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Abstract—We consider the potential for positioning with a
system where antenna arrays are deployed as a large intelligent
surface (LIS). We derive Fisher-informations and Cramér-Rao
lower bounds (CRLB) in closed-form for terminals along the
central perpendicular line (CPL) of the LIS for all three Carte-
sian dimensions. For terminals at positions other than the CPL,
closed-form expressions for the Fisher-informations and CRLBs
seem out of reach, and we alternatively provide approximations
(in closed-form) which are shown to be very accurate. We also
show that under mild conditions, the CRLBs in general decrease
quadratically in the surface-area for both the x and y dimensions.
For the z-dimension (distance from the LIS), the CRLB decreases
linearly in the surface-area when terminals are along the CPL.
However, when terminals move away from the CPL, the CRLB
is dramatically increased and then also decreases quadratically
in the surface-area. We also extensively discuss the impact of
different deployments (centralized and distributed) of the LIS.

I. INTRODUCTION

Wireless communication has evolved from few and ge-
ographically distant base stations to more recent concepts
involving a high density of access points, possibly with many
antenna elements on each. A Large Intelligent Surface (LIS)
is a newly proposed concept in wireless communication that is
envisioned in [1], [2], where future man-made structures are
electronically active with integrated electronics and wireless
communication making the entire environment “intelligent”
as depicted in Fig. 1. LIS can be seen as an extension of
earlier research in several other fields. One strong relation is
to the massive MIMO concept [3], [4], where large arrays of
hundreds of antennas are used to achieve massive gains in
spectral and energy efficiencies.

As LIS scales up beyond the traditional antenna array
concept, it implies a clean break with the traditional access-
point/base-station concept, as the entire environment is active
in the communication. The natural limit of this evolution is that
all LISs in an environment act as transmitting and receiving
structures. LIS allows for an unprecedented focusing of energy
in the three-dimensional space which enables, besides unprece-
dented data rates, wireless charging and remote sensing with
extreme precision. This makes it possible to fulfill the most
grand visions in 5G communication and Internet of Things [5]
for providing connections to billions of devices. LIS seems to
be first envisioned in the eWallpaper project at UC Berkeley
[2]. In [1], we carry out a first analysis on information transfer
capabilities of LIS, and show that, the number of signal space
dimensions per m2 deployed surface-area is π/λ2, where λ

Fig. 1. Three users communicating with an LIS.

is the wavelength, and the capacity that can be harvested per
m2 surface-area is linear in the average transmit power, rather
than logarithmic.

Following [1], in this paper we take a first look at the
potential of using LIS for terminal positioning, where termi-
nals are equipped with a single-antenna and located in the
three-dimensional space in front of the LIS. For analytical
tractability, we assume an ideal situation where no scatterers
or reflections are present, yielding a perfect line-of-sight (LoS)
propagation scenario and each terminal is assumed to radiate
isotropically. Although we do not deal with more complicated
geometries, our results are fundamental in the sense that
positioning of objects in scattering environment [6], [7] is
commonly done in two steps: i) estimating the positions of
a number of reflecting objects in the environment, and ii)
backward computation of the position of the object of interest.
Therefore, our results are instrumental for the understanding
of the accuracy in the first step.

We derive the Cramér-Rao lower bounds (CRLB) for ter-
minals along the central perpendicular line (CPL) in closed-
form. For a terminal that is not on the CPL, in order to analyze
the properties of the CRLB, we use effective approximations
of the Fisher-information and CRLB based on the results
obtained with CPL. We approximate the Fisher-informations
and CRLBs in such cases with closed-form expressions, which
are shown to be very accurate under mild conditions. We also
show that, the CRLB in general decreases quadratically in
surface-area, except for terminals along the CPL where the
CRLB for the z-dimension decreases linearly in the same.
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Meanwhile, the impact of wavelength is ∼λ2. These scaling
laws play in favor of LISs when compared to other positioning
technologies e.g., optical systems. A LIS can compensate for
its, comparatively, large wavelength by much larger aperture.

II. SIGNAL MODEL WITH LIS

Expressed in Cartesian coordinates, we assume that the
center of the LIS is located at coordinates x= y= z= 0 and
the terminal is located at positive z-coordinate. We assume an
ideal situation with a perfect LoS propagation scenario where
no scatterers or reflections are present, and each terminal
radiates isotropically. Denoting the wavelength as λ, and as-
suming a narrow-band system and ideal free-space propagation
from the terminal to that point, the received signal at the
LIS at location (x, y, 0) radiated by a terminal at location
(x0, y0, z0) is

ŝx0, y0, z0(x, y) = sx0, y0, z0(x, y) + n(x, y), (1)

where n(x, y) is modeled as independent complex Gaussian
variable with a zero-mean and spectral density N0, and the
noiseless signal sx0, y0, z0(x, y) is stated in Property 1.

Property 1. The noiseless signal sx0, y0, z0(x, y) can be de-
scribed as

sx0, y0, z0(x, y) =

√
z0

2
√
πη3/4

exp

(
−

2πj
√
η

λ

)
, (2)

where

η=z20+(y−y0)2+(x−x0)2. (3)

Proof. The radiating model of transmitting signal at location
(x0, y0, z0) to the LIS is depicted in Fig. 2. The noiseless
signal received by the LIS at location (x, y, 0) and time epoch
t reads,

sx0, y0, z0(x, y) =
√
PL cosφ(x, y)s(t) exp(−2πjfct) , (4)

where PL denotes the path-loss, φ(x, y) is angle-of-arrivals
(AoA) of the transmitted signal s(t) at (x, y, 0) , and fc is the
carrier-frequency. The transmit-time from the terminal to the
(x, y, 0) equals t0 =

√
η

c , where c is the speed of light. Since
we are considering a narrow-band system, the transmit signal
s(t) can be assumed to be constant over time-interval [0, t0],
therefore, we assume s(t)=1 and remove it from (4). Further,
as the free-space path-loss is PL= 1

4πη and cosφ(x, y)= z0√
η ,

inserting them back into (4) yields (2). �

Denote the first-order derivatives with respect to variables
x0, y0 and z0 as ∆s1, ∆s2, and ∆s3, respectively. We have

∆s1=

√
z0 (x− x0)

2
√
π

(
3

2
η−

7
4 +

2πj

λ
η−

5
4

)
exp

(
−

2πj
√
η

λ

)
,

∆s2=

√
z0 (y − y0)

2
√
π

(
3

2
η−

7
4 +

2πj

λ
η−

5
4

)
exp

(
−

2πj
√
η

λ

)
,

∆s3=
z

3
2
0

2
√
π

(
1

2z20
η−

3
4− 3

2
η−

7
4− 2πj

λ
η−

5
4

)
exp

(
−

2πj
√
η

λ

)
.

(5)

Fig. 2. The radiating model of transmitting signal to the LIS. We integrate
the received signal of each point-element over the whole area spanned by the
LIS. Therefore, for each point-element on the LIS, the Fraunhofer distance [8]
is infinitely small and the received signal model (2) holds for both near-filed
and far-field scenarios.

Then, the elements of the Fisher-information matrix are given
by the following double integral

Iik =
2

N0

∫∫
x,y

R
{

∆sk (∆si)
∗}

dxdy, (6)

where ‘R{}’ takes the real part and the integral is taken over
the area of the LIS, which we assume to have a disk-shape of
radius R. Note that as CRLB scales down linearly in signal
to noise ratio (SNR), we set N0 = 2 throughout the paper to
eliminate the scaling factor in (6).

III. CRLBS OF TERMINALS ALONG THE CPL

In this section we analyze the CRLBs for terminals along
the CPL, i.e., with coordinates (0, 0, z0). A nice property of
the CPL is that, the CRLBs for all dimensions are in closed-
form, and can be used to approximate the CRLBs for terminals
at non-CPL positions. We denote the Fisher-information and
CRLB for terminals with coordinates (x0, y0, z0) and a LIS
with radius R as Ii([x0, y0, z0], R) and Ci([x0, y0, z0], R),
where the suffix i = x, y, z represents the x, y, z dimension,
respectively. When i contains multiple variables, it means that
all these dimensions contained in i have the same value. For
instance, Ix,y([x0, y0, z0], R) denotes the Fisher-information
for both x and y dimensions whenever they are equal.

A. CRLBs for Three Dimensions

Theorem 1. The Fisher-information matrix I for terminals
with coordinates (0, 0, z0) is diagonal, and the elements are

I11 = I22 = Ix,y([0, 0, z0], R) = −B1

A
, (7)

I33 = Iz([0, 0, z0], R) = −2B2

A
, (8)

where A, B1, and B2 are defined in (9)-(11).

Proof. Theorem 1 is proved by directly solving the integra-
tions in (6), see Appendix A. �



According to Theorem 1, the CRLB can be computed as

Ci([0, 0, z0], R) = I−1i ([0, 0, z0], R), i = x, y, z, (12)

and the following conclusions can be derived.
Firstly, when z0 is close to 0, that is, the terminal is close1

to the LIS, the CRLBs Ci([0, 0, z0], R) are 0, while under
the case R � z0, the CRLBs are ∞. These observations are
consistent with the nature of the problem at hand.

Secondly, in order to get a direct view of the CRLBs in
relation to the surface-area, we assume λ � z0 (which in
general holds as λ is the wavelength). Defining

τ = R/z0, (13)

then the CRLBs can be simplified as

Cx,y([0, 0, z0], R) ≈ 3λ2

2π2
f1(τ), (14)

Cz([0, 0, z0], R) ≈ 3λ2

2π2
f2(τ), (15)

where

f1(τ) =

(
1 + τ2

) 5
2

(1 + τ2)
5
2 − 1 − 2.5 τ2 − 1.5 τ4

, (16)

f2(τ) =

(
1 + τ2

) 5
2

(1 + τ2)
5
2 − 1− τ2

, (17)

respectively. As can been seen, the CRLBs for all dimensions
are uniquely decided by τ . Hence, when z0 is increased by a
factor of α, the radius R of the LIS also has to increase by
the same factor in order to have the same CRLBs. Another
interesting but somewhat intuitive fact is that the CRLBs for
x and y dimensions are higher than that for z-dimension.

Thirdly, under the case R�z0, i.e., τ→∞, the asymptotic
CRLBs in (14) and (15) are identical and equal

lim
R→∞

Cx,y,z([0, 0, z0], R) =
3λ2

2π2
, (18)

which depends only on the wavelength λ and represents a
fundamental lower limit to positioning precision.

Lastly, in reality, the most likely case is R� z0, i.e., τ → 0.
Then we have the approximations

f1(τ) =
8

3
τ−4 + o

(
τ−4

)
, (19)

f2(τ) =
2

3
τ−2 + o

(
τ−2

)
, (20)

for sufficient small τ , and the CRLBs can be approximated as

Cx,y([0, 0, z0], R) ≈ 4λ2

π2τ4
, (21)

Cz([0, 0, z0], R) ≈ λ2

π2τ2
. (22)

1But z0 = 0 is a singularity point and the CRLBs are ∞ as no signal is
received by the LIS.

This shows that along the CPL, the CRLBs for x and y
dimensions decrease quadratically with the surface-area (τ2

is proportional to area), while the CRLB for the z-dimension
decreases linearly in that. This is so, since the CRLB for
the z-dimension is much lower than that for the other two
dimensions, but as τ increases, the limits of the CRLB for
all three dimensions are identical as in (18). Therefore, the
CRLBs for x and y dimensions must decrease faster than that
for the z-dimension as surface-area increases.

IV. CRLBS OF TERMINALS NOT ON THE CPL

Instead of considering terminals along the CPL, in this
section we consider terminals with arbitrary coordinates
(x0, y0, z0). When x0, y0 6= 0, closed-form expressions of the
CRLB seem out of reach due to the complicated integrations
in (6). Therefore, we seek approximations, tight enough so
that insights can still be drawn, of the CRLBs in this case.
Using the closed-form expressions of Fisher-information for
terminals along the CPL in Sec. III, the CRLBs for the general
case can be well-approximated as elaborated in detail next.

A. CRLB Approximations for Terminals with Arbitrary Coor-
dinates (x0, y0, z0)

We first introduce two mild conditions,

λ � z20√
z20 + x20 + y20 +R2

, (23)

2R � z20√
x20 + y20

+
√
x20 + y20 . (24)

As for the cases of interest R is relatively small compared to
z0, and λ is much smaller than z0, these two conditions are
usually satisfied. Letting

z1 =
√
x20 + y20 + z20 , (25)

our approximations for Fisher-information and CRLBs are
stated in Proposition 1.

Proposition 1. Under the conditions (23)-(24), the Fisher-
information matrix for terminals with coordinates (x0, y0, z0)
can be approximated as

I ≈


α+

β x2
0

z20

β x0 y0
z20

β x0

z0
β x0 y0
z20

α+
β y20
z20

β y0
z0

β x0

z0

β y0
z0

β

, (26)

where α and β equal

α ≈ z0
z1
Ix,y([0, 0, z1], R), (27)

β ≈
(
z0
z1

)3

Iz([0, 0, z1], R), (28)

A = 240λ2z20
(
R2 + z20

) 5
2 , (9)

B1 = 160π2z70 + 400π2R2z50 + 240π2z30R
4 − 18λ2

(
R2 + z20

) 5
2 − 160π2z20

(
R2 + z20

) 5
2 + 18λ2z50 + 45λ2R2z30 , (10)

B2 = 12λ2z50 − 12λ2
(
R2 + z20

) 5
2 + 80π2z70 − 80π2z20

(
R2 + z20

) 5
2 + 15z0λ

2R4 + 80π2R2z50 . (11)



and Ix,y([0, 0, z1], R) and Iz([0, 0, z1], R) are the Fisher-
informations for x, y and z dimensions for terminals with
coordinates (0, 0, z1) as given in Theorem 1. Then, the CRLB
matrix equals

C = I−1 ≈


1
α 0 − x0

α z0
0 1

α − y0
α z0

− x0

a z0
− y0
α z0

1
β +

x2
0+y

2
0

αz20

. (29)

Proof. The derivations underlying the approximations are
based on (23)-(24) and utilizing Theorem 1 to approximate the
integrations in (6), but are omitted here due to page-limit. �

From Proposition 1, the Fisher-informations and CRLBs are
approximated in closed-form. Specially, when x0 =y0 =0, that
is, terminals are along the CPL line, the approximations in
(26)-(29) are equalities. Further, we have the below corollary.

Corollary 1. Under the conditions (23)-(24), the CRLBs for
the x and y dimensions are approximately equal, and depend
on (x0, y0, z0) through z0 and the radius

√
x20 + y20 .

To simplify the analysis, we assume R� z0. Then using
(21)-(22) and Proposition 1, we have the approximated CRLBs
stated in Proposition 2.

Proposition 2. Under the case R � z0 and with condi-
tions (23)-(24), the CRLBs for terminals with coordinates
(x0, y0, z0) can be approximated as

Cx,y ≈
4λ2z51
π2z0R4

, (30)

Cz ≈
λ2z20
π2R2

+
4λ2(x20 + y20)z51

π2z30R
4

. (31)

Compared to the case that terminals are along the CPL,
with a relatively small R, the CRLB for the z-dimension is
dramatically increased when terminals move away from the
CPL, that is, x20+y20 6= 0. Further, when

√
x20+y20 > z0, the

CRLB for the z-dimension becomes even larger than that for
the x and y dimensions. Most importantly, when terminals are
away from the CPL, the CRLBs decrease quadratically in the
surface-area of the LIS for all three dimensions. Therefore,
the LIS can provide substantial gains over the massive MIMO
for terminal positioning, as the number of antenna-elements
deployed in an LIS is increased by a factor of 10∼100 over
a traditional massive MIMO deployment.

B. CRLB for AoA and Radius

Instead of estimating the coordinates (x0, y0, z0), in some
cases it is of more interest to estimate the angles-of-arrival
(AoA) φ, ψ and the corresponding radius κ=

√
x20 + y20 + z20 ,

in which case, we have spherical coordinates as

x0 = κ sinφ cosψ,

y0 = κ sinφ sinψ,

z0 = κ cosφ. (32)

Using variable substitution formula [9] for CRLB computation,
the CRLB matrix for estimating (κ, φ, ψ) can be directly
calculated based on Proposition 1 and 2.

V. DEPLOYMENTS OF THE LIS
In this section we consider different deployments of the LIS

on a surface with size W×H where W,H are the width and
height, respectively. In particular, we consider the centralized-
deployment (a) and the distributed-deployments (b) and (c) as
depicted in Fig. 3. For simplicity, we assume R, λ� z0 and
consider the CRLB for a terminal on the CPL with coordinates
(0, 0, z0), that is, positioning a terminal on the far-field.

With the centralized deployment (a), the CRLBs are given
in (21) and (22). With a distributed deployment (b), the LIS
is split into four small LISs centered at (±W/4,±H/4) with
equal radius R/2. Using Proposition 1 and 2, and the symme-
try between the centers of the LISs and the terminal-positions,
the sum of the Fisher-information matrices corresponding to
the four small LISs is diagonal, and the Fisher-information for
the x, y and z dimensions can be shown to equal

Ix,y ≈
π2z0R

4

16λ2(z20 +D2)5/2
+

π2D2z0R
2

2λ2(z20 +D2)5/2
, (33)

Iz ≈
π2R2z30

λ2(z20 +D2)5/2
. (34)

where D=
√
W 2+H2

4 . Assuming D�z0, it holds that

Ix,y ≈
π2R4

4λ2z40

(
1

4
+

2D2

R2

)
, (35)

Iz ≈
π2R2

λ2z20
. (36)

As can be seen, compared to the centralized case, the CRLBs
for all dimensions with the distributed deployment decrease
linearly in the total surface-area for a relatively small R.

a. Centrailized, a single LIS 
with radius R

b. Distributed, 4 small LISs 
with radius R/2

c. Ultra‐densely distributed, 16 small 
LISs with radius R/4

W

H

Fig. 3. Different deployments of the LIS on a surface with width W and height H . The total surface-area is the same for different deployments. Note that,
splitting a LIS into small LISs has a cost of communication channels among different small LISs for cooperation.



Further, comparing (21) to (35), we obtain the insight that
the CRLBs for x and y dimensions with the distributed deploy-
ment (b) is lower than that with the centralized deployment
(a) only if D>

√
3
8R, or equivalently,

R <

√
W 2 +H2

6
. (37)

That is to say, in the far-field with the distributed de-
ployment (b), the CRLB for the x and y dimensions is
improved for a terminal with a distance to the CPL larger
than
√

6R. Otherwise, the centralized deployment (a) provides
lower CRLB for x, y dimensions than that for the distributed
deployment. However, the CRLB for the z-dimension remains
the same. Following the same principle, under the condition
(37), one can continue to split the LISs into more small pieces
and obtain an ultra-densely distributed deployment such as in
(c). In general, the positioning performance is further improved
with deployment (c) as the projection to the LIS-plane of each
terminal-position is centered by a number of small LISs.

VI. NUMERICAL RESULTS

A. Exact-CRLB Evaluations

We first evaluate the CRLBs for terminals along and away
from the CPL. As only the radius

√
x20+y20 matters as shown

in Corollary 1, we test with offsets only in the x-dimension.
In Fig. 4 and 5, we test with R = 1, λ = 0.1, y0 = 0,
x0 = 2, 4, 8, and z0 = 4, 6, respectively. Some interesting
results can be observed. Firstly, as shown in Fig. 4, when
τ is small the CRLB for the x and y dimensions decrease
quadratically in surface-area, while as shown in Fig. 5, the
CRLB for the z -dimension decreases linearly in that. This is
well aligned with (21) and (22). Secondly, the CRLB for the
z-dimension increases dramatically when the terminal moves
away from the CPL. Further, as long as x0 6=0, the CRLB for
the z-dimension also decreases quadratically in the surface-
area. These phenomenons are well predicted by Proposition 1
and 2. Lastly, it can been seen that, as R → ∞, the CRLBs
converge to the limit 3λ2

2π2 = 1.5×10−3 for all dimensions as
shown in (18).

B. CRLB Approximation Accuracies

Next we evaluate the CRLB approximations accuracies for
terminals at non-CPL positions. We compare the numerical
integration results of the CRLB (with absolute error 10−10

and relatively error 10−6 using the Matlab built-in function
‘integral’) and the approximations using (30)-(31) in Propo-
sition 2. We test with R = 0.5, λ = 0.1, and z0 = 8, and
set x0 = y0 in the range from 1 to 8. The CRLBs and the
normalized approximation errors are shown in Fig. 6, where
the normalized errors are computed as the normalized CRLB
differences between the numerical integrations and the approx-
imations. As can be seen, the approximations of CRLB given
by Proposition 2 perform well, with errors less than 0.5% for
the x, y dimensions and close to 1% for the z-dimension. The
errors for the z-dimension are slightly higher than those for the
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Fig. 5. CRLBs for the z-dimension for the cases evaluated in Fig. 4.

x, y dimensions is because the approximations depend both on
estimations of α and β, rather than only α as the latter case,
as shown Proposition 1.

C. CRLB with Different Deployments

At last, we evaluate the CRLB with centralized and dis-
tributed deployments discussed in Sec. V. We set W =H=4
and z0 =8. All curves are obtained with numerical integrations
and we compare the CRLBs for the deployments depicted in
Fig. 2, that is, a single LIS, 4 small LISs, and 16 smaller LISs,
with the same total surface-area. As shown in Fig. 7, when
(37) is fulfilled, i.e., R ≤

√
W 2+H2

6 = 2.31, the distributed
deployments with 4 and 16 small LISs render lower CRLBs
than the centralized LIS for the x and y dimensions, while the
CRLBs for the z-dimension are almost the same. When R in-
creases beyond the limit, the distributed deployments become
worse for the x and y dimensions, although the z-dimension is
slightly better. As R increases, different deployments converge
to each other as expected. In addition, further splitting the 4
small LISs into 16 smaller LISs only provides marginal gains
at a cost of more communication channels are needed for
different small LISs to cooperating with each other.
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VII. SUMMARY

In this paper, we have derived the Fisher-information and
Cramér-Rao lower bound (CRLB) for terminal positioning
with large intelligent surfaces (LIS). For terminals along the
central perpendicular line (CPL), the CRLBs are derived in
closed-form for all Cartesian dimensions. For other positions
we have alternatively provided approximations in closed-
forms to compute the Fisher-informations and CRLBs which
are shown to be accurate. We have shown that, under mild
conditions the CRLBs in general decrease quadratically in the
surface-area of the deployed LIS for all dimensions. Moreover,
we compare centralized and distributed deployments of the
LIS, and show that the distributed deployments have the
potential to lower the CRLBs as long as the surface-area is
less than a certain limit.

APPENDIX A
Firstly, we define two functions g1(n) and g2(n) as

g1(n)=

∫∫
x2+y2≤R2

x2η−
n
2 dxdy =

∫∫
x2+y2≤R2

y2η−
n
2 dxdy,

g2(n)=

∫∫
x2+y2≤R2

η−
n
2 dxdy.

In general, closed-form expressions of g1(n) and g2(n) are
out of reach, except for the case that x0 = y0 = 0, i.e., the
terminal is on the CPL, in which case, g1(n) and g2(n) are
in closed-form and it holds that

g1(n)=
π
(

2z4−n0 −
(
R2 + z20

)1−n
2
(
nR2−2R2 + 2z20

))
n2 − 6n+ 8

, (38)

g2(n)=
z2−n0 −

(
R2+z20

)1−n
2

n− 2
. (39)

For a terminal on the CPL, as x0 = y0 = 0, the first-order
derivatives with respect to x and y are equals to

∆s1=

√
z0x

2
√
π

(
3

2
η−

7
4 +

2πj

λ
η−

5
4

)
exp

(
−

2πj
√
η

λ

)
, (40)

∆s2=

√
z0y

2
√
π

(
3

2
η−

7
4 +

2πj

λ
η−

5
4

)
exp

(
−

2πj
√
η

λ

)
, (41)

and the first-order derivative with respect to z is in (5) where
in this case the metric in (3) becomes

η = z20 + y2 + x2. (42)

Since η is an even function with respect to x and y, the cross-
terms of different dimensions in the Fisher-information matrix
are then zeros, which is diagonal with diagonal elements being

Iii =

∫∫
x2+y2≤R2

|∆si|2dxdy. (43)

Calculating (43) directly yields

I11=I22 =
z0
4π

(
9

4
g1(7) +

4π2

λ2
g1(5)

)
, (44)

I33=
z30
4π

(
1

4z40
g2(3) +

(
4π2

λ2
− 3

2z20

)
g2(5) +

9

4
g2(7)

)
, (45)

Utilizing the results in (38) and (39) and after some multi-
plications, the Fisher-information for different dimensions are
then in (7) and (8).
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