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Abstract—We study the beamforming design for multiuser
systems with simultaneous wireless information and power trans-
fer (SWIPT). Employing a practical non-linear energy har-
vesting (EH) model, the design is formulated as a non-convex
optimization problem for the maximization of the minimum
harvested power across several energy harvesting receivers. The
proposed problem formulation takes into account imperfect
channel state information (CSI) and a minimum required signal-
to-interference-plus-noise ratio (SINR). The globally optimal
solution of the design problem is obtained via the semidefinite
programming (SDP) relaxation approach. Interestingly, we can
show that at most one dedicated energy beam is needed to achieve
optimality. Numerical results demonstrate that with the proposed
design a significant performance gain and improved fairness can
be provided to the users compared to two baseline schemes.

I. INTRODUCTION

In the past decades, the increasing interest in data hun-

gry applications and heterogenous services has triggered the

consumption of tremendous amounts of energy in wireless

communication systems. In practice, mobile devices are usu-

ally powered by batteries with limited energy storage capacity

which becomes a bottleneck in perpetuating the lifetime of

networks. To address this issue, energy harvesting (EH)-

based communication technology has been proposed. In par-

ticular, this technology enables self-sustainability of power-

constrained communication devices. Communication systems

may be equipped with energy harvesters [1]–[3] to scavenge

energy from renewable natural energy sources such as solar

and wind. Yet, these conventional energy sources are only

available at specific locations which limits the mobility of

portable devices. Besides, the intermittent and uncontrollable

nature of these natural energy sources is a concern for wireless

communications, where uninterrupted and stable quality of

service (QoS) are of paramount importance.

Recently, radio frequency (RF)-based wireless power trans-

fer (WPT) has received considerable interest from both in-

dustry and academia [4]–[7]. For example, industrial compa-

nies such as Samsung Electronics and Huawei Technology,

have begun to launch research and study groups to facilitate

the development and standardization of WPT [4]. In fact,

E. Boshkovska and R. Schober are with Friedrich-Alexander-University
Erlangen-Nürnberg (FAU), Germany. X. Chen is with Zhejiang University,
Hangzhou, China. L. Dai is with Tsinghua University, Beijing, China. D.
W. K. Ng is with The University of New South Wales, Australia. L. Dai is
supported by the International Science & Technology Cooperation Program
of China (Grant No. 2015DFG12760) and the National Natural Science
Foundation of China (Grant No. 61571270). R. Schober is supported by the
AvH Professorship Program of the Alexander von Humboldt Foundation. D.
W. K. Ng is supported under Australian Research Council’s Discovery Early
Career Researcher Award funding scheme (project number DE170100137).

the introduction of WPT avoids the high potential costs of

planning, installing, displacing, and maintaining power cables

in buildings and infrastructure. Specifically, for RF-based

communication networks, energy from ambient propagating

electromagnetic (EM) waves in radio frequency (RF) can be

harvested by energy-limited communication transceivers for

prolonging their lifetimes and supporting the energy con-

sumption required for future information transmission. This

technology eliminates the need for power cords and manual

recharging. Moreover, the broadcast nature of wireless chan-

nels facilitates one-to-many wireless charging and the possi-

bility of simultaneous wireless information and power transfer

(SWIPT) [5]–[7]. Compared to conventional EH, RF-based

EH technology can provide on-demand energy replenishment

which makes it suitable for smart wireless communication

devices having strict QoS and energy requirements.

In practice, wireless power has to be transferred via a

signal with high carrier frequency such that antennas with

small size can be used for harvesting the power. However,

the associated path loss severely attenuates the signal leading

to a small harvested power at the receiver. Hence, multiple

antenna beamforming has been proposed to facilitate efficient

WPT [8]–[12]. In [8], the concept of energy beamforming was

first proposed to maximize the efficiency of WPT. In [9]–

[11], energy beamforming was advocated to provide secure

SWIPT in multiple-antenna systems. The authors of [12]

investigated the impact of a massive number of antennas on

the energy efficiency of SWIPT systems. However, most of

the beamforming designs for SWIPT systems were based on

an over-simplified linear EH model. In fact, this model was

recently shown to be incapable of capturing the non-linear

characteristics of practical RF EH circuits [13]. Besides, the

results obtained in [8]–[12] were based on the assumption

of perfect knowledge of the channel state information (CSI)

of information receivers which is not realistic in practice.

Furthermore, resource allocation fairness was not considered

in [8]–[12] which may lead to an unsatisfactory performance

for some users.

In this paper, we address these problems. In particular, we

formulate the beamforming design as an optimization problem

to provide max-min fairness in WPT to energy harvesting

receivers equipped with practical non-linear energy harvesting

circuits. The optimization problem is solved by a semidefinite

programming (SDP) based resource allocation algorithm. Sim-

ulation results illustrate an interesting trade-off between user

fairness in energy harvesting and individual user data rate.

Notation: We use boldface capital and lower case letters

to denote matrices and vectors, respectively. AH , Tr(A), and
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Fig. 1. A system model of a SWIPT system with K = 2 IRs and J = 2

ERs.

Rank(A) represent the Hermitian transpose, trace, and rank

of matrix A, respectively; A ≻ 0 and A � 0 indicate that

A is a positive definite and a positive semidefinite matrix,

respectively; IN is the N×N identity matrix; [B]a:b,c:d returns

the a-th to the b-th rows and the c-th to the d-th column

block submatrix of B; CN×M denotes the set of all N ×M
matrices with complex entries; HN denotes the set of all

N×N Hermitian matrices. The circularly symmetric complex

Gaussian (CSCG) distribution is denoted by CN (m,Σ) with

mean vector m and covariance matrix Σ; ∼ means “distributed

as”; E{·} denotes statistical expectation; |·| represents the

absolute value of a complex scalar. [x]+ stands for max{0, x},

and [·]T represents the transpose operation.

II. SYSTEM MODEL

In this section, we present the channel model for downlink

SWIPT systems.

A. Channel Model

We consider a frequency flat and slowly time varying

downlink communication channel. In the SWIPT system, there

are one transmitter, K information receivers (IRs), and J
EH receivers (ER), cf. Figure 1. The transmitter is equipped

with NT ≥ 1 antennas and serves both the IRs and the ERs

simultaneously in the same frequency band. We assume that

each IR is a single-antenna device and each ER is equipped

with NR ≥ 1 receive antennas. The received signals at IR

k ∈ {1, . . . ,K} and ER j ∈ {1, . . . , J} are given by

yk = hH
k

( K∑

k=1

wksk +wE

)
+ n, and (1)

yERj
= GH

j

( K∑

k=1

wksk +wE

)
+ nERj

, ∀j ∈ {1, . . . , J},(2)

respectively, where wk ∈ CNT×1 and sk ∈ C are the in-

formation beamforming vector and the associated information

symbol for IR k, respectively. Without loss of generality,

we assume that E{|sk|2} = 1, ∀k. The vector channel of

the transmitter-to-IR k link is denoted by hk ∈ C
NT×1

and the channel matrix of the transmitter-to-ER j link is

denoted by Gj ∈ CNT×NR . Variables n ∼ CN (0, σ2
s ) and

nERj
∼ CN (0, σ2

s INR
) denote the additive white Gaussian

noises (AWGN) at IR k and ER j, respectively, where σ2
s

Passive band 

pass filter

Rectifying 

circuit

RF energy harvesting receiver

RF-to-DC power conversion

Output to load

RF wave

Fig. 2. Block diagram of an ER.

denotes the noise power at the receiver. wE ∈ CNT×1 is a

Gaussian pseudo-random sequence generated by the transmit-

ter to facilitate efficient WPT. In particular, wE is modeled as

a complex Gaussian random vector with

wE ∼ CN (0,WE), (3)

where WE ∈ HNT ,WE � 0, is the covariance matrix of the

pseudo-random energy signal.

B. Achievable Rate

Since the energy signal wE is a Gaussian pseudo-random

sequence which is known to all transceivers, IR k can remove

it via successive interference cancellation (SIC). Then, the

achievable rate (bit/s/Hz) between the transmitter and IR k
is given by

Rk = log2

(
1 +

wH
k Hkwk∑

i6=k w
H
i Hkwi + σ2

s

)
, (4)

where the interference caused by the energy signal, i.e.,

Tr(hH
k WEhk) has been removed via SIC.

C. Non-linear EH Model

Figure 2 shows a general block diagram of an ER consisting

of a passive filter and a rectifying circuit. In practice, the

implementation of an ER depends on the adopted circuit

components which vary for different designs. To isolate the

EH model from a specific circuit design, two general tractable

models, i.e., the linear model and the non-linear model, have

been proposed in the literature for characterizing the RF EH

process. Mathematically, the total received RF power1 at ER

j is given by

PERj
= Tr

(
(

K∑

k=1

wkw
H
k +WE)GjG

H
j

)
. (5)

For the linear EH model which as adopted e.g. in [8]–

[12], the total harvested power at ER j, ΦLinear
ERj

, is typically

modelled by the following linear equation:

ΦLinear
ERj

= ηjPERj
, (6)

where 0 ≤ ηj ≤ 1 is the constant power conversion efficiency

of ER j.

1In this paper, the unit of Joule-per-second is used for measuring energy.
Thus, the terms “power” and “energy” are interchangeable.



Yet, practical RF-based EH circuits are inherently non-linear

and the conventional linear model fails to capture this im-

portant characteristic, as shown experimentally in [14]–[16].

Motivated by this, a parametric non-linear EH model was

proposed in [13], [17] which has been shown to be in excellent

agreement closely with practical measurement results. In this

paper, we adopt the more realistic non-linear EH model and

the total harvested power at ER j, ΦERj
, is modelled as:

ΦERj
=

[ΨERj
−MjΩj ]

1− Ωj

, Ωj =
1

1 + exp(ajbj)
,(7)

where ΨERj
=

Mj

1 + exp
(
− aj(PERj

− bj)
) (8)

is a sigmoidal function which has the received RF power,

PERj
, as the input. Three parameters, namely, Mj , aj , and bj ,

are introduced to describe the shape of the logistic function

which depends on the physical properties of the RF EH circuit.

Specifically, Mj , aj , and bj are constants which determine the

maximum harvestable power, the charging rate with respect to

the input power, and the minimum required voltage to turn on

the EH circuit2, respectively.

D. Channel State Information

We take into account the imperfection of the channel state

information (CSI) for beamforming design. To this end, we

adopt a deterministic model [11], [18]. In particular, we model

the CSI of the links as:

hk = ĥk +∆hk, (9)

Υk ,

{
∆hk ∈ C

NT×1 : ‖∆hk‖
2
2 ≤ ρ2k

}
, (10)

Gj = Ĝj +∆Gj , ∀j ∈ {1, . . . , J}, and (11)

Ξj ,

{
∆Gj ∈ C

NT×NR : ‖∆Gj‖
2
F ≤ υ2j

}
, ∀j, (12)

respectively, where ĥk and Ĝj are the estimates of channel

vector hk and channel matrix Gj , respectively. The channel

estimation errors of hk and Gj are denoted by ∆hk and

∆Gj , respectively. Sets Υk and Ξj collect all possible channel

estimation errors. Constants ρk and υj denote the maximum

values of the norms of the CSI estimation error vector ∆hk

and the CSI estimation error matrix ∆Gj , respectively.

III. PROBLEM FORMULATION AND SOLUTION

The system objective is to maximize the minimum harvested

power among all the ERs, i.e., to provide max-min fairness

[19], while guaranteeing the QoS of information commu-

nication. To this end, we formulate the resource allocation

2We note that these parameters can be determined for any given EH circuit.

algorithm design as the following non-convex optimization

problem:

maximize
WE∈H

NT ,wk

min
∆Gj∈Ξj

j∈{1,...,J}

ΨERj
(13)

s.t. C1 :

K∑

k=1

‖wk‖
2
2 + Tr(WE) ≤ Pmax,

C2 : min
∆hk∈Υk

wH
k Hkwk∑

i6=k w
H
i Hkwi + σ2

s

≥ Γreqk
,

C3 : WE � 0 .

The objective function in (13) takes into account the CSI

uncertainty set Ξj to provide robustness against CSI imper-

fection. Constants Pmax and Γreqk
in constraints C1 and C2

denote the maximum transmit power allowance and the QoS

requirement on the minimum received signal-to-interference-

plus-noise ratio (SINR) at IR k, respectively. Constraint C3

and WE ∈ HNT constrain matrix WE to be a positive

semidefinite Hermitian matrix.

It can be observed that constraint C2 is non-convex. Besides,

there are infinitely many possibilities in both the objective

function and constraint C2, due to the CSI uncertainties. In

order to design a computationally efficient resource allocation

algorithm, we first define Wk = wkw
H
k and transform

the considered problem into the following equivalent rank-

constrained semidefinite program (SDP):

maximize
WE,Wk∈H

NT ,
β,τ

τ

s.t. C1 :
K∑

k=1

Tr(Wk) + Tr(WE) ≤ Pmax,

C2 : min
∆hk∈Υk

Tr(WkHk)

Γreqk

≥
∑

i6=k

Tr(WiHk) + σ2
s ,

C3 : WE � 0,

C4 :
Mj(

1+exp
(
−aj(βj−bj)

)) ≥ τ(1−Ωj)+MjΩj ,∀j,

C5 : min
∆Gj∈Ξj

Tr
(
(

K∑

k=1

Wk +WE)GjG
H
j

)
≥ βj , ∀j,

C6 : Rank(Wk) ≤ 1,

C7 : Wk � 0, (14)

where Hk = hkh
H
k . Vector β = {β1, . . . , βj , . . . , βJ} and

τ are auxiliary optimization variables. We note that C7 and

Rank(Wk) ≤ 1 in (14) are imposed such that Wk = wkw
H
k .

Now, the transformed problem in (14) involves infinitely many

constraints only in C2 and C5. Besides, the rank constraint in

C6 is combinatorial.We first handle constraints C2 and C5 by

transforming them into linear matrix inequalities (LMIs) using

the following lemma:

Lemma 1 (S-Procedure [20]): Let a function fm(x),m ∈
{1, 2},x ∈ CN×1, be defined as

fm(x) = xHAmx+ 2Re{bH
mx}+ cm, (15)



where Am ∈ HN , bm ∈ CN×1, and cm ∈ R. Then, the

implication f1(x) ≤ 0 ⇒ f2(x) ≤ 0 holds if and only if there

exists a δ ≥ 0 such that

δ

[
A1 b1

bH
1 c1

]
−

[
A2 b2

bH
2 c2

]
� 0, (16)

provided that there exists a point x̂ such that fm(x̂) < 0.

Applying Lemma 1, the original constraint C2 holds if and

only if there exists a δk ≥ 0, such that the following LMI

constraint holds:

C2: SC2k

(
Wk, δk

)
=

[
δkINT

0

0 −δkρ2k − σ2
s

]
(17)

+ UH

ĥk

( Wk

Γreqk

−
∑

i6=k

Wi

)
U

ĥk
� 0,

where U
ĥk

=
[
INT

ĥk

]
. Similarly, constraint C5 can be

equivalently written as

C5: SC5j

(
Wk,WE,ν,β

)
(18)

=

[
νjINTNR

0

0 −βj − νjυ
2
j

]

+ UH
g̃j

{
K∑

k=1

(Wk +WE)

}
Ug̃j

� 0, ∀j,

where ν = {ν1, . . . , νj , . . . , νJ}, νj ≥ 0, Wk = INR
⊗Wk,

WE = INR
⊗WE, Ug̃j

= [INTNR
g̃j ], and g̃j = vec(Ĝj).

Then, the considered optimization problem can be rewritten

as

maximize
WE,Wk∈H

NT ,
β,τ

τ (19)

s.t. C1,C3,C4,C7,

C2 : SC2k

(
Wk, δk

)
� 0, ∀k,

C5 : SC5j

(
Wk,WE,ν,β

)
� 0, ∀j,

C6 : Rank(Wk) ≤ 1,

where δk ≥ 0 and ν ≥ 0 are the auxiliary optimization

variables introduced in Lemma 1 for handling constraints C2

and C5, respectively. We note that C2 and C5 are now LMIs

with finite numbers of constraints which are relatively easier to

handle compared to the infinite numbers of constraints in the

original problem formulation. However, the rank constraint in

C6 is still an obstacle to solving the considered optimization

problem due to its combinatorial nature. As a result, we adopt

SDP relaxation by removing constraint C6 from the problem

formulation which yields:

maximize
WE,Wk∈H

NT ,
β,τ

τ (20)

s.t. C1,C3,C4,C7,

C2 : SC2k

(
Wk, δk

)
� 0, ∀k,

C5 : SC5j

(
Wk,WE,ν,β

)
� 0, ∀j,

✭
✭
✭
✭
✭
✭
✭
✭
✭✭

C6 : Rank(Wk) ≤ 1 .

TABLE I
SIMULATION PARAMETERS.

Carrier center frequency 915 MHz
Bandwidth 200 kHz
Transceiver antenna gain 10 dBi
Number of receive antennas NR 2

Noise power σ2
−95 dBm

Maximum transmit power Pmax 36 dBm
Transmitter-to-ER fading distribution Rician with Rician factor 3 dB
Transmitter-to-IR fading distribution Rayleigh

The problem in (20) is a standard convex optimization

problem and can be solved numerically with computationally

efficient off-the-shelf convex programs solvers such as CVX

[21]. However, it is unclear if the obtained solution satisfies

Rank(Wk) ≤ 1, ∀k. Therefore, we introduce the following

theorem to reveal the structure of the solution of (20).

Theorem 1: Let the optimal beamforming matrix and energy

covariance matrix of (20) be W∗
k and W∗

E, respectively.

Assuming the considered problem is feasible for Pmax > 0 and

Γreqk
> 0, ∀k, then Rank(W∗

k) = 1, ∀k, and Rank(W∗
E) ≤

1.

Proof: Please refer to the Appendix.

Thus, the globally optimal solution of (20) can be obtained.

In particular, employing information beamforming for each

IR and at most one energy beam is optimal for the considered

problem, despite the imperfection of the CSI and the non-

linearity of the RF EH circuits.

IV. SIMULATION

In this section, the performance of the proposed optimal

beamforming design is evaluated via simulations. The impor-

tant simulation parameters are summarized in Table I. Unless

specified otherwise, we assume that there are K = 2 IRs

and J = 4 ERs which are located 100 meters and 5 meters

from the transmitter, respectively. Furthermore, we choose the

normalized maximum channel estimation errors of ER j and

IR k as σ2
estGj

= 1% ≥
υ2

j

‖Gj‖2

F

, ∀j, and σ2
esthk

= 1% ≥ ρ2

‖hk‖2

2

,

respectively. Besides, we assume that all IRs require the same

minimum data rate, i.e., Γreqk
= Γreq. For the non-linear EH

circuits, we set the maximum harvested power per wireless

powered device to Mj = 24 mW. Besides, we adopt aj = 150
and bj = 0.014. We solve the optimization problem in (13)

and obtain the average system performance by averaging over

different channel realizations.

In Figure 3, we show the average minimum harvested power

per ER in the considered SWIPT systems for the optimal ro-

bust beamforming design. As can be observed, there is a non-

trivial trade-off between the minimum harvested power per

ER and the minimum required data rate per IR. In particular,

the achievable data rate per user and the minimum harvested

power per ER cannot be maximized simultaneously. Besides,

for the optimal resource allocation, the trade-off region of the

minimum achievable rate and the harvested energy is enlarged

significantly for larger NT and NR. This is due to the fact

that the extra degrees of freedom offered by multiple transmit

antennas can be used to focus both the information and energy

beams which improves the beamforming efficiency. On the
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other hand, increasing the number of receive antennas NR

at the ER can significantly improve the minimum harvested

energy per ER. In fact, the additional receive antennas act

as additional energy collectors which enable a more efficient

energy transfer. Furthermore, we verified by simulation that

Rank(Wk) = 1 can be obtained for all considered channel

realizations which confirms the correctness of Theorem 1. On

the other hand, we also show the performance of a baseline

scheme for comparison in Figure 3. For baseline scheme 1, an

existing linear EH model with ηj = 1, cf. (6), is adopted for

resource allocation algorithm design. Specifically, we optimize

wk and WE to maximize the minimum harvested power

per ER subject to the constraints in (13). Then, the resource

allocation designed by baseline scheme 1 is applied in the con-

sidered system with non-linear ERs. We observe from Figure

4 that a substantial gain in harvested power is achieved by the

proposed optimal resource allocation algorithm compared to

baseline scheme 1. This is because baseline scheme 1 does

not take into account the non-linearity of practical EH circuits

leading to mismatches in resource allocation.

In Figure 4, we study the average minimum harvested power

per ER versus the number of ERs for different maximum nor-

malized channel estimation error variances and beamforming

schemes. The minimum required SINR is set to Γreqk
= 10

dB and there are NR = 3 and NT = 10 antennas equipped

at each ER and the transmitter, respectively. Besides, the

maximum normalized channel estimation error variance of

the transmitter-to-IR links and the transmitter-to-ER links are

set to be identical, i.e., σ2
estGj

= σ2
esthk

= σ2
est. As can be

observed, the average minimum harvested power per ER in the

system decreases with an increasing number of ERs. In fact,

the more ERs are in the system, the more difficult it is for the

transmitter to provide fair resource allocation for all ERs. In

particular, for a large number of ERs in the system, it is more

likely that there are some ERs with poor channel qualities.

Thus, the transmitter is forced to steer the information and
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energy signals toward ERs with weak channel conditions

which reduces the minimum harvested power per ER. On the

other hand, the average minimum harvested power per ER

decreases with increasing σ2
est, since the CSI quality degrades

with increasing σ2
est. In particular, for a larger value of σ2

est, it

becomes more difficult for the transmitter to accurately focus

the transmitter energy as would be necessary for achieving a

high efficiency in SWIPT. For comparison, we also show the

performance of baseline scheme 2 which adopts an isotropic

radiation pattern for WE. Then, we maximize the minimum

harvested power per ER by optimizing Wk and the power

of WE subject to the same constraints as in (14) via SDP

relaxation. It can be seen that the performance of the baseline

scheme is unsatisfactory compared to the proposed scheme.

In fact, baseline scheme 2 cannot fully exploit the available

degrees of freedom for efficient WPT as the beamforming

direction of WE is fixed.

V. CONCLUSIONS

We studied the beamforming design for multiuser SWIPT

systems with the objective of ensuring max-min fairness in

WPT. The design was formulated as a non-convex optimiza-

tion problem which took into account the non-linearity of

practical EH circuits and the imperfection of the CSI. The

optimization problem was solved by applying SDP relaxation.

Simulation results demonstrated that the proposed optimal

beamforming design offers significant performance gains com-

pared to two baseline schemes.

APPENDIX-PROOF OF THEOREM 1

We follow a similar approach as in [22] to prove Theorem 1.

We note that the relaxed problem in (20) is jointly convex with

respect to the optimization variables. Besides, it can be verified

that the problem satisfies the Slater’s constraint qualification

and thus has a zero duality gap. Therefore, to reveal the



structure of Wk and WE, we consider the Lagrangian of

problem (20) which is given by:

L= τ − λ
( K∑

k=1

Tr(Wk) + Tr(WE)− Pmax

)
(21)

+

K∑

k=1

Tr(SC2k

(
Wk, δk

)
DC2k

) +

K∑

k=1

Tr(WkYk)

+

J∑

j=1

Tr(SC5j

(
Wk,WE,ν,β

)
DC5j

) + Tr(WEZ) +∆,

where λ ≥ 0, DC2k
� 0, Z � 0, DC5j

� 0, ∀j ∈ {1, . . . , J},

and Yk � 0 are the dual variables for constraints C1, C2,

C3, C5, and C7, respectively. Besides, we denote ∆ as a

collection of variables and constants that are not relevant to

the proof. For notational convenience, we denote the optimal

primal and dual variables of the SDP relaxed version of (20)

by the corresponding variables with an asterisk superscript in

the following. Now, we focus on those Karush-Kuhn-Tucker

(KKT) conditions which are needed for the proof.

Y∗
k,Z

∗,D∗
C3k

,D∗
C5j

� 0, λ∗ ≥ 0, (22a)

Y∗
kW

∗
k = 0, Z∗W∗

E = 0, (22b)

Y∗
k = λ∗INT

−Ξk, (22c)

Ξk = U
ĥk

D∗
C2k

Γreqk

UH

ĥk
−
∑

i6=k

U
ĥi
D∗

C2i
UH

ĥi

+

J∑

j=1

NR∑

l=1

[
Ug̃j

D∗
C5j

UH
g̃j

]
a:b,c:d

, (22d)

Z∗ = λ∗INT
−

J∑

j=1

NR∑

l=1

[
Ug̃j

D∗
C5j

UH
g̃j

]
a:b,c:d

,(22e)

where a = (l − 1)NT + 1, b = lNT, c = (l − 1)NT + 1, and

d = lNT.

From (22b), we know that the columns of W∗
k lie in the

null space of Y∗
k. In order to reveal the rank of W∗

k, we

investigate the structure of Y∗
k. First, it can be shown that

λ∗ > 0 since constraint C1 is active at the optimal solution.

Then, we show that Ξk in (22c) is a positive semidefinite

matrix by contradiction. Suppose Ξk is a negative definite

matrix, then from (22c), Y∗
k becomes a full-rank and positive

definite matrix. By (22b), W∗
k is forced to be the zero matrix

which is not an optimal solution for Pmax > 0 and Γreqk
>

0. Thus, in the following, we focus on the case Ξk � 0.

Since matrix Y∗
k = λ∗INT

− Ξk is positive semidefinite, the

following inequality holds:

λ∗ ≥ λmax
Ξk

≥ 0, (23)

where λmax
Ξk

is the maximum eigenvalue of matrix Ξk. From

(22c), if λ∗ > λmax
Ξk

, matrix Y∗
k will become a positive definite

matrix with full rank. However, this will again yield the

solution W∗
k = 0 which is not optimal since Γreq > 0. Thus,

at the optimal solution, λ∗ = λmax
Ξk

must holds. Besides, in

order to have a bounded optimal dual solution, it follows that

the null space of Y∗
k is spanned by vector uΞk,max ∈ CNT×1,

which is the unit-norm eigenvector of Ξk associated with

eigenvalue λmax
Ξk

. As a result, the optimal beamforming matrix

W∗
k has to be a rank-one matrix and is given by

W∗
k = ψuΞk,maxu

H
Ξk,max. (24)

where ψ is a parameter such that the power consumption

satisfies constraint C2.

On the other hand, for revealing the structure of Z∗, we

focus on (22e). Define an auxiliary variable matrix B =∑J

j=1

∑NR

l=1

[
Ug̃j

D∗
C5j

UH
g̃j

]
a:b,c:d

� 0 and the correspond-

ing maximum eigenvalue λmax
B . Since Z∗ � 0, we have

λ∗ ≥ λmax
B ≥ 0. If λ∗ = λmax

B , then Rank(Z∗) = NT−1 and

Rank(W∗
E) = 1. If λ∗ > λmax

B , then Rank(Z∗) = NT and

Rank(W∗
E) = 0. Therefore, Rank(W∗

E) ≤ 1 and at most one

energy beam is required to achieve optimality. �
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