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Abstract—We consider a two-user multiple access channel
(MAC) with a wireless-powered relay-to-destination (R-D) link,
where the relay adopts the decode-and-forward (DF) relaying
strategy and operates in half-duplex mode. Each frame is divided
into three phases. In the first phase, the relay harvests energy
from a radio frequency (RF) signal sent by a dedicated Power
Beacon (PB). The relay then receives information from user
nodes in the second phase and forwards it to the destination
in the third phase using its harvested energy. We are interested
in the system performance with the wireless-powered relay,
as compared to the conventional MAC with an R-D link. In
particular, we investigate the sum-rate and capacity region of the
MAC with wireless-powered relay by jointly optimizing the time
scheduling and transmit powers at the user nodes. The optimal
scheduling and power allocations are obtained for both the sum-
rate and the boundary points on the capacity region. Simulation
results validate our theoretical analysis and demonstrate the
effectiveness of our proposed solution.

I. INTRODUCTION

Radio frequency (RF) energy harvesting has attracted sig-

nificant attentions in recent years, for its advantages in trans-

ferring energy and information at the same time, and its

capability of prolonging battery lifetime of devices [1]. This

is especially important for low power consumption networks,

such as sensor networks, which play an important role in future

technologies in the internet of things (IoT) or machine-to-

machine communications [2].

In the literature, there are two paradigms for wireless

information and power transfer: Simultaneous wireless infor-

mation and power transfer (SWIPT) and wireless powered

communication networks (WPCN). SWIPT focuses on infor-

mation transmission and power transfer at the same time [3].

However, limitations in implementation may prevent decoding

information and harvesting energy from the same signal simul-

taneously. Many methods have been proposed to cope with

this situation, for instance, multiplexing information receiving

and energy harvesting in time, power, spatial, or frequency

domains. These different protocols present many interesting

problems in system optimization.

Different from SWIPT, which emphasizes the simultaneous

transmission of information and energy, WPCN concentrates

on the system design of wireless-powered nodes. In such

systems, wireless-powered nodes powered entirely on their

This research was supported in part by the Hong Kong Research Grant
Council under project number 611613.

harvested energy which either comes from the same infor-

mation source or a dedicated power beacon. The difference

between a WPCN and a conventional communication network

is the adoption of wireless-powered nodes, which considerably

alters the system characteristics. Therefore, it is meaningful to

investigate the optimal system design under the new network

models. Various network models have been considered in the

literature, including point-to-point channels, one-way relay

channels and two-way relay channels, where either the relay

is wireless powered or the relay acts as a power beacon and

the user nodes are wireless powered [4]. Authors in [5]–[7]

have considered optimal system designs in MAC with energy

harvesting. However, all these works in MAC consider one-

hop communication, and the user nodes are wireless powered.

Few works have considered a multiple access channel (MAC)

with a wireless-powered relay and hence a wireless-powered

relay-to-destination (R-D) link. Therefore, it seems interesting

to study the performance of such a system.

In this paper, we consider a two-user MAC with a wireless-

powered relay harvesting energy from a dedicated power bea-

con and use the harvested power to forward information to the

destination. We investigate the sum-rate maximization problem

and find the capacity region under the energy causality and

users’ power constraints. We obtained the optimal solutions in

semi-closed form, and simulation results verify our theoretical

analysis.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a two-user MAC with a

wireless-powered relay, where the relay is denoted as R, the

destination D and two user nodes U1 and U2, respectively. It

is assumed that the relay harvests energy from a dedicated

Power Beacon (PB), which has a maximum transmission

power Ppb. U1 and U2 have a steady power supply and their

transmission powers, p1 and p2, are upper bounded by P1 and

P2, respectively. All nodes are equipped with a single antenna.

As depicted in Fig. 2, we adopt the harvest-then-transmit

protocol [8], and each frame is divided into three phases,

starting from the first phase in which the relay harvests energy

from the power beacon, to the second phase in which the relay

receives information from the users, followed by the last phase

in which the relay decodes information and forwards it to the

destination. It is assumed that the decode-and-forward relaying

strategy is adopted and the relay operates in half-duplex mode.
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Fig. 1: System model.

Fig. 2: Frame structure.

Without loss of generality, each frame length is taken as T = 1
and the durations of the three phases are denoted as τ0, τ1
and τ2, respectively. Time causality constraint requires that

τ0 + τ1 + τ2 ≤ 1.
We denote by h1 and h2 the channel gains from the source

nodes to the relay, by hr the channel gain from the relay to

the destination and by hpb the channel gain from the power

beacon to the relay. It is assumed that all the channels are

quasi-static flat-fading, (i.e., the channel gains remain constant

during each block, but change independently from one block to

another). For simplicity, we further assume that no direct link

exist between the users and the destination and that the relay

knows all the channel conditions perfectly at the beginning of

each block and makes all the decisions.
In phase 1, the power beacon sends

√
Ppbx0, with

E
[|x0|2

]
= 1. The received signal at the relay is

yr1 =
√
Ppbhpbx0 + n1. (1)

It is assumed that Ppb is large and the energy harvested from

the noise can be neglected. Therefore, the amount of harvested

energy at the relay in phase 1 equals

Eh = ηhpbPpb(1− τ1 − τ2), (2)

where η represents the energy harvesting efficiency at the relay

and it is assumed to be a constant for convenience.
In phase 2, the user nodes send signals ui =

√
pixi, with

E
[|xi|2

]
= 1, i = 1, 2. The relay receives

yr2 =
√
h1p1x1 +

√
h2p2x2 + n2, (3)

where n2 ∼ CN (0, σ2), a circularly symmetric complex Gaus-

sian (CSCG) random variable with zero mean and variance σ2.

Using Succesive Interference Cancellation (SIC) at the relay

and without loss of generality h1 > h2, the relay decodes

user 2’s information first and cancels it from the signal before

decoding user 1’s information. The case that h1 ≤ h2 can be

solved similarly. The achievable rates from the users to the

relay under this decoding order are given as

r11 = τ1 log2

(
1 +

h1p1
σ2

)
(4)

r21 = τ1 log2

(
1 +

h2p2
σ2 + h1p1

)
. (5)

In phase 3, the relay re-encodes and transmits xr to the

destination. At the end of phase 3, the destination decodes the

users’ information and the end-to-end user rates are expressed

as

R1 = min{r11, r12} (6)

R2 = min{r21, r22}. (7)

with the rate constraint of the relay-to-destination link, which

is given by r12+ r22 ≤ τ2 log2
(
1 + hrpr/σ

2
d

)
and the relay’s

power constraint pr ≤ (1− τ1 − τ2)ηhpPpb/τ2.

As can be seen from the above, the decoding order does not

affect the sum-rate, and thus the end-to-end sum-rate can be

expressed as

Rsum = min

{
τ1 log2

(
1 +

h1p1 + h2p2
σ2

)
,

τ2 log2

(
1 +

hrpr
σ2
d

)}
. (8)

III. SUM-RATE MAXIMIZATION AND THE CAPACITY

REGION

In this section, we investigate the sum-rate maximization

problem and the capacity region by jointly considering time

scheduling and power allocations. We first look into the sum-

rate maximization problem, which gives some insight for

characterizing the capacity region.

For notation symplicity, we define Sτ = {(τ1, τ2) : τ1+τ2 <
1, τ1, τ2 > 0}, Sp = {p : p1 ≤ P1, p2 ≤ P2, p1, p2, pr ≥ 0},

Sps
= {(p1, p2) : p1 ≤ P1, p2 ≤ P2, p1, p2 ≥ 0}, where

p = [p1, p2, pr], ps = [p1, p2].

A. Sum-Rate Maximization

The problem is formulated as follows:

(P1) : max
τ∈Sτ ,p∈Sp

Rsum (9)

s.t. pr ≤ (1− τ1 − τ2)ηhpPpb/τ2 (10)

First we have the following lemma.

Lemma 3.1: The optimal values of the power at the source

nodes and the relay all achieve the maximum; i.e.,

p∗1 = P1, p∗2 = P2, (11)

p∗r =
(1− τ1 − τ2)

τ2
ηhpPpb. (12)

Proof: This can be proved by contradiction. If for the

optimal solution, p1 or p2 is less than its maximum, then

we can always increase the power and decrease τ1, which

will result in a larger Rsum. Similarly, if pr is less than its

maximum, we can increase τ1 and get a larger Rsum, which

is a contradiction.
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Based on the above lemma and the variable substitution

Er = prτ2, we reformulate the problem into a convex one by

using the epigraph form:

(P2) : max
τ∈Sτ ,Er

r (13)

s.t. r ≤ c1τ1 (14)

r ≤ τ2 log2

(
1 +

hrEr

σ2
dτ2

)
(15)

Er ≤ (1− τ1 − τ2)ηhpPpb (16)

Er ≥ 0 (17)

(P2) is convex since the objective function is linear and

all the constraints and the feasible set are convex. We only

need to check the convexity of constraint (15) by taking its

Hessian, and the rest are all linear constraints. Next we solve

the problem by its K.K.T. conditions [9], and the results are

concluded in the following theorem.
Theorem 3.1: The maximum sum rate always makes c1τ

∗
1 =

τ∗2 log2

(
1 + hrEr

σ2
dτ

∗
2

)
, and the optimal τ∗1 and τ∗2 are given as

follows:

τ∗1 =
ηhpPpb

ηhpPpb +
c1(m+ηhpPpb)
log2(1+c2m)

(18)

τ∗2 =
c1

log2(1 + c2m)
τ∗1 , (19)

where c1 = log2
(
1 + h1P1+h2P2

σ2

)
, c2 = hr/σ

2
d and m

is the unique solution of the equation log (1 + c2x) −
c2

1+c2x
(x+ ηhpPpb) = 0.

Proof: The Lagrangian is

L = r − λ1(r − τ1c1)− λ2(r − τ2 log2(1 + c2Er/τ2)

−λ3[Er − (1− τ1 − τ2)hpPpb])− λ4(τ1 + τ2 − 1).

Taking the derivatives of L with respect to r, τ1, τ2 and Er

and setting them all to zero, together with the complementary

slackness conditions and the fact that τ1, τ2, p1 and p2 are all

non-negative, we can reach equations (18) and (19).
We are interested in how the values of P1, P2 and Ppb affect

the optimal values of τ1, τ2 and the sum-rate.
Corollary 3.2: When P1 or P2 increases, τ1 decreases and

τ0, τ2 increase. And lim
c1→0

τ∗1 = 1, lim
c1→0

τ∗2 = 0.

Proof: This can be directly seen from Theorem 3.1.
Corollary 3.3: lim

Ppb→∞
τ∗1 = 1 and lim

Ppb→∞
τ∗2 = 0.

Proof: The key is to show that lim
Ppb→∞

m/Ppb = 0.

When Ppb → ∞, we also have m → ∞. Then

lim
Ppb→∞

m/Ppb = lim
m→∞

mc2ηhp

(1+c2m) log(1+c2m)−c2m
=

lim
m→∞

c2ηhp
1
m log(1+c2m)+c2 log(1+c2m)−c2

= 0. Therefore,

we have lim
Ppb→∞

τ∗1 = lim
m→∞

ηhp

ηhp+
c1(m/Ppb+ηhp)

log2(1+c2m)

= 1,

lim
Ppb→∞

τ∗2 = lim
Ppb→∞

c1ηhpPpb

ηhpPpb log2(1+c2m)+c1(m+ηhpPpb)
=

lim
m→∞

c1ηhp

ηhp log2(1+c2m)+c1(m/Ppb+ηhp)
= 0.

For the maximal sum-rate, as R∗
sum = τ∗1 c1, when the

source nodes’ maximum transmission power increases, the op-

timal sum-rate also increases despite the fact that τ∗1 decreases.

When Ppb increases, the optimal sum-rate also increases.

Fig. 3: The relationship between r11 and Rrd with respect to

τ1.

B. Capacity Region

Here we assume h1 ≥ h2, and thus user 2’s information

is firstly decoded at the relay if not otherwise specified. The

case that user 1’s information is decoded first is similar, and

thus it is omitted due to space limitation. The problem can be

formulated as follows:

(P3) : max
τ∈Sτ ,p∈Sp

R1 (20)

s.t. R1 ≤ τ1 log2

(
1 +

h1p1
σ2

)
(21)

R̄ ≤ τ1 log2

(
1 +

h2p2
σ2 + h1p1

)
(22)

r12 + r22 ≤ τ2 log2

(
1 +

hrpr
σ2
d

)
(23)

pr ≤ (1− τ1 − τ2)

τ2
ηhpPpb (24)

where R1 = min{r11, r12} and R2 = min{r21, r22}.
First, we have the following lemma.

Lemma 3.2: The optimal solution satisfies p∗r =
(1−τ1−τ2)

τ2
ηhpPpb, r∗12 = R1 and r∗22 = R̄.

Proof: This again can be proved by contradiction, and the

details are omitted due to space limitation.

Based on Lemma 3.2, the problem can be rewritten as

follows.

(P4) : max
τ∈Sτ ,ps∈Sps

R1 (25)

s.t. R1 ≤ τ1 log2

(
1 +

h1p1
σ2

)
(26)

R̄ ≤ τ1 log2

(
1 +

h2p2
σ2 + h1p1

)
(27)

R1 + R̄ ≤ Rrd (28)

where c3 = ηhrhpPpb/σ
2
d and Rrd = τ2 log2

(
c3(1−τ1−τ2)

τ2

)
.

Note that for a given feasible R̄, the constraints for R1 are

irrelavent to p2. As depicted in Fig. 3, the key observation is

that due to the monotonicities of r11 and Rrd with respect

to τ1, there must exist a unique τ∗1 such that r11 = Rrd

and that achieves the maximum R1. Moreover, the slope of

l1, which is determined by log2
(
1 + h1p1/σ

2
)
, affects the
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optimal R1. Specifically, l1 with a larger slope results in a

larger R1, as the intersection of these two curves will move to

the left. Therefore, p1 should be P1 if possible. However, the

infeasibility may be caused by constraint (27), which requires

τ1 ≥ τ1 and τ1 = R̄/ log2(1 + h2p2

σ2+h1p1
) , since τ∗1 may be

less than τ1. If τ∗1 < τ1, to ensure feasibility, p1 has to be

decreased until τ∗1 = τ1. Since, as shown in Fig. 3, with p1
decreasing, l1 moves to l′1, τ∗1 increases and τ1 decreases.

Naturally, we start the analysis from the relationship be-

tween τ∗1 and τ1. We conclude the results in the following

theorem.

Theorem 3.4: For the points on part AB of the capacity

region, as shown in Fig. 7, the rate pair is (k1τ
∗
1 , R̄). The

optimal power allocation at the source nodes satisfies{
p∗1 = P1,

p∗2 = (2R̄/τ∗
1 − 1)(σ2 + h1P1)/h2,

(29)

and the optimal scheduling is given by

τ∗1 = τa1 , τ∗2 = τa2 , (30)

where τa1 corresponds to the maximal value of g1(x) = 1+(1−
k2)x/k2 − x · W0

(
k1 ln 2
k2

2−k1+
k1
k2

+
k1+R̄

x

)
/(k1 ln 2), W0(x)

is the principal branch of the Lambert W-function [10] ,and τa2
corresponds to x∗, which gives the maximum value of g1(x).
k1 = log2

(
1 + h1P1/σ

2
)

and k2 = ηhrhpPpb/σ
2
d.

Proof: When R̄ is small, τ1 is small and p1 = P1

can be satisfied without violating τ∗1 ≥ τ1. According to

Fig. 3, the optimal τ1 should be the intersection of the

two curves, which makes τ1 = 1 + (1 − k2)τ2/k2 − τ2 ·
W0

(
k1 ln 2
k2

2−k1+
k1
k2

+
k1+R̄

τ2

)
/(k1 ln 2). And p∗2 = (2R̄/τ∗

1 −
1)(σ2 + h1P1)/h2, which is given by constraint (27). τ∗1 can

be found using the bisection method. However, when R̄ keeps

increasing, on the one hand, the intersection in Fig. 3 moves to

the left, and on the other hand, the lower bound of the feasible

τ1 moves to the right. Therefore, there exists a critical value

of R̄c, at which point constraint (27) is met with equality and

p1 = P1, p2 = P2. For R̄ > R̄c, p1 has to be decreased to

make l1 move to l′1 and τ1 move to the left to guarantee the

feasibility of the problem. Moreover, we point out that for

R̄ = R̄c, the rate pair is the same as the result of the sum-rate

maxmization problem, which corresponds to point B in Fig. 7.

This is not diffcult to understand since we have proved in the

previous sub-section that there exists a unique solution for the

optimal sum-rate and the rate pair at point B is also optimal

under the same system settings. Thus these two have to be the

same. Therefore, this theorem gives the capacity region for

R̄ ≤ R̄c, which corresponds to part AB in Fig. 7.

Subsequently, we claim that for R̄ > R̄c, the rate pairs

produced under the decoding order that user 2’s information

is decoded first lie strictly inside the capacity region. This is

because, for R̄ > R̄c, p1 < P1 and the corresponding sum-

rate has to be less than the optimal. Therefore, for deriving the

capacity region, the case that R̄ > R̄c under the assumption

that user 2’s information is decoded first does not need to be

considered. In fact, segment BC is achieved by time sharing
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Fig. 4: The optimal values of τ versus PB’s maximum power

Ppb with Ps = 1W .

between the two decoding orders. And part CD corresponds

to the case when user 1’s information is decoded first. At this

point, we have derived the whole capacity region.

Remark The two corner points (B and C) correspond

to rate pairs
(
τ∗1 log2(1 + h1P1/σ

2), τ∗1 log2(1 +
h2P2

σ2+h1P1
)
)

and
(
τ∗1 log2(1 +

h1P1

σ2+h2P2
), τ∗1 log2(1 + h2P2/σ

2)
)

, respec-

tively. And with τ∗1 → 1, the capacity region converges to the

case of the conventional relay. That is to say, a larger Ppb or

hp helps to enlarge the capacity region. A small c1, which

means a low signal-to-noise ratio (SNR) at the source to relay

link would also help to decrease the gap between those two

capacity regions.

IV. SIMULATION RESULTS

In this section, we validate our analysis through simulations.

We let the bandwidth be 1 MHz, and the channel power gains

hi = 10−3λd−θ
i , i = 1, 2, r, p, where λ is an exponentially

distributed random variable with mean 1, di is the distance

between network nodes, and θ is the path-loss exponent. We

let σ2 = σ2
d = −110 dBm for simplicity. In the rest, we denote

τ = [τ0, τ1, τ2]. The results are generated by averaging over

100 realizations.

First we investigate the optimal scheduling for sum-rate

maximization. In this simulation, we set d1 = d2 = dr = 10m,

dp = 2m and θ = 2. Fig. 4 gives the optimal values of τ0, τ1
and τ2 versus Ppb. It is shown that with the increase of Ppb,

τ∗1 and τ∗2 increase, and this is because a larger transmit power

can shorten the power transmission phase.

Fig. 5 shows the optimal values of τ0, τ1 and τ2 versus the

user nodes’ maximum transmission power. Here we assume

P1 = P2 = Ps for simplicity. As analysed in Corollary 3.2,

when Ps increases, c1 increases, τ∗1 decreases, and τ∗0 and

τ∗2 increase. However, as shown in the figure, the optimal

scheduling is not affected too much by Ps. This happens when
c21(1+c2m)
ηhpPpbc2

� 1, which means the SNR of the R-D link is much

smaller than that of the source-to-relay link.

Fig. 6 depicts the relationship between the optimal sum-

rate and Ps, Ppb and the sum-rate under different schemes.

We compare the results of our proposed scheme with those of
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imum power Ps and Ppb.

the benchmark scheme τ0 = τ1 = τ2 = 1/3. It is interesting

to see that Ppb influences the sum-rate in a much more severe

way than Ps. This is also quite intuitive, as the bottleneck of

the proposed system is the amount of energy that the wireless

powered relay can harvest. It is observed from the figure that

our proposed scheme has a significant improvement in sum-

rate compared to the benchmark scheme.

Finally, in Fig. 7, we provide the entire capacity regions

under different Ppb. Here we let h1 = 0.5, h2 = 0.2, hr = 1
and Ps = 1W for illustration. The outer polygon is the

capacity region for the conventional relay case where the

relay’s maximum power is assumed to be infinitely large. It

can be seen that the capacity region enlarges with Ppb and

the tendency of parts AB and CD also changes. With Ppb

getting larger, AB becomes flatter and CD becomes deeper.

The capacity region of the system with the wireless powered

relay finally converges to that in the case with a conventional

relay. This is not hard to understand as for a very large Ppb, the

relay can harvest a sufficient amount of energy in negligible

time and the difference between these two systems vanishes.

Moreover, AB and CD seem linear in the simulation, but due

to the high complexity of g1(x), deriving it analytically is quite

challenging. Therefore we leave it for future consideration.
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Fig. 7: The capacity regions versus Ppb with h1 = 0.5, h2 =
0.2, hr = 1, Ps = 1W .

V. CONCLUSION

In this paper, we have investigated the sum-rate maximiza-

tion and the capacity region of a two-user MAC with a wireless

powered relay, by jointly optimizing the time scheduling and

the transmit powers at user side. We have recast the sum-rate

maximization into a convex problem and obtained the semi-

closed form optimal solution, while for the capacity region, we

have simplified the problem by looking into its structures and

finally solved it by the bisection method. Simulation results

demonstrate the correctness of our theoretical analysis and the

effectiveness of our proposed solutions.
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