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Abstract—Non-orthogonal multiple access (NoMA) as an 

efficient way of radio resource sharing has been identified as a 

promising technology in 5G to help improving system capacity, 

user connectivity, and service latency in 5G communications. 

This paper provides a brief overview of the progress of NoMA 

transceiver study in 3GPP, with special focus on the design of 

turbo-like iterative multi-user (MU) receivers. There are various 

types of MU receivers depending on the combinations of MU 

detectors and interference cancellation (IC) schemes. Link-level 

simulations show that expectation propagation algorithm (EPA) 

with hybrid parallel interference cancellation (PIC) is a 

promising MU receiver, which can achieve fast convergence and 

similar performance as message passing algorithm (MPA) with 

much lower complexity.   

I. INTRODUCTION   

A non-orthogonal multiple access (NoMA) transmitter maps 
a stream of coded binary bits of a user (UE) to the available 
transmission resources by some user-specific operations to 
facilitate decoding of the superposed multi-user data at the 
receiver side with reasonable complexity. For the design of the 
user-specific operations, both power domain and code domain 
user separation schemes have been proposed from academic and 
industry. There are several overview literatures of the NoMA 
schemes and research progress for interested readers [1]-[4].   

Note that though NoMA is beneficial for both uplink 
(multiple users to base station) and downlink (base station to 
multiple users), the focus of the current 3GPP study is in the UL. 
In this case, the NoMA receiver is equipped at the base station, 
which gives more design possibilities due to its strong processing 
capability compared with user equipment. 

In this paper, we will briefly introduce the progress of NoMA 
study in 3GPP and then focus the discussion on one end of the 
NoMA design, i.e. the multi-user receiver. It is expected that the 
NoMA receiver design can show good BLER performance with 
fast convergence, and can be universally applied to all potential 
NoMA schemes and are friendly to real implementations. 

A. Progress of NoMA Transceiver Study in 3GPP 

The NoMA concept together with 15 different schemes were 
proposed as candidates for 3GPP Rel-14 NR (New Radio) study 
in early 2016. Most of the evaluations at that time focused on the 
mMTC scenario and positive conclusions were drawn from 
extensive simulations justifying the benefits of NoMA over 
orthogonal multiple access (OMA) in the capability of providing 
much larger connection density given the same system outage 
probability (measured in system packet drop rate) [5].  

The study was suspended before making any recommendation 
on the transceiver design due to the very limited time budget in 
the overall NR study item. In Rel-15, a dedicated NoMA study 
item was approved and kicked off since Feb 2018. The focus of 
the study includes the NoMA transmitter side design in bit or 
symbol domain, NoMA receiver side design and complexity 
analysis, NoMA related procedures such as resource and 
signature allocation, HARQ feedbacks/combinations and link 
adaptation, and contention based grant-free NoMA with blind 
UE detection, as well as comprehensive link-level and system-
level evaluations of NoMA in all three typical 5G scenarios, i.e., 
eMBB (enhanced mobile broadband), URLLC (ultra-reliable 
and low-latency communications), and mMTC (massive 
machine-type communications) with practical impairments and 
implementation constraints in each scenario, respectively.  

B. General Framework of  Turbo-like Iterative Multi-user 

Receiver   

 A general NoMA receiver has been agreed in the recent 
3GPP meeting RAN1#92b [6]. As shown in Fig. 1, the high level 
diagram is adopted as the general block diagram of multi-user 
receiver for UL data transmissions. The algorithms for the 
detector block (for data) can be e.g. MMSE (minimum mean 
square error) [7], MF (matched filtering), ESE (elementary 
signal estimator) [8], MAP (maximum a posterior), MPA 
(message passing algorithm) [9], and EPA (expectation 
propagation algorithm) [10]. The interference cancellation (IC) 
can be hard or soft, and can be implemented in serial or parallel. 
Note that the IC block may consist of an input of the received 
signal for some types of IC implementations. The interference 
cancellation block may or may not be used. If not used, an input 
of interference estimation to the decoder may be required for 
some cases. The input to interference cancellation may come 
directly from the Detector for some cases 

 

Fig. 1. A high-level block diagram of multi-user receiver[6]. 

 In this paper, under the agreed high-level diagram in Fig. 1, 
we discuss several typical multi-user (MU) detectors, i.e., MPA, 
ESE, MMSE, and EPA. Moreover, different ways of interference 
cancellation that iterates information between the MU detector 
and decoder are also discussed.  Implementation considerations 
together with link-level evaluations are used to analyze the 
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different combinations of the MU detectors and IC schemes, 
from which the EPA hybrid PIC receiver is recommended for its 
fast convergence in BLER performance, universal application 
for all NoMA schemes, and friendliness in real implementations. 

II. MULTIUSER DETECTOR ALGORITHMS 

In this section, some typical candidate MU detectors are 

described, including MPA, ESE, MMSE, and EPA.  

A. MPA  

MPA (Message passing algorithm) [9] is an iterative MU 

detector with near-ML (maximum likelihood) detection 

performance. It passes messages that represent conditional 

probabilities back and forth between every FN (function node, 

representing resource element (RE)) and VN (variable node, 

representing data layer) edge in the factor graph of a NoMA 

scheme. To avoid confusion with the iteration between detector 

and decoder, the iteration inside MPA or other detectors is called 

inner-loop iteration, while the iteration between detector and 

decoder is called outer-loop iteration. In each inner-loop iteration, 

the messages between FNs and VNs are updated respectively. 

After a number of inner-loop iterations, the LLRs for the coded 

bits are calculated based on the current probabilities and then 

input to the channel decoder [11].  

Its arithmetic complexity order is O(MP
df) per inner-loop 

iteration, where Mp denotes the number of the points on one RE 

constellation corresponding to a log2M-bit mapping.  M≥Mp, e.g., 

M=8, Mp =4; M=16, Mp =9; M=64, Mp =16.  df   denotes the 

number of the (data) layers colliding over each RE.  This 

complexity order can be further reduced by restricting the 

maximum number of layers: ds<=df , from O(MP
df)  to O(MP

ds). 

This MPA with SIC is called SIC-MPA in [11].  

B. ESE 

ESE (elementary signal estimator) [8] simply approximates 

the ISI (inter-user interference) plus Gaussian noise as Gaussian. 

Such a Gaussian approximation can be implemented in different 

ways for multiple receiving antennas: if a base-station performs 

matched filtering (MF) in the spatial domain, the approximation 

is a scalar Gaussian variable; if a base-station treats all receiving 

antennas jointly, the approximation is a joint Gaussian vector, 

i.e., multivariate Gaussian, which incurs high complexity.  

Moreover, an ESE detector has to rely on the outer-loop 

iterations to achieve an acceptable detection performance and 

the convergence speed is slow. In case of high spectrum 

efficiency and high overloading, the number of outer-loop 

iterations may be too large for base station to reach short latency.  

C. MMSE 

MMSE approximates the prior distribution of the signal as 

Gaussian whose mean and variance are computed from either 

soft LLRs fed back by the channel, or a Gaussian approximation 

with zero mean and variance scaled by the signal power (if the 

soft feedback is unavailable) [7]. A NoMA scheme with a SF 

(spreading factor) of L can have two alternatives: a chip-by-chip 

MMSE that is performed on each RE independently, or a block-

wise MMSE that is performed jointly on the L REs. Matrix 

inversion dominates the MMSE complexity. A chip-by-chip 

MMSE needs to inverse 𝑁𝑟-by-𝑁𝑟 complex-valued covariance 

matrix. A block-wise MMSE needs to inverse 𝑁𝑟 × 𝐿-by-𝑁𝑟 ×
𝐿 complex-valued covariance matrix. As a result, block-wise 

MMSE has much higher complexity, i.e., 𝒪(𝑁 𝐿3
𝑟
3 ) than chip-

by-chip MMSE, i.e., 𝒪(𝑁 𝐿𝑟
3 ), especially when the spreading 

factor L is large. While in base station implementations, higher 

order of matrix inversion could be less stable and harder to 

perform parallelization.  

D. EPA 

EPA (expectation propagation algorithm) is one kind of 

well-known approximate Bayesian inference algorithm that has 

been widely used in machine learning [13][14]. It projects the 

target distribution of the transmitted symbols into a family of 

Gaussian distributions by iteratively matching the means and 

variances with the target distribution, which equivalently 

minimizes the Kullback-Leibler divergence between the target 

distribution and the approximate distribution [13].  

EPA can be regarded as a type of Gaussian approximation 

to MPA but with consideration of the non-Gaussian nature of 

the transmitted symbols as well. It can also be viewed as an 

enhancement to ESE by iteratively refining the Gaussian 

approximation of the prior distribution. It has linear complexity 

with respect to M (Mp if low projection mapping is used) and df 

(ds if SIC-EPA is used as SIC-MPA), while it provides nearly 

the same performance as MPA in most scenarios of interest [10]. 

The implementation of EPA can also employ the divider-and-

conquer method and supports full parallelism. 

For ease of comparison, we summarize various MU 

detectors discussion in Table 1.   

Table 1: Brief Summary of various MU Detectors 
MU 

Detector 
Basic Principle Properties 

MPA 

Sum-product message 

passing performed on 

the factor graph of 

NoMA transmission 

· Near ML detection 

performance 

· Comparatively high 

complexity at high 

overload 

· SIC-MPA as a low-

complexity variant 

ESE 

Interference plus noise 

is approximated as 

Gaussian 

· Comparatively low 

convergence rate at 

high overload and high 

SE 

MMSE 
The prior distribution is 

directly approximated 

as Gaussian 

· Block-wise MMSE has 

much higher 

complexity than chip-

by-chip MMSE 

EPA Gaussian 

approximation of MPA 

· Fast convergence 

· Nearly the same 

performance as MPA 

III. INERFERENCE CANCELATION   

In one dimension, the interference cancellation (IC) can be 

serial or parallel.  

SIC (Serial IC, also known as successive IC) decodes only 

one user at a time, as shown in Fig. 2 (a). Although the order of 
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SIC depends on SINR values to take advantage of near-far effect 

among users, such an ordered SIC may bring about a well-

known error propagation. To overcome it, in enhanced SIC, the 

order of SIC is revised each time a UE is successfully decoded. 

PIC (parallel IC) decodes all the active users simultaneously, 

thereby avoiding the order-related error propagation of SIC and 

improving the performance.  In addition, it has low decoding 

latency due to higher parallelism. Note that one can also decode 

a subset of users at a time, which is called group PIC and may 

acquire additional operations for group selection.    

In another dimension, IC can be hard or soft.  

Hard IC: the channel decoder feedbacks the correctly 

decoded (i.e., passed cyclic redundancy check (CRC)) binary 

bits to the detector for the interference reconstruction. It 

feedbacks only correctly decoded data streams.   

Soft IC: the channel decoder feedbacks the LLRs (log 

likelihood ratios) to the detector for the interference 

reconstruction, no matter whether the data stream can be 

correctly decoded or not. However, it may be a waste to use LLR 

values rather than hard IC for those successfully decoded code-

words.   

In practice, different combinations of SIC/PIC and 

Hard/Soft lead to different implementations. For example, the 

hard SIC shown in Fig. 2 (a) is a combination of SIC and hard 

IC, while the soft PIC in Fig. 2 (b) is a combination of PIC and 

soft IC. We propose a kind of hybrid PIC as shown in Fig. 2 (c), 

Hybrid PIC: a combination of hard IC and soft IC in PIC. 

Specifically, for the successfully decoded (i.e., CRC passed) 

user or users, the interference is hard canceled; for the 

unsuccessfully decoded user or users, only soft LLRs are fed 

back by the decoder. Hybrid PIC can take advantages of both 

pure soft and pure hard IC schemes and achieves the best 

performance with low-complexity implementations. 

IV. EXPERIMENTAL RESULTS 

In this section, link level simulations are performed to 

evaluate the turbo-like iterative MU receiver with different 

combinations of MU detectors and IC schemes.  

For any type of IC scheme, the performance of the iterative 

MU receiver is closely related to the number of iterations 

between the channel decoder (backend) and the MU detector 

(frontend), also known as outer-loop (OL) iterations. To show 

the necessity of OL iterations, we set up CB-OFDMA 1 

(contention-based OFDMA) and NLS 2 (Non-sparse linear 

Spreading) as two examples for transmitter processing. The 

channel model follows the TDL-A model [5]  with delay spread 

30ns and the moving speed is 3km/h. Details of simulation 

parameters are listed in Table II. As shown in Fig. 3, the block 

error rate (BLER) performance improves along with the 

increased number of outer-loop iterations until the performance 

is converged. If there is no outer-loop iterations, i.e., OL = 0, 

the performances of both CB- OFDMA and NLS are rather poor. 

                                                           
1 CB-OFDMA here refers to the contention based OFDMA where all 

the UEs fully share the same time and frequency resource also known 

as power-domain NOMA [4].   

 

Moreover, the more multiplexed users/layers, the larger the 

required iterations to achieve convergence. As a result, outer-

loop iterations are essential to obtain satisfactory performance.  

 

 
(a) Hard SIC 

 

 
(b) Soft PIC 

 

 
(c) Hybrid PIC 

Fig. 2. Different IC schemes  

2 NLS here means non-sparse linear spreading based NOMA 

schemes, which is a type of code-domain NOMA [18].  
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(a) 6UEs, 6RBs, 60bytes, 2Rx, OL 0,1,2,3. 

 

b) 8UEs, 6RBs, 60bytes, 2Rx, OL 0,1,2,3. 

Fig. 3. BLER performances of CB-OFDMA and NLS with different number 

of outer-loop iterations.  

Table II: Simulation Setting. 

Parameters  Values or assumptions  

NoMA scheme CB-OFDMA, NLS, SCMA 

Carrier frequency 700 MHz 

Numerology  14 OFDM symbols with 2 for DMRS  

Transmission Bandwidth  6 Resource Blocks (RBs) 

Transport Block Size (TBS) 60 bytes 

Channel coding NR Rel-15 LDPC 

BS antenna configuration  2 Rx  

UE antenna configuration  1Tx  

Transmission mode  TM1 (refer to TS36.213)  

Number of Multiplexed UEs 6, 8, 10 

Propagation channel & UE 

velocity  
TDL-A 30ns, 3km/h 

Receivers MMSE/ESE/MPA detector combined 
with different IC schemes 

 

We then evaluate and compare the performance of four 

different IC methods, namely hard SIC, enhanced SIC, soft PIC, 

and hybrid PIC. The MU detector is MMSE. Detailed 

simulation assumption is listed in Table II. For soft PIC and 

hybrid PIC, the number of outer-loop iterations is OL = 3. As 

shown in Fig. 4, hard SIC has the worst performance. By 

contrast, hybrid PIC can take advantages of both pure soft and 

pure hard IC schemes and achieves the best performance 

without much increase of complexity.  

 
        (a) CB-OFDMA, TBS=60bytes, 6UEs. 

 

 
(b) NLS, TBS=60bytes, 10UEs.  

Fig. 4. Performances comparison of different IC schemes  

Next, under the hybrid PIC structure, we compare the 

performances of different MU detectors: ESE, MMSE, EPA, 

and MPA. MPA is a kind of near-ML detector and thus serves 

as the upper bound of the detectors. We consider CB-OFDM 

with 6UEs. Details of simulation parameters are listed in Table 

II. The number of outer-loop iterations is set to be OL = 2 and 

3, respectively.  As shown in Fig. 5, EPA can achieve nearly the 

same performance as MPA with OL = 2 and 3 while ESE and 

MMSE has apparent performance loss compared with MPA, 

especially with less number of outer-loop iterations. EPA 

converges much faster than ESE and MMSE, i.e., given the 

fixed number of outer-loop iterations, EPA can achieve much 

better performance then ESE and MMSE. This is quite 

appealing since fast convergence leads to low decoding latency 

which is quite important for 5G applications. Moreover, fast 

convergence of EPA also implies less times of channel decoding, 

which significantly reduces the receiver complexity.  

Finally, given the receiver, the transmitter design can offer 

additional gains. To verify this, we compare the performances 

of different NoMA schemes: SCMA, CB-OFDMA, and NLS. 

The SCMA codebook used in the simulation is 𝑀 = 16 point 

codebook proposed in [17]. The signatures of Non-sparse Linear 

spreading scheme is listed in Table A-2 of [18] with spreading 

length 𝐿 = 4 . Details of simulation parameters are listed in 

Table II. From previous discussion, EPA has much lower 

complexity compared with MPA and has better convergence 

performance compared with MMSE and ESE. Thus, in 

comparing different NoMA schemes, we chose the receiver to 

be EPA with hybrid PIC and the number of outer-loop iterations 
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is set to be OL = 3. Fig. 6 shows that SCMA outperforms both 

CB-OFDMA and NLS, which implies that transmitter side 

symbol-level design is beneficial and the sparse feature can help 

improve the convergence and thus the BLER performance.  

 
(a) CB-OFDMA, TBS=60bytes, 6UEs, OL=2. 

 
(b) CB-OFDMA, TBS=60bytes, 6UEs, OL=3. 

Fig. 5. BLER performance of MU detectors with hybrid PIC. 

 

Fig. 6. Performances comparison of different NoMA schemes. TBS= 

60bytes, 8UEs, EPA with hybrid PIC, OL = 3.   

 

V. CONCLUSION 

In this paper, we introduce the recent progress of NoMA 

transceiver study in 3GPP and mainly focus on the general 

turbo-like iterative multi-user (MU) receiver design for 5G 

NoMA schemes. Under the general iterative structure, several 

candidate MU detectors, e.g., MPA, ESE, MMSE, and EPA, are 

summarized and compared. Moreover, different ways of 

interference cancellation that iterates information between the 

MU detector and decoder are also discussed. To take advantages 

of both pure soft and pure hard IC schemes, we propose hybrid 

PIC. Link-level simulations show that expectation propagation 

algorithm (EPA) with hybrid parallel interference cancellation 

(PIC) is a promising MU receiver, which can achieve fast 

convergence and similar performance as message passing 

algorithm (MPA) with much lower complexity. 
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