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Abstract—The integration of automotive communications in
5G systems must build on a clear understanding of the per-
formance of services for connected vehicles in today’s LTE
deployments. In this paper, we carry out a simulation-based
performance evaluation of automotive communications in LTE,
with particular attention to realism: to that end, we investigate
the impact of different road traffic models, employ a state-of-the-
art commercial LTE tool, and study a practical service use case.
Our results demonstrate that unrealistic road traffic datasets can
bias network simulations in urban vehicular environments, and
provide insights on the limitations of the current radio access
architecture, when confronted to connected vehicles.

I. INTRODUCTION

Automotive communications are commonly considered as
enablers of a wide range of new and compelling telecommuni-
cation services, and are one of the main use cases in the design
of future 5G networks. In order to meet the expectations,
automotive communications must be efficient (e.g., in terms
of end-to-end latency), reliable (e.g., in terms of coverage),
and operate at scale (e.g., accommodate a 100% penetration
rate of the technology). As a result, they raise a number of
technical challenges. Data flows initiated by vehicles (i.e.,
by the driver, passengers, or vehicle itself) may endure sev-
eral kilometers, stressing the network mobility management
functions with frequent and numerous handovers. In addition,
pervasive operations such as cooperative awareness [1] and
decentralized environmental notification [2], originally stan-
dardized for dedicated short range communications (DSRC),
may soon be moved to the 5G cellular ecosystem [3], inducing
significant additional load on the radio access infrastructure.
Finally, how to benefit from novel concepts introduced in
5G [4], such as network slicing or the pervasive application
of network softwarization, remains an open question in the
context of vehicular communications.

Understanding the performance of connected vehicles in
presence of the current LTE deployments is a much-needed
preliminary step towards an informed dimensioning of the
5G cellular access infrastructure, and a sensible design of
algorithms that allow for an optimized operation of future
5G networks. However, the literature on this subject is thin.
Previous studies have shown that LTE will hardly be able to
accommodate the traffic generated by cooperative awareness
applications [5], and solutions have been proposed that rely
on message filtering [6] or take advantage of the MBMS
functionality [7]. Similar considerations also hold for floating
car data management. studied for instance in [8].

In this work, we contribute to investigations of the limi-
tations and drawbacks of the LTE-A architecture when con-
fronted to automotive communications, from two perspectives.

(i) We carry out simulations that reproduce automotive com-
munications in LTE at an unprecedented level of realism and
detail. Specifically, we consider multiple models of road traffic
that feature varied degrees of realism at macroscopic and
microscopic levels. Such models are fed to an LTE emulator
that models the complete protocol stack, including resource
block scheduling, modulation, and coding scheme selection.
As these operations are performed in tight interaction with
channel quality assessments, we carefully model signal prop-
agation, via ray-tracing techniques. Overall, our simulation
setup, presented in Sec. II is a significant step forward with
respect to previous works, which rely on analytical models or
simplistic network simulations.

(ii) We investigate the impact that different urban mobility
models have on association statistics to the cellular network.
Our results, presented in Sec. III, show that urban road traffic
datasets that are unrealistic at any level can affect the reliability
of network simulations. This lets us answer the question of
which level of vehicular mobility accuracy is actually needed
for network simulation: apart from recent work considering
highway environments [9], this is an open point to date.

(iii) We study the performance of LTE in a practical
automotive service scenario, via the realistic high-detail sim-
ulation environment above. Our results, in Sec. IV, provide
useful insights on the limitations of the current radio access
architecture, when it is confronted to connected vehicles. The
significant level of accuracy allows drawing novel guidelines
for the design of 5G systems that can meet the requirements
of upcoming automotive verticals. These observations are
expounded in Sec. V, which concludes the paper.

II. SIMULATION ENVIRONMENT

Our simulation environment accounts for heterogeneous
models of road traffic, presented in Sec. II-A, and an accurate
representation of the LTE network, in Sec. II-B.

A. Urban road traffic models
The rationale for our selection of models of urban vehicular

mobility is as follows. We consider the three main components
that contribute to the definition of a holistic vehicular mobility
model, i.e., road infrastructure, microscopic-level driver behav-
ior and macroscopic-level traffic flows, and alternately reduce
their level of realism. This leads to the datasets detailed next.
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Fig.1:Mainfeaturesoftheroadtrafficdatasets,astimeseries.(a)Travelingvehicles.(b)Meantraveltime.(c)Meanspeed.

Bolognadataset.OurreferencedatasetisnamedBologna
Ringway(BR),avehicular mobilitytraceoriginallypre-
sentedin[12],realisticandpubliclyavailable1.TheBR
datasetleveragesroadnetworkinformationextractedfrom
OpenStreetMap2,by meansofanaptly modifiedversion
ofthenetconverttool3.Themicroscopic-levelmobility
ismodeledthroughSUMO4,i.e.thecurrentstate-of-the-art
open-sourcetoolforthegenerationofvehicular mobility
scenarios.Trafficflowsaredescribedasacombinationof
anorigin-destination(O-D)matrixthatcapturesthetimeand
start/endlocationsofvehiculartrips,andatrafficassignment
algorithmthattranslatestheO-Dmatrixintocompleteroutes.
Specifically,theO-DmatrixisobtainedfromtheEUiTetris
project[10],andGawron’sdynamicuserequilibriumalgo-
rithm[11]isemployedfortrafficassignment.
Overall,theBRdatasetdescribesonehourofroadtraffic

duringthemorningrushhour,from8amto9am,inatypical
workingdayinBologna,amiddlesizedcityinthenorthof
Italy.Morethan22,000vehiclestravelinthecityduringthe
simulatedtimespan.Thedatasetwasvalidatedusinginnovative
techniquesbasedonpubliclyavailabletraveltimedata.A
completediscussionofthegenerationandvalidationofthe
Bolognadatasetisavailablein[12].
Macroscopicmobilitydataset.Thisisasimplifiedversion

oftheBRdataset,wheretheroadnetworkandmacroscopic
trafficflowsarepreserved,butthemicroscopic-levelmodel
ofSUMOisreplacedwithanaiveconstant-speedmodel.The
speedofeachvehicleisextractedfromaGaussiandistribution
withmean5.485m/sandstandarddeviation0.5485m/s.These
valuesarecalibratedonthespeedrecordedintheBRdataset,
withthemeanmatchingthatintherealisticdata,andthestan-
darddeviationsetto10%ofsuchvalue.Thisparametrization
followscommonpracticesintheliterature[13].
Hence,thedatasetfeaturesvehiclesthatdonotinteract

witheachother,e.g.,bymaintainingsafetydistance,orwith
theroadsignalization,e.g.,bystoppingatcrossinglights.In
thefollowing,wewillnamethedatasetMacro,sinceitonly
preservesmacroscopic-levelrealism.
Microscopicmobilitydataset.Thesecondreducedmodel

oftheBRdatasetfeaturesrealisticroadnetworkandmicro-
scopicmobility.However,trafficflowsaremodeledwitha
simplisticpseudo-randomtripmodel.Specifically,themodel
considersthesamevolumeofinjectedvehiclesobserved
intheBRdataset,butitassignsoriginsanddestinations
1http://www.cs.unibo.it/projects/bolognaringway/
2OpenStreetMap,http://www.openstreetmap.org
3Netconverttool,http://sumo.dlr.de/wiki/NETCONVERT
4SimulationofUrbanMObility,http://sumo.sourceforge.net

Parameter Value
CenterFrequency 2GHz
Bandwidth 10MHz
FastFadingModel UrbanMacro(UMa)
eNodeBTxPower 43dBm
eNodeBHeight 25m
Scheduler ProportionalFair
PathlossModel WINNER+

TABLEI:LTEsimulationparameters.

proportionallytothecapacityoftheroadsegments.

Thedataset,namedMicro,isrepresentativeofaverypopu-
larapproachtomobilitymodelinginthevehicularnetworking
literature.AsO-Dmatricesarehardtoretrieve,researchers
oftenrelyonrealisticroadmapsandmicroscopicmobility,
butthenassigntrafficinapseudo-randomfashion.

Randommobilitydataset.Asabaselinedatasetthatdoes
notevenconsidertheroadinfrastructure,andisfullyrandom,
weconsiderthewell-knownrandomwaypointmodel,denoting
itasRWP.Themodelassumesthatavehicleiatpositionpi
uniformlychoosesanextdestinationpi1insidethesimula-
tionarea,andthenreachesitwitharandomlychosenspeedsi.
Inourcase,siisarandomvariablewhosedistributionfollows
thatderivedforthespeedintheMacrodataset.Nopausetime
isconsideredbetweensubsequentmovements.Eachvehicle
startsandterminatesitsjourneyatthesametimeasintheBR
dataset.

Fig.1summarizesthemainfeaturesofthevehicularmobil-
itydatasets.Fig.1(a)showsthetimeseriesofthenumberof
vehiclesthattravelconcurrentlyineachdataset.TheMicro
datasetyieldsamuchdensertrafficcomparedtotheother
scenarios.Despitethevolumeofinjectedvehiclesbeingthe
sameacrossalldatasets,unrealisticmacroscopictrafficflows
rapidlycongestaroadnetworktailoredfortheactualtravel
demand.TheMacromodelletsvehiclestravelmoresmoothly
duetothetotalabsenceofdrivingconstraints,resultingina
reducedtrafficwhencomparedtoarealisticsituation.Finally,
RWPoverlapswithBR,sincestartandendtimeoftripsinthe
formerarecalibratedtomatchthoseinthelatter.

Fig.1(b)andFig.1(c)portraythe meantraveltimeand
averagevehiclespeed.Thetraveltimeisthehighestandthe
speedisthelowestintheMicrodataset,duetosignificant
roadtrafficcongestion.ForbothRWPandMacro,theaverage
speedisconstant,duetotherandomnatureoftheirmicro-
scopicmobility.Concerningthemeantraveltime,theMacro
modeloverestimatesit,whereasRWPoverlapswithBR,since
thenumberofrunningvehiclesistunedtomatch.



B. LTE emulation environment

The system-level LTE simulator we employ is developed by
Nomor Research GmbH5. This is a multi-cell, multi-user LTE-
Advanced emulator with real-time simulation capabilities. The
tool incorporates a complete LTE protocol stack model for the
user plane, where protocol functionalities have been limited to
the main ones in order to enable real-time performance. The
tool features a full-fledged, accurate Medium Access Control
(MAC) layer, and the physical (PHY) layer is emulated by
leveraging off-line link-level simulation results. This approach
allows taking into proper account the channel estimation, chan-
nel coding, modulation schemes, and receiver equalization.
The simulator runs at Transmission Time Interval (TTI) level
granularity along time, and at Physical Resource Block (PRB)
level along the frequency axis. This makes the simulations
accurate and detailed enough to produce realistic results for
subsequent fine-grained analysis: for the sake of clarity, the
degree of output detail is similar to that enabled by a traditional
network protocol analyzer such as Wireshark.

We consider eNodeBs in the target scenarios to operate at
a 2GHz center frequency, with 10-MHz system bandwidth,
and TTI=1 ms. The radio conditions are modeled according
to detailed statistical and physical models, with the aim to
generate realistic results. For the simulations presented in this
paper, we relied on WINNER+ channel models [14]. The
effect of buildings on received signal strength is modeled
by considering whether there exists a direct Line-of-Sight
(LoS) link between the eNodeB and the user, or if the link is
shadowed because of the presence of buildings, i.e. Non-Line-
of-Sight (NLoS) signal propagation. The radio propagation
models consider different pathloss as well as fast fading for
LoS and NLoS cases. The simulations also consider inter-cell
interference from surrounding antennas, as well as background
traffic induced by non-vehicular users. The latter is recreated
using traffic generators based on 3GPP standards for LTE
network. The key simulation parameters are outlined in Tab. I.

The real-world deployment of the LTE infrastructure in the
Bologna region is inferred from OpenCellID6, a crowdsourced
database of base stations locations worldwide. eNodeBs are
identified by their cell identifier (CID) and Location Area code
(LAC), and their position is triangulated using measurements
provided by contributing users. To filter out incorrect informa-
tion that is known to affect OpenCellID data [15]: (i) we mark
as noise eNodeBs with less than two measurements, for which
no triangulation is possible; (ii) we cluster eNodeBs of a same
mobile operator using a dutifully parametrized7 DBSCAN
algorithm [16], and map the center of mass of each cluster to
a single eNodeB. The resulting deployment is shown in Fig. 2,
where the eNodeB are distinguished on a per-operator basis.
We remark a concentration of eNodeBs along the railway track
and around the railway station (thin red ellipse), as well as
along the main downtown streets. The allocation of vehicular
users to different mobile network operators is performed by
accounting for the actual market shares in Tab. II, obtained
from the annual report of AGCOM, the Italian authority for
warranties in communications [17].

5http://www.nomor.de
6http://opencellid.org/
7After extensive tests, we set MinPts=2 and ε=0.001.

Fig. 2: Deployment of eNodeBs in the Bologna urban area.

Operator OP-1 OP-2 OP-3 OP-4
Share 34.43% 32.15% 23.15% 10.27%

TABLE II: Market shares of Italian mobile network operators.

III. ROAD TRAFFIC AND NETWORK SIMULATION

We investigate how the different mobility models presented
in Sec. II-A affect the LTE network simulation. Our evaluation
is application-independent: therefore, we do not consider one
precise service for connected vehicles; rather, we study the
impact that the mobility models have on general association
statistics between vehicles and cellular base stations.

Since we are interested in basic association statistics, a
detailed system-level simulation such as the one described in
Sec II-B is unnecessary at this stage. Instead, we employ a
signal-strength stochastic simulator that can scale up to a large
scenario such as BR. At each simulation step, which we set to 1
s, vehicles are attached to the best eNodeB in terms of Signal-
to-Noise Ratio (SNR). This assignment is computed after the
ray-tracing modelling among all the vehicles-eNodeB pairs of
a given operator (using the building shape data included in
the BR dataset package), and the application of the Path Loss
model for Macro Urban scenarios (UMa) outlined in the ITU-
R technical report [18].

The average height of the buildings is 15 meters, while the
eNodeB antennas are placed at 40 meters [18]. Finally, we
use the SNR to compute an estimate of the downlink com-
munication bandwidth available to vehicles, via the empirical
LTE model proposed in [19]. As such model does not account
for the number of user equipments concurrently served by
an eNodeB, we approximate the instantaneous rate of each
vehicle by dividing the total eNodeB bandwidth by the number
of vehicles the eNodeB is serving at that time.

Fig. 3 summarizes the cellular connectivity results obtained
with each vehicular mobility dataset. The plots refer to one
operator, as we obtained consistent results across all opera-
tors, omitted due to space limitations. All results are shown
as time series: traffic conditions are not homogeneous over
time in Fig. 1, and time series let us appreciate how such
variability affects the network connectivity statistics. In each
plot, four curves represent the performance recorded under
the different mobility datasets: the dissimilarities among the
curves are evident in all cases, and highlight the strong bias
that different representation of road traffic can induce in the
network simulation.

Specifically, Fig. 3(a) shows the fraction of active eNodeBs,
i.e., eNodeBs that serve at least one connected vehicle. We
discussed in Sec. II-A how the unrealistic travel demand of
the Micro dataset induces a large congestion: being spread
uniformly over the road layout, such congestion leads to a
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(a) OP-1. Active eNodeBs.
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(b) OP-1. Max eNodeB associations.
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(c) OP-1. Mean eNodeB associations.
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Fig. 3: Vehicular access statistics in Bologna, for operator OP1. The curves in each plot map to diverse mobility datasets.

higher number of active eNodeB. In the Macro case, the
average speed is constant, hence the vehicles tend to be slower
than those in the BR dataset, especially in the first part of the
simulation: at that time, the longer travel times lead to a larger
fraction of active eNodeBs in Macro than in BR. When the
RWP dataset is employed to represent the road traffic, vehicles
are spread all around the map, and establish associations to
an unrealistically high number of eNodeBs. In summary, any
reduction of realism – at the macroscopic or microscopic level
– causes an artificially even distribution of associations over
the geographical area.

Fig. 3(b) displays the maximum number of connected vehi-
cles served by a single eNodeB. The number of vehicles that
concurrently travel in the urban scenario clearly affects this
metric, as evidenced by the opposite behaviors in the Micro
and Macro cases. That number is identical by construction in
the RWP and BR datasets: however, the much more uniform
distribution of vehicles in the former model leads to maximum
association values that are unrealistically low, and close to
those of the Macro setting. Equivalent trends are observed
on the average associations per eNodeB, in Fig. 3(c), even
if the scale is reduced in the case of BR. These results let
us presume that unrealistic models of the macroscopic and
microscopic dynamics of vehicular traffic have opposite effects
on the association load, which is overestimated in the first
situation and underestimated in the second one.

To conclude our investigation of connected vehicle access,
Fig. 3(d) depicts the Cumulative Distribution Function (CDF)
of the downlink communication bandwidth available to vehi-
cles, as measured during the whole simulation. As previously
discussed, the bandwidth depends on the SNR received by the
eNodeB vehicles are currently associated to, as well as on
the association load at that same eNodeB. The sheer number
of vehicles in the Micro dataset causes congestion not only
in the road network, but also at the cellular access, with a
dramatic reduction of the per-vehicle capacity with respect
to the more realistic BR case. Conversely, vehicles in the
Macro model enjoy an exaggerated capacity, with critical
low-bandwidth situations that are basically eliminated from the
simulation. The RWP dataset leads instead to a heterogeneous
CDF, with a significant portion of vehicles that are out of
network coverage (zero bandwidth). In conclusion, the same
trends observed for the association load also apply here: once
more, any deviation from a realistic mobility modeling leads
to strong biases in terms of the downlink communication
bandwidth offered to connected vehicles, with repercussions
on the performance evaluation of services or protocols.

In the light of these results, the fully realistic BR dataset
is actually needed for a dependable simulation of vehicular

access in LTE. Hence, we discard the other models, and feed
the BR dataset to our high-detail system-level simulations.

IV. SIMULATING AN AUTOMOTIVE SERVICE IN LTE

We consider a practical service use case, in Sec. IV-A, and
run accurate simulations using the state-of-the-art emulator
presented in Sec. II-B. Results are discussed in Sec. IV-B.

A. Automotive service and KPIs

Our reference application is a collision warning service that
lets connected vehicles warn each other about dangers they
detect. The service runs on all vehicles, and is triggered by
a vicinity-based hazard-detection algorithm. Specifically, as
vehicles move along city roads, they may have to suddenly
decelerate due to unanticipated congestion, hurried pedestrian
crossings, or sharp turns by cars in front. To avoid collisions
in these situations, the cooperative warning system forces
vehicles to announce hard braking to all vehicles nearby.

The collision warning service requires car-to-car communi-
cation, which is implemented through LTE. Thus, connected
vehicles send and receive warning notification via the media-
tion of eNodeBs. Warning messages are small packets (2 KB in
our simulations) designed for minimum latency, generated by
the vehicle detecting the hazard, and transmitted to the serving
eNodeB in the uplink direction. The eNodeB then forwards
these packets in downlink to target cars, selected depending
on the scope of the notification.

The two most sensible Key Performance Indicators (KPIs)
in the context of such an automotive service are the throughput
and the end-to-end delay experienced by connected vehicles.
The user throughput is the data rate observed at the user’s
Packet Data Convergence Protocol (PDCP) layer, after packet
loss, retransmissions and link adaptation. In our warning no-
tification system, many vehicles may send warning messages
at the same time to the same eNodeB causing congestion,
due to a limited number of resources, which becomes worse
for vehicles with bad channel conditions. The throughput
KPI is also a good indicator for such cases, besides serving
as a standard measure for network quality. The end-to-end
delay represents the total time needed for a message to be
transferred from warning source vehicle to a recipient car over
the infrastructure. This time includes LTE inherent extra delay
for scheduling, uplink grant access, Hybrid Automatic Repeat
Request (HARQ) and processing/decoding delays.

The collisions warning service is simulated in a represen-
tative neighborhood of Bologna, depicted in Fig. 5(a). The
selected area is a representative portion of the Bologna covers
0.6 km2 characterized by a significant presence of all mobile
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Fig. 4: End-to-end delay at four representative eNodeBs, over time. Average delays are 0.84, 0.22, 0.18 and 0.05 s, respectively.

network operators. It also encompasses important landmarks
of the city such as the railway station and main bus terminal.

B. Results and insights
Our choice of LTE-based automotive service, jointly with

the degree of realism and detail of the simulation, prove espe-
cially useful to understand the limitations of the current radio
access technology with respect to applications for connected
vehicles. This is true at different levels, and we organize our
discussion of results by separating network design issues.
Resource deployment. As also mentioned in Sec. III, the
actual performance of the cellular network depend very much
on the planning of the radio access infrastructure, when
superposed to the movement patterns of terminals. This is
particularly true for automotive services, where connected
vehicles often cluster in crowded, yet predictable, platoons.
Elements like intersections, traffic lights or roundabouts intro-
duce perturbations on the vehicular movements that cause two
negative effects on the infrastructure: (i) connected vehicles
attach to eNodeBs in a very uneven manner, causing over-
subscription at certain locations, and (ii) dedicated applications
like the one we evaluate in this paper generate a high volume
of data traffic, since inter-vehicle distances are reduced and
collisions are more likely to happen.

We evaluate this problem by measuring the load, in terms
of average end-to-end delay, of each eNodeB. Results are
shown in Fig. 4, for four representative eNodeBs. Clearly, the
physical placement of an eNodeB plays a fundamental role in
determining its performance. Several eNodeBs are overloaded
at times, generating spikes in the end-to-end delay and a higher
average latency in general. Other eNodeBs experience very
low load from connected vehicles, hence they can guarantee a
very low latency. By looking at where the high-load eNodeBs
are located in Fig. 5(a), we observe that they serve the area
close to the Bologna bus terminal, which is also in proximity
of a very busy crossroad. There, slow traffic and stop-and-go
patterns induce a very high load on the infrastructure, with a
much degraded latency performance when compared to that
of the less loaded eNodeBs.

Based on such results, we stress how understanding ve-
hicular movement patterns to deploy network resources will
be critical in 5G networks. Even more so, when considering
the introduction of paradigms such as Network Function Vir-
tualization (NFV) and Software Defined Networking (SDN),
which will allow a dynamic assignment of resources. The latter
shall be reallocated according to the road traffic dynamics, sub-
stantially improving the network performance. In particular,
on-demand and anticipated provisioning of resources becomes
foreseeable when considering the regularity of road traffic.

Although the design and validation of such optimized
resource orchestration algorithms is out of the scope of this
paper, our work demonstrates and quantifies for the first time

the existence of the problem, and is thus a preliminary step
towards automotive-aware resource orchestration algorithms
for virtualized mobile networks.
Optimized resource usage. Automotive services usually rely
on frequent transmissions of very small packets. However, LTE
is designed for long-lasting data flows accommodated into
continued sessions: in fact, all the control messages needed
for the correct setup of a Data Radio Bearer (DRB) are an
unnecessary burden for the network infrastructure, if frequent
and connectionless packets need to be exchanged. This not
only limits the number of devices that may be connected to
the network (as state has to be maintained for each attached
user equipment), but it reduces the performance of the served
end users. This problem, which is common to all machine type
communications (MTC), is exacerbated by the high mobility
of vehicles that will rely on an automotive network slice.

A related problem is the waste of network resources caused
by the small packet length. Common LTE MAC schedulers
adopts strategies like Proportional Fairness or Round Robin
that aim at maximizing the long-term transfer rate of user
equipments. In an automotive service environment, such a
long-term service rate may not be the correct goal to target.
This calls for the implementation of automotive-aware sched-
ulers that are capable of optimizing the relevant KPIs for
vehicular communications. Service-aware scheduling allows
for a better utilization of Physical Resource Blocks (PRB) that
are easily misused when assigned to flows using the legacy
LTE QoS framework.

These situations are reflected in our high-detail simulation,
as shown in Fig. 5(b). The plot shows the actual share of
the available bandwidth used by each operator during the
whole simulation. The available bandwidth is calculated by
means of the Shannon theorem, C “ B log p1` Sq, where
C is the capacity limit, B the channel bandwidth (10 MHz
in this case) and S the SNR perceived by each connected
vehicle. The used capacity, instead, is the actual amount of
data exchanged at PDCP level. All values are averaged over
all the user equipments at every second. Although the real
PRB utilization pattern depends on the decisions taken by the
scheduler at superframe level, the trend shown in Fig. 5(b)
helps us understanding how a proportional fair (PF) scheduler
may fail to share the available spectrum with other types of
telecommunication services. Hence, the sharing of resources
among heterogeneous services that use the same infrastructure
(e.g., enhanced Mobile Broadband) shall be jointly optimized
for all services, including the automotive one.
Automotive KPIs awareness. Among all the envisioned
5G telecommunication services, automotive communications
impose the most stringent requirement in terms of latency.
This is understandable, when considering the the end-to-end
delay required for applications like collision avoidance or for
any other kind of cooperative awareness system where reaction
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Fig. 5: (a) Loaded (red circles) and unloaded (blue triangles) eNodeBs. (b) Channel utilization. (c) End-to-end latency.

is needed in a very short time. Although there is not a fixed
value for the maximum latency requirements, it is expected
that for many applications (e.g., traffic signal violation or left-
turn assist) the maximum bound is 100 ms, while for others
such as pre-crash sensing this limit goes down to 20 ms.

Low latency is not the main focus of LTE, which was
historically designed to support high bandwidth communica-
tions, so it is expected that such a tight latency requirement
will not be met without any modification in the stack. In
this context, our simulations demonstrate how far the current
technology is from fulfilling the KPIs needed by automotive
service deployed at scale.

Fig. 5(c) depicts the end-to-end latency experienced by mes-
sages generated by our hazard warning application. Clearly,
the current LTE architecture falls short of meeting even the
most relaxed latency requirement. No operator in our scenario
can guarantee a significant probability of vehicle-to-vehicle
communications below, e.g., 100 ms. In fact, the operators
serving the largest market shares incur in very high delays well
beyond 200 ms for the vast majority of the connected vehicles
they serve. Although many factors concur in determining
such a high latency, our simulations highlight those that play
major roles. Specifically, (i) the time needed to set up data
radio bearers for all the UEs in the network, (ii) the queuing
delay at PDCP, and (iii) retransmissions. Therefore specific
techniques, capable of mapping vehicular data traffic to the
most appropriate vehicular aware network functions (e.g.,
lightweight signaling procedures for vehicular UEs) are needed
to correctly support vehicular traffic in future 5G networks.

V. CONCLUSIONS

In this paper, we investigated the automotive service sup-
port provided by the current LTE architecture. We adopted
a realistic simulation approach that allowed unveiling the
critical impact of dependable mobility modeling. Our results
demonstrate that LTE networks have significant limitations
when faced to pervasive services by automotive verticals.
They also let us derive useful guidelines for the design of
future 5G networks: (i) the deployment of the infrastructure
and the orchestration of resources must take advantage of
the predictability of traffic flows; (ii) the control those same
resources must occur in service-aware fashion, e.g., at the
scheduler level; (iii) new mechanisms or network functions
must be developed that are specific to automotive applications.
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