Lagrangian corresponding to (10) can be written as

L(x,λ) = f(x) + λT (Ax− b), (11)

where λ is the dual variable or Lagrange multiplier. The dual
function of (11) can be shown as

g(λ) = min
x∈R

L(x,λ) = −f∗(−ATλ)− bTλ, (12)

where f∗(·) is the convex conjugate of f(·). The dual problem
with respect to the original problem in (10) is

max
λ

g(λ). (13)

Assuming that strong duality holds, the optimal values of the
primal and dual problems are the same. In this case, we can
recover a primal optimal point x? from a dual optimal point
λ? as

x? = arg min
x
L(x,λ?), (14)

provided there is only one minimizer of L (x,λ?). At this
stage, the dual ascent method consists of primal and dual
vectors iterating updates

xk+1 = arg min
x
L(x,λk) (15a)

λk+1 = λk + αk(Axk+1 − b) (15b)

where αk > 0 is a step size , and the superscript is the iteration
counter. The first step (15a) is an x-minimization step, and the
second step (15b) is a dual variable update. With appropriate
choice of k, the dual function increases in each step, i.e.,
g
(
λk+1

)
> g

(
λk
)
.



B. Augmented Lagrangian

We now develop the corresponding dual ascent method in
terms of augmented Lagrangian capable of bringing robustness
to the dual ascent method. Instead of having the equality
constraint in (10), here we need to deal with a massive number
of inequality constraints in (P2). For convenience, we first
convert (P2) to a real-valued form; this yields a real vector
m =

[
Re{q}T Im{q}T

]T ∈ R2Nt×2Nt , and a real matrix
Gi,j

Gi,j =

[
Re{Ri,j} −Im{Ri,j}
Im{Ri,j} Re{Ri,j}

]
. (19)

In this case, (P2) can be equivalently illustrated as

(P3) min
m∈R2Nt

mTm

s.t. mTGi,jm ≥ dmin, ∀i, j, i 6= j.

The augmented Lagrangian for (P3) can be shown as

L(m, s,λ, µ) =

mTm−
NtM∑
i=1

NtM∑
j=1,j 6=i

λi,j
(
mTGi,jm− si,j − dmin

)
+
µ

2

NtM∑
i=1

NtM∑
j=1,j 6=i

(
mTGi,jm− si,j − dmin

)2
, (20)

where µ > 0 is the penalty parameter, and λ , {λi,j}
is the dual vector. Note that we transform the inequality
constraints mTGi,jm ≥ dmin in (P3) to the equality con-
straints by introducing a slack vector s , {si,j} and showing
mTGi,jm = dmin + si,j with si,j ≥ 0.

In the following, we elaborate on the details of updating
the primal vector m. Following the same spirit in (15a), we
first minimize the augmented Lagrangian L(m, s,λk, µk) with
respect to m and s at the iteration k, given by

min
m,s

L(m, s,λk, µk) (21a)

s.t. s ≥ 0. (21b)

Since each si,j occurs in just two terms of (21a) , which is in
fact a convex quadratic function with respect to each of these
slack variables. We can therefore perform an explicit mini-
mization in (21a) with respect to each of the si,j separately.
With ∇sL(m, s,λk, µk) = 0, we have

si,j = mTGi,jm− dmin −
λki,j
µk

. (22)

If this unconstrained minimizer is smaller than the lower
bound of 0, then since (21a) is convex in si,j , the optimal
value of si,j in (21a) is 0. Therefore, the optimal value of si,j
is given by

si,j =

[
mTGi,jm− dmin −

λki,j
µk

, 0

]+
. (23)

In this case, it is readily to substitute (23) into
L(m, s,λk, µk), obtaining an equivalent form L(m,λk, µk)
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Fig. 1. Convergence performance for SM systems with Nt = 8, Nr = 4,
and QPSK. (a) AMMD; (b) AL.

without s. To minimize the augmented Lagrangian
L(m,λk, µk), we employ a limited-memory BFGS algorithm
[11] which only requires computation of the gradient of
L(m,λk, µk) with respect to m, ∇mL(m,λk, µk), given by

∇mL(m,λk, µk) = 2m−
NtM−1∑
i=0

NtM−1∑
j=0,j 6=i

ψ
(
mTGi,jm− dmin,λk, µk

)
,

(24)
where the function ψ(z, a, b) is defined as

ψ(z, a, b) ,

{
(a− bz)∇z, z − a

b ≤ 0

0, otherwise.
(25)

Once the approximate solution mk+1 is obtained, we use
the following formula to update the Lagrange multipliers and
the penalty parameter

λk+1
i,j =

[
λki,j − µk((mk)TGi,jm

k − dmin)
]+

(26)

µk+1 = 2µk. (27)

The algorithm procedure is summarized in Algorithm 1.

V. SIMULATION RESULTS AND DISCUSSION

In this section, we present numerical comparisons between
our proposed augmented Lagrangian (AL) based method with
the AMMD precoding method [10] and phase rotation aided
precoding method (PRP) [1]. The ideal CSI is assumed to be
available at the transmitter. According to [10], the AMMD
precoding can achieve the optimal BER performance among
all the linear precoding methods in the literature.

In Fig. 1, we compare the convergence rates of the proposed
method and the AMMD method by showing the probability
mass function (PMF) of the number of iterations. We consider
the SM-MIMO system with Nt = 8, Nr = 4, and QPSK. In
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the simulation, the convergence threshold is ε = 10−5 for
both methods, and 105 trials were conducted. By comparing
Fig. 1(a) with Fig. 1(b), it is clear that AL converges much
faster than AMMD. This is consistent with our previous dis-
cussion on the convergence rate of AMMD, based on solving
(9) for many times. In contrast, the convergence rate of the
proposed method, based on solving (16). On the other hand,
the complexity of the primal-dual interior point algorithm to
solve (9) each time is O

(
N2
t Nr

)
+O

(
N4
t

)
. By contrast, the

complexity of the BFGS algorithm [11] to solve (16) each time
is only O

(
4N2

t

)
. Therefore, the proposed method features

extremely fast convergence rate with very low computational
complexity compared to AMMD.

The BER performance comparison between the AMMD
method and the proposed method with QPSK is presented in
Fig. 2, where Nt = 8, Nr = 2 (solid lines), and Nr = 4
(dashed lines). It is clearly shown that the proposed method
achieves much better error performance than the non-precoded
SM. For example, AL is 4 dB superior to the non-precoded
SM with Nr = 2 at BER=10−3 and Nr = 4 at BER=10−5,
respectively. Note that the proposed method achieves almost
the same error performance with AMMD for both Nr = 2

and Nr = 4.
Simulation was also run for increased modulation level (16-

PSK), and the BER performance is presented for AMMD,
PRP, and the proposed method in Fig. 3, where Nt = 8,
Nr = 2. Note that 16-PSK is used here because it was found
in [12] that SM associated with constant-envelope modula-
tion provides better performance than amplitude modulation
schemes. It can be observed that, similar to Fig. 2, the relative
superiority of AMMD and AL also holds.

From the simulation results in Figs. 1-3, we can conclude
that the proposed method maintains the same favorable error
performance as the AMMD method, but reduces the complex-
ity by orders of magnitude. Therefore, the proposed method
is highly promising for practical implementations.

VI. CONCLUSION

In this paper, we proposed a novel precoding method for SM
systems based on the MMD criterion. We first prove that the
precoder design is a large-scale non-convex QCQP problem.
We then propose to address this QCQP problem by leveraging
augmented Lagrangian and dual ascent techniques. Numerical
results show that our proposed method can significantly im-
prove the error performance of SM, and features extremely fast
convergence rate with very low computational complexity.
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