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Abstract—In this paper we describe a novel technological
framework for capture and analysis of both objective measure-
ment data and subjective user experience data for automotive
applications. We also investigate how the framework can be
extended to address privacy issues by enforcing a rigorous
privacy model called differential privacy. The system under de-
velopment integrates a telematics system with a smartphone app
service architecture and a data-driven analytics framework. The
hypothesis is that the framework will improve the opportunities
of conducting large scale user trials of automotive functions and
services, while improving the quality of collected data. To achieve
this, a number of challenges are addressed in the paper, including
how to design the subjective data capture mechanisms to be both
simple to use yet powerful, how to correlate subjective data with
objective measurement data, and how to protect the privacy of
users.

I. INTRODUCTION

A key to competitiveness in the automotive industry is to

be highly responsive to customer needs and expectations as

well as market trends. One way to achieve this is to collect

and analyze data from connected vehicles to find out how

the customers use the product and how the product performs

in different situations. The opportunities to employ data cap-

ture and analytics for knowledge-driven product development,

whereby engineering and design decisions are made based

on hard facts rather than best practices and tacit knowledge

is gaining strong momentum in the automotive industry [1].

Sophisticated telematics systems and cloud-based analytics

frameworks are emerging for these types of applications [2],

but what is generally missing is a good way to couple the

collected vehicular data and usage data to customer experience

data. How the vehicle and user behaves is only one side of the

story, the other being how the user experiences the product

or would like to experience the product. The objective data

being collected through telematics services therefore need to

be complemented with subjective data about the customers’

experiences of using the product.

The traditional approach to subjective data collection in

the automotive industry is through surveys based on ques-

tionnaires and interviews with selected customers. However,

this type of subjective data collection is time consuming and

the collected data sets are typically difficult to correlate with

objective measurement data. What the customer says about the

way he or she uses a product does not necessarily correspond

to how he or she actually uses the product, nor with how the

user would like to use the product or what new features and

services are desired. Furthermore, subjective data quality is

commonly low since there is a considerable separation in time

and space between actually using a product and responding to

a traditional questionnaire. The experience the user had while

using the product is easily dimmed, forgotten or altered by

the passing of time and change of locale. Moreover, when

it comes to advanced active safety and autonomous driving

services, the volume and complexity of data that need to be

collected is high, so a scalable architecture with a high level

of automation is needed for capture and analysis of data.

To overcome these problems, we suggest an approach

based on a technological framework for coordinated cap-

ture and analysis of both objective and subjective data —

the latter through the use of a smartphone app which can

present tailored questions to selected users to capture specific

information about particular events triggered by conditions

detected in each user’s vehicle during usage. The subjective

data submitted through the app is uploaded to a cloud-based

analytics framework where objective data, collected from in-

vehicle measurement systems are also available for combined

analytics. Since the collected data might be privacy sensitive

to users, we also investigate how the data can be collected in

a privacy-preserving way. This gives the opportunity to carry

out large-scale collection of data and automated data-driven

analysis, with much higher information quality and in shorter

time compared to traditional approaches, reducing the time

to market for new product features and customized service

offerings. The concept is illustrated in Figure 1.

A. Target Applications

To explore the opportunities of joint subjective and objective

data collection, we have developed a proof-of-concept system

targeting primarily active safety applications, but with a great

potential to be used for many other automotive applications

where subjective user data is important, including climate

comfort, noise-vibration-harshness (NVH) and ergonomics.

Since active safety and autonomous driving functions in-

creasingly rely on machine learning algorithms that typically

require large volumes of training data, systems that can facili-

tate the collection of relevant training data sets are very impor-

tant. Finding the relevant training data sets typically requires



Fig. 1. Joint subjective/objective data capture and analytics concept

human intervention, e.g. to tag or classify whether a given

situation belongs to a given category. With the user in the loop

through the smartphone app, our approach gives tremendous

opportunities to build up a large database of training data.

Since the sensor data input to active safety systems typically

include complex data types such as video and radar/lidar

images, this also affects the design and configuration of the

onboard logging devices and corresponding telematics services

used to capture and communicate measurement data.

II. CHALLENGES

In the design of the technological framework we have

identified a number of challenges that need to be addressed.

Some of the more demanding challenges are:

1) How can we design the subjective data capture app in

a way that makes it easy and safe to use in a vehicle,

even while driving?

2) How can we design a triggering mechanism to decide

when a particular question or set of questions should be

posed to a particular user? The triggering mechanism

must be versatile and flexible to be usable for all relevant

use cases.

3) How can we cater for follow-up questions that depend

on answers to previous questions?

4) How can we protect the privacy of users while at

the same time providing automotive engineers with as

powerful data collection and analytics tools as possible?

Each of the listed challenges are discussed in the text in the

upcoming sections.

III. A FRAMEWORK FOR JOINT SUBJECTIVE-OBJECTIVE

DATA CAPTURE AND ANALYTICS

The proof-of-concept framework is composed of the follow-

ing main components:

• An in-vehicle data capture and telematics system, making

it possible to monitor and transmit in-vehicle (CAN bus)

signals,

• A cloud-based server infrastructure, including database

storage, web-based user interface front-end, and applica-

tion programming interfaces to provide controlled access

to the information resources and framework services,

• A smartphone app to which questions to vehicle users

can be pushed from the server infrastructure, and answers

recorded and uploaded to the database,

• An analytics service architecture, enabling automated

data-driven analysis of data originating from connected

vehicles and smartphone apps,

• A app questionnaire authoring tool for designing the

questions to be sent to users of the smartphone app,

• A concept for a privacy-preserving framework based on

differential privacy.

An overview of the software architecture of the system is

shown in Figure 2.

Fig. 2. Software Architecture of the framework for joint subjective/objective
data capture and analytics

A. Telematics System

The core component of the telematics system (called WICE)

is a Linux-based data capture and communication unit installed

in vehicles. The unit executes measurement tasks that support

data capture both by passive in-vehicle communication bus

monitoring and active diagnostic services. The captured data

is uploaded to a cloud-based server infrastructure using 2G,

3G or 4G wireless mobile data communication. The telematics

unit also provides additional services such as GPS-based

positioning and fleet management.

The communication architecture can handle both bulk up-

load of data and real-time streaming of data without the need

to store it on the solid state disks of the telematics units. For

most data capture services, measurement data is stored to disk

while a data logging task is running, and then pre-processed

and uploaded at the end of the vehicle’s driving cycle (i.e

at ignition-off). The streaming mode is used for time-sensitive

applications, such as positioning services where it is important

to show the current location of moving vehicles.



B. Smartphone App and App Service Architecture

The Smartphone App (see Figure 3) is implemented on top

of the Ionic Framework [3] in order to target the most common

mobile ecosystems from a single code base. This was deemed

necessary in order to rapidly iterate the design throughout the

life of the project. Ionic is one of the frameworks making it

possible to use regular Web technologies (JavaScript, HTML,

CSS, etc.) to develop native-looking apps. A number of

specific libraries allow access to local hardware in a manner

that hides most of the differences between iOS and Android.

There are three major functions provided by the app:

• Registering cars to app user accounts. Car registration

is made through manual entry of the car’s unique VIN,

or through scanning a barcode representing this same

identifier and usually printed onto the car’s front window.

• Each user account carries a few profile details in order

to be able to target specific driver details: persons of

above/below average height, in specific age categories,

etc.

• Receive and respond to “polls” in order to collect subjec-

tive information whenever the back-end has discovered

a set of matching metrics that require complementary

details for a deeper understanding.

Fig. 3. The screenshot to the left shows the landing page of the smartphone
app, listing all cars that are registered to a given account. Note the “ham-
burger” menu in the top-left corner to access the rest of the app’s functions,
and the “+” floating button to trigger car registration. The screenshot to the
right shows the profile screen aimed at collecting anthropomorphic data.

Care has been taken to minimise the size and intrusion of the

polls as much as possible. Most polls will only contain a few

questions, and questions can be conditional, i.e. only asked

depending on previous answers within the same poll. The

app accepts remote polls even under driving circumstances.

However, polls are then read out loud using the mobile

platform specific Text-to-Speech (TTS) functions and speech

recognition is used to collect answers. Whenever alternatives

are offered, small meaningful pieces of these sentences can

be used to acknowledge the specific alternative. TTS is also

used to inform about errors and progression, so as to engage

the driver in a hands-free dialog. All questions and polls are

also present on the smartphone screen, making it possible to

answer using touch if necessary or preferred (see Figure 4).

The UI uses large, clean and colour-coded buttons to facilitate

interaction in all situations, including a bumpy road.

Sometimes it is desirable for polls to be sent in several

steps. For example, first as soon as a telematics function

has triggered (in order to capture the driver’s answer in the

heat of the action), but also later once the car has come to

a stop (in order to capture further details about the specific

event). These chains are not handled by the polls themselves,

but rather through information exchange with the back-end

system. Typically, two (or more) polls will be sent by the

back-end, possibly conditionally, to capture these situations

appropriately. However, the current implementation of the app

collects phone position data to approximate speed, and in order

to be able to cover these cases without back-end intervention,

should that turn out to be necessary in future versions.

Fig. 4. The screenshot to the left shows the list of polls as seen from the
app. Upon answer, polls automatically get sorted into a separate list, shown
at the bottom of the screen in order to provide some progress and history
feedback. The screenshot to the right shows a typical yes/no question from a
poll; the app also supports more elaborate questions with several alternatives.
The “coffee cup” is a direct reference to how fatigue alerts are mediated to
drivers in the car.

Several drivers/passengers can declare ownership of a sin-

gle car. At present, relevant polls are sent to all registered

users. However, this could be alleviated through automatically

detecting which of the registered users is currently (or has

just) visited the car. We intend future versions of the app

to communicate with the car’s infotainment system as the

main source of this type of information. This will also bring

the possibility to offer an option that automatically turns on

speech recognition (and TTS) when the phone is used in the

car. This would prevent polls to be read out loud once the

driver has stepped out of the car (which might be disturbing

or embarrassing).

C. Back-end Server Architecture and Analytics Framework

The back-end architecture consists of two frameworks. One

is the subjective data capture framework described in this



paper which handles the polls and the other is the telematics

and analytics framework called WICE [2] which delivers

the signals from the car to the back-end data processing

framework and provides data processing functions to analyze

and visualize the captured data. In order for polls to be

delivered to users the person creating the questionnaire must

decide upon which set of vehicles should receive the poll when

a certain condition occurs and this is done through a web-based

tool for creating and managing polls.

The following takes place when a vehicle delivers data to

the back-end.

1) In-vehicle signals are streamed in real time by the

telematics system from connected vehicles to the back-

end processing framework. Which signals are streamed

is defined in a pre-configured measurement set-up.

2) Configurable trigger conditions are evaluated to find

whether an event that is of interest has occurred. The

trigger conditions are boolean expressions involving

signals being streamed, for example VehicleSpeed

>50 AND Gear=3. When a trigger condition speci-

fied for a specific poll evaluates to true, a service is

called which sends the poll to the app which has been

registered for the vehicle originating the data stream

wherein the interesting event occurred.

3) Once the user has answered the poll, the answer is

uploaded to the back-end framework and stored in a

database, for subsequent analytical processing.

In some cases it is desirable that follow-up questions are

posed when the user has responded in a specific fashion.

Therefore the back-end framework must be able to evaluate

trigger conditions that also include answers to previous polls

in order to able to trigger follow-up polls.

The analytics framework, which is under development, is

based on a data-driven approach, whereby data sets uploaded

from connected vehicles and apps are automatically analyzed.

Analysis result are stored in a knowledge base and made

available for visualization, typically as histograms, pie charts

or similar.

IV. CASE STUDIES AND USER TRIALS

The technological framework under development will be

tested and evaluated in a case study at Volvo Cars wherein

two different active safety features are focused: Driver Alert

Control (DAC) and Forward Collision Warning (FCW). The

DAC system is a driver fatigue detection and warning system.

Subjective data is in this case collected to verify whether

drivers actually are tired when the DAC system triggers, and to

follow up whether they take a break as the system suggests.

The FCW system alerts the driver when there is risk for a

collision. Subjective data is collected to verify whether issued

collision warnings are relevant. The purpose of the case study

is to collect subjective user experience data from field trials

and to analyze the data together with (objective) measurement

data in order to improve the DAC and FCW systems. The

hypothesis is that the technological framework presented in

this paper will facilitate the orchestration of this kind of

user experience surveys with a potentially large number of

participating users, and to improve the quality of the data being

collected.

V. PRIVACY ISSUES

While our approach to collect user data opens up new

opportunities for improved, data-driven analytics, it also has

privacy implications for the drivers that need to be addressed.

For example, if a driver has a high number of FCW, it can

indicate that the driver is reckless or aggressive, as he or she

is often about to collide with objects. An additional privacy

issue in this particular setting is that follow-up questions can

be issued based on previous answers, which makes the fact that

the follow-up question is sent reveal sensitive information. As

an example, if a driver ignores the DAC even though he or she

is tired, and confesses that this is the case through submitting

subjective data during a follow-up poll, this information could

be incriminating if the driver is later involved in a traffic

accident.

Traditionally, analysts would choose to de-identify data,

often through removing certain identifiers, such as the vehicle

identification number (VIN) and the license plate from the

data set. However, real-world examples [4], [5] has shown

that de-identification often fails, allowing individuals to be re-

identified. Examples from the automotive domain where re-

identification has been possible include deducing the location

of a car based on its speed [6] and fingerprinting drivers from

their driving style [7].

In order to protect the driver’s privacy, we suggest that

data is gathered under differential privacy. Differential pri-

vacy [8] gives mathematically proven, robust privacy guar-

antees, which is not provided by any other privacy model.

Definition 1 shows the formal definition of differential privacy

[9]. Intuitively, differential privacy aims to simulate the best

privacy for an individual: namely when he or she has opted

out of the analysis. Essentially, differential privacy provides

privacy by introducing some inaccuracy, noise, to a real

answer. The privacy risk to an individual is then monitored by

a privacy budget, which is usually shared by all participants.

Definition 1 (ǫ-differential privacy): A randomized function

K gives ǫ-differential privacy if for all data sets D1 and D2

differing on at most one element, and all S ⊆ Range(K),

P r[K(D1) ∈ S] ≤ exp(ǫ)× Pr[K(D2) ∈ S]

To address the privacy issues of the smartphone app, we

suggest that a framework1 for personalized local differen-

tial privacy (PLDP) based on randomized response [10] is

developed and used when issuing questions from the app.

Randomized response is a surveying technique that was in-

vented to avoid evasive answers, for example by lying, from

respondents. Randomized response is implemented by letting

the respondent flip a coin to determine whether to lie or to

answer truthfully, and if the respondent is asked to lie, he or

1The use of PLDP in this context is ongoing joint work with Hamid Ebadi
and Dave Sands at Chalmers University of Technology



she again flips a coin to determine what to answer. As the one

collecting the answer does not know whether the respondent

tells the truth or provides the random answer determined by the

coin, randomized response is said to give plausible deniability.

When the analyst wants to perform an analysis on the data,

he or she uses Bayes’ theorem in order to extract the truthful

answers. This way data can be collected without it being

possible trace a reply back to a specific individual, and also

giving the respondents an incentive not to lie unless the coin

tells them to.

To address privacy in our architecture, the PLDP framework

would be placed in a privacy preservation layer above the

smartphone app service layer, and work as an application

programming interface (API) used for the questions in the app.

Previously, PLDP has only been investigated theoretically [11],

and practical implementations do not yet exist. The updated

version of the software architecture is shown in Figure 5.

Fig. 5. Updated software architecture of the framework with privacy in mind

Similarly, data from the telematic service layer should also

be passed through a privacy preservation layer. The main

challenge here is to be able to ask follow-up questions, without

letting the back-end server learn the answer to the original

questions. Therefore, the polls cannot be issued by the back-

end server, but instead will be sent by the telematics server

layer as it has access to the car’s data. Then, the back-end

server chooses a number of cars, uniformly at random, to

answer a question. In this way, answers will only be uploaded

once the back-end server has chosen that car to participate in

a question.

The main implications of a PLDP framework for cars are:

• Local differential privacy does not require a trusted party,

as privacy is enforced before the answer is sent to

the back-end server. No sensitive data will therefore be

uploaded.

• Local differential privacy also gives the driver an incen-

tive not to lie, as raw data never reaches the back-end

server.

• Personalized budgets allow for more flexible budgeting

than traditional, global budgets, thus allowing for more

questions being answered with high accuracy than when

using global budgets.

• For each user, a privacy budget needs to be stored and

managed, as budgets are personalized.

• Answers to polls need to be saved, in a private state, in

the smartphone app.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we have explored the opportunities and chal-

lenges of joint subjective/objective data capture and analytics

for automotive applications. Access to subjective data and

sophisticated analytics frameworks in the testing, verifica-

tion and validation phases of product development promises

improved product quality and shorter development cycles,

reducing the time to market for new products. We believe that

the framework presented in this paper contributes strongly to

this. Our future work includes integration of more advanced

analytics and visualization mechanisms into the framework

and to improve the overall design based on experiences from

the case study described in section IV. Furthermore, we have

also investigated how to extend the data capture to collect

both the subjective user data and the objective car data in a

privacy-preserving fashion under differential privacy.
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