
ar
X

iv
:1

80
6.

09
09

4v
1

 [
cs

.I
T

]
 2

4
Ju

n
20

18
1

Decentralized Asynchronous Coded Caching in Fog-RAN

Wenlong Huang, Yanxiang Jiang, Member, IEEE, Mehdi Bennis, Senior Member, IEEE,

Fu-Chun Zheng, Senior Member, IEEE, Haris Gacanin, Member, IEEE, and Xiaohu You Fellow, IEEE

Abstract— In this paper, we investigate asynchronous coded
caching in fog radio access networks (F-RAN). To minimize the
fronthaul load, the encoding set collapsing rule and encoding
set partition method are proposed to establish the relation-
ship between the coded-multicasting contents in asynchronous
and synchronous coded caching. Furthermore, a decentralized
asynchronous coded caching scheme is proposed, which pro-
vides asynchronous and synchronous transmission methods for
different delay requirements. The simulation results show that
our proposed scheme creates considerable coded-multicasting
opportunities in asynchronous request scenarios.

Index Terms— Fog radio access networks, asynchronous coded
caching, coded-multicasting, fronthaul load.

I. INTRODUCTION

With the rapid proliferation of smart devices and mobile

application services, wireless networks have been suffering an

unprecedented data traffic pressure in recent years, especially

at peak-traffic moments. Fog radio access networks (F-RAN),

which can effectively reduce the data traffic pressure by

placing popular contents closer to users, have been receiving

significant attention from both industry and academia. In F-

RAN, fog access points (F-APs) are distributed at the edges

and connected to the cloud server through fronthaul links. F-

APs can use edge computing and caching resources to bring

users better quality of experience [1]. Meanwhile, as just a few

popular content sources account for most of the traffic load,

edge caching has become a trend for content delivery [2], [3].

Moreover, coded caching was firstly proposed in [4] and [5]

by encoding the delivered contents to further reduce network

congestion.

The main idea of coded caching is that the contents stored in

the caches can be used to create coded-multicasting opportuni-

ties, such that a single coded-multicasting content transmitted

by the cloud server can be useful to a large number of users

simultaneously even though they are not requesting the same

This work is accepted by IEEE VTC 2018 FALL.
W. Huang and Y. Jiang are with the National Mobile Communications

Research Laboratory, Southeast University, Nanjing 210096, China, the State
Key Laboratory of Integrated Services Networks, Xidian University, Xi’an
710071, China, and the Key Laboratory of Wireless Sensor Network &
Communication, Shanghai Institute of Microsystem and Information Tech-
nology, Chinese Academy of Sciences, Shanghai 200050, China. (e-mail:
yxjiang@seu.edu.cn)

M. Bennis is with the Centre for Wireless Communications, University of
Oulu, Oulu 90014, Finland. (e-mail: bennis@ee.oulu.fi)

F. Zheng is with the School of Electronic and Information Engineering,
Harbin Institute of Technology, Shenzhen 518055, China, and the National
Mobile Communications Research Laboratory, Southeast University, Nanjing
210096, China. (e-mail: fzheng@ieee.org)

H. Gacanin is with the Nokia Bell Labs, Antwerp 2018, Belgium. (e-
mail:haris.gacanin@nokia-bell-labs.com)

X. You is with the National Mobile Communications Research Laboratory,
Southeast University, Nanjing 210096, China. (e-mail:xhyu@seu.edu.cn)

content. In [4], Maddah-Ali and Niesen proposed a centralized

coded caching scheme, in which the centrally coordinated

placement phase needs the knowledge of the number of active

users in the delivery phase. A decentralized coded caching

scheme was further proposed in [5], which achieves order-

optimal memory-load tradeoff in the asymptotic regime of

infinite file size. The authors of [6] presented a strategy

which partitions the file library into subsets of approximately

uniform request probability and applies the strategy in [5] to

each subset. The authors of [7] studied the case that the file

popularity has multiple different levels. A scheme consisting

of a random popularity-based caching policy and chromatic-

number index coding delivery was proposed in [8], which was

proven to be order optimal in terms of average rate. All the

schemes in [4]–[8] considered the coded caching problem for

the case that user requests are synchronous, i.e., synchronous

coded caching. However, user demands for contents is typi-

cally asynchronous [9] in reality. The asynchronous request

case was first mentioned in [5], and the authors applied the

proposed decentralized synchronous coded caching scheme to

an asynchronous request scenario in a simple way. In [10],

the authors proposed a linear programming formulation for

the offline case that the server knows the arrival time before

starting transmission. As for the online case that user requests

are revealed to the server over time, they considered the

situation that users do not have deadlines but wish to minimize

the overall completion time.

Motivated by the aforementioned discussions, it is important

to study the coded caching problem when user requests are

asynchronous, i.e., asynchronous coded caching. We consider

the online case with a given maximum request delay to reduce

the worst-case load of the fronthaul links in F-RAN. We

propose a decentralized asynchronous coded caching scheme,

which effectively exploits the coded-multicasting opportuni-

ties. Our proposed scheme is applicable for various asyn-

chronous request scenarios by providing asynchronous and

synchronous transmission methods, which are chosen accord-

ing to different delay requirements.

II. SYSTEM MODEL

Consider the F-RAN where there are K F-APs and each F-

AP serves multiple users. Assume that the users request con-

tents asynchronously during the time interval (0, T]. Let K =

{1, 2, · · · , k, · · · ,K} denote the index set of the considered K F-

APs. The cloud server has access to a content library of N files,

denoted by W1,W2, · · · ,WN . Let N = {1, 2, · · · , n, · · · ,N}

denote the index set of N files with N ≥ K. Assume that

the size of each file is F bits and the content library has

a uniform popularity distribution. For each F-AP, only one

http://arxiv.org/abs/1806.09094v1

2

of its served users requests one file during the time interval

(0, T], while the F-AP informs the cloud server of the request

immediately. For description convenience, we say K F-APs

request contents asynchronously during the considered time

interval (0, T], where each F-AP only requests one file. Each

F-AP has an isolated normalized (by F) cache size M for

0 < M < N.

In the placement phase, the F-APs are given access to the

content library. By using the same setting of this phase in

[5], F-AP k is able to store its cache content Zk using the

content library independently of the other F-APs, i.e., in a

decentralized manner. Let φk denote the caching function of

F-AP k which maps the content library into the corresponding

cache content, i.e., Zk = φk (W1,W2, · · · ,WN). Note that the

size of Zk is MF bits.

In the delivery phase, the cache contents of all the F-APs

are first informed to the cloud server and then noted as cache

records by the cloud server. Without loss of generality, assume

that the time interval (0, T] is divided into B time slots with

B ≥ 2. Let ∆t = T /B denote the time duration of each time slot.

Then time slot b ∈ {1, 2, · · · , B} represents the time interval

((b − 1)∆t, b∆t]. Let Ub ⊆ K denote the index set of the F-

APs whose requests arrive during time slot b with Ub , ∅.

It is assumed that the cloud server is informed of the requests

of the F-APs in Ub during time slot b and processes them in

a unified manner, i.e., the cloud server transmits the coded-

multicasting content to all the K F-APs through the fronthaul

links at the end of each time slot for the online case. Suppose

that the maximum request delay is ∆b ∈ {1, 2, · · · , B} time

slots, where ∆b denotes the maximum number of time slots it

takes for an F-AP to recover its requested file. Note that we

do not consider the time that it takes for the cloud server to

transmit the corresponding contents and the time that it takes

for each F-AP to transmit the recovered file to the served user.

Therefore, the cloud server can fulfill the requests of the F-APs

in Ub by the end of the time slot b + ∆b − 1.

Let dk ∈ N denote the index of the file requested by F-AP k

during (0, T], and db ∈ N
|Ub | denote the request vector of the

corresponding F-APs in Ub. Let ψb denote the encoding func-

tion of the cloud server at the end of time slot b, which maps

the files W1,W2, · · · ,WN , the cache contents Z1, Z2, · · · , ZK ,

and the requests db to the coded-multicasting content Xb
∆
=

ψb (W1,W2, · · · ,WN , Z1, Z2, · · · , ZK , db). Let θk denote the de-

coding function of F-AP k, which maps the received coded-

multicasting contents X1, X2, · · · , XB, the cache content Zk, and

the request dk to the estimate Ŵdk
= θk (X1, X2, · · · , XB, Zk, dk)

of the requested file Wdk
of F-AP k. Each F-AP should be

able to recover its requested file successfully from its cached

content and the received coded-multicasting content, and then

transmit it to the served user. An asynchronous coded caching

scheme is said to be feasible if and only if the following

condition is satisfied:

lim
F→∞

max
d1,d2,··· ,dB

max
k∈K

P
(

Ŵdk
, Wdk

)

= 0.

Note that the worst-case propability of error over all possible

requests d1, d2, · · · , dB with infinite F is maximized in the

above condition. The objective of this paper is to find a feasible

asynchronous coded caching scheme to minimize the worst-

case normalized fronthaul load (over all possible requests

d1, d2, · · · , dB) in the delivery phase with a given ∆b.

III. THE PROPOSED DECENTRALIZED ASYNCHRONOUS

CODED CACHING SCHEME

In this section, we first propose the encoding set collapsing

rule. Then, we present the encoding set partition method.

Finally, a novel decentralized asynchronous coded caching

scheme is proposed to minimize the fronthaul load.

A. The Proposed Encoding Set Collapsing Rule

Asynchronous coded caching and synchronous coded

caching are supposed to be under the same condition when

their system parameters M, K, and N are the same. As in the

conventional synchronous coded caching schemes under the

same condition, such as the Maddah-Ali-Niesen’s decentral-

ized scheme [5], S ⊆ K for any s = |S| ∈ {1, 2, · · · ,K} is

called an encoding set if a single coded-multicasting content

can be useful to the F-APs in S simultaneously. It can be

observed that the subset of S is also an encoding set. In

order to differentiate the same subfile in asynchronous and

synchronous coded caching, let Wa
k,S

and Ws
k,S

denote the bits

of the file requested by F-AP k cached exclusively at the F-

APs in S for asynchronous and synchronous coded caching,

respectively.

Consider that the requests of the F-APs in K\U1 have not

arrived yet during time slot 1. Assume that U1 ∩ S , ∅ and

the requests in d1 should be fulfilled at the end of time slot

1. The cloud server needs to transmit a coded-multicasting

content which is useful to the F-APs in U1 ∩ S at the end

of time slot 1. Thus, we say that the encoding set S in

synchronous coded caching collapses into a subset of S, i.e.,

U1∩S, for transmitting the corresponding coded-multicasting

content in asynchronous coded caching. Recall that by apply-

ing the scheme in [5], the coded-multicasting content that the

cloud server transmits for S in synchronous coded caching

is ⊕k∈SWs
k,S\{k}

, where ⊕ denotes bitwise XOR operation.

Accordingly, the cloud server transmits ⊕k∈(S∩U1)W
a
k,(S∩U1)\{k}

at the end of time slot 1. According to the above discussions, it

is evident that there exists some relationship, called encoding

set collapsing rule, between the coded-multicasting contents

in asynchronous and synchronous coded caching.

During time slot b, let Uy and Un denote the index sets

of the F-APs from which the requests have arrived and not

arrived, respectively. For any S1 ⊆ Uy and S2 ⊆ Un, the

encoding set S = S1 ∪ S2 in synchronous coded caching

collapses into S1 in asynchronous coded caching. Accordingly,

⊕k∈(S1∪S2)W
s
k,(S1∪S2)\{k}

collapses into ⊕k∈S1
Wa

k,(S1∪S2)\{k}
, which

will be practically transmitted by the cloud server at the end

of time slot b in asynchronous coded caching.

B. The Proposed Encoding Set Partition Method

Utilizing our proposed encoding set collapsing rule, we

now consider what contents are transmitted in asynchronous

coded caching. In order to fulfill the requests of the F-APs

3

Algorithm 1 The Proposed Encoding Set Partition Method

1: Initialize i, β, γ.
2: while S , ∅ do

3: i = i + 1.
4: while Uβ+1 ∩ S = ∅ do

5: β = β + 1.
6: end while
7: if γ − β ≥ ∆b then

8: Si = S ∩
(

∪
β+∆b

b=β+1
Ub

)

,

9: β = β + ∆b.
10: else

11: Si = S ∩
(

∪
γ

b=β+1
Ub

)

.

12: end if

13: S = S\Si .
14: end while

in asynchronous coded caching, S may need to be collapsed

into a subset of S many times to transmit the corresponding

content at the end of different time slots. For a given ∆b, only

the requests of the F-APs in ∪b
i=max{1,b−∆b+1}

Ui, referred to

as active F-APs, need to be fulfilled during time slot b. Let

Ua = ∪b
i=max{1,b−∆b+1}

Ui denote the index set of the active F-

APs during time slot b. Then, only the files requested by the F-

APs in Ua can be encoded with each other, which means that

S collapses into S∩Ua. Moreover, to minimize the fronthaul

load, it is equivalent to partition S into the minimum number

of nonoverlapping subsets for transmission in asynchronous

coded caching.

Let (β∆t, γ∆t
]

denote the active time interval of S if
((

∪
β

b=1
Ub

)

∪
(

∪B
b=γ+1

Ub

))

∩ S = ∅ and Ub ∩ S , ∅ for

b = β+1 and γ, where β and γ are integers with 0 ≤ β < γ ≤ B.

Let Si denote the ith encoding subset that S is partitioned into

for a given ∆b. The detailed encoding set partition method is

presented in Algorithm 1.

C. The Proposed Asynchronous Coded Caching Scheme

According to the above discussions, we propose the de-

centralized asynchronous coded caching scheme which im-

plements the encoding set partition method. In the placement

phase, each F-AP randomly selects MF/N bits of each file

with uniform probability and fetch them to fill its cache,

which is the same as the Maddah-Ali-Niesen’s decentralized

synchronous coded caching scheme. Note that the placement

procedure does not require any coordination and can be

operated in a decentralized manner. More specifically, our

proposed scheme can operate in the placement phase with an

unknown number of F-APs.

In the delivery phase, we propose asynchronous and syn-

chronous transmission methods for the online case, which can

be chosen by the cloud server. Note that asynchronous or

synchronous here means that the cloud server transmits the

coded-multicasting contents asynchronously or synchronously.

1) Asynchronous Transmission Method: When ∆b < B, the

asynchronous transmission method is chosen. As the requests

in db need to be fulfilled by the end of the time slot b+∆b−1,

we should try to fulfill the requests at the end of time slot

b + ∆b − 1 so that sufficient coded-multicasting opportunities

can be created. If ∆b > 1, no contents are transmitted at the

end of time slot 1, 2, · · · ,∆b − 1. Then, only the requests of

the F-APs in Ua need to be fulfilled by the cloud server

at the end of the time slots between ∆b − 1 and B. For

description convenience, we say the subfile Wk,S is of type s

with s ∈ {0, 1, · · · ,K}. Thus, the cloud server transmits a single

coded-multicasting content for S by encoding the subfiles of

type s − 1 [5]. At the end of this time slot, the cloud server

firstly partitions each file Wn into K+1 types of nonoverlapping

subfiles. Note that there are

(

K
s

)

subfiles of the form
(

Wa
n,S

: S ⊆ K , |S| = s
)

for each type s ∈ {0, 1, · · · ,K}, whose

sizes are calculated based on the updated cache records.

For any s, define χ = max {1, s + |Ub−∆b+1| − |K|} and χ =

min {s, |Ub−∆b+1|}. Consider any χ ∈
{

χ, χ + 1, · · · , χ
}

. Focus

on an encoding subset S1 ⊆ Ub−∆b+1 with
∣

∣

∣S1
∣

∣

∣ = χ and

an encoding subset S2 ⊆ K\Ub−∆b+1 with
∣

∣

∣S2
∣

∣

∣ = s − χ.

Recall that the F-APs in
(

S1 ∪ S2
)

\ {k} share a subfile which

is not available at the cache content Zk and requested by F-

AP k ∈
(

S1 ∪ S2
)

. For any S1 and S2 with any s, in order

to avoid some subfiles are transmitted repeatedly, no contents

are transmitted if Wa

k,(S1∪S2)\{k}
= ∅ for k ∈

((

S1 ∪ S2
)

∩Ua
)

.

Otherwise, the cloud server transmits the coded-multicasting

content as follows:

⊕k∈((S1∪S2)∩Ua)Wa

k,(S1∪S2)\{k}
.

After the transmission is completed, each F-AP in Ub−∆b+1

recovers the desirable subfiles of its requested file. Then, each

F-AP in Ub−∆b+1 transmits the recovered subfiles and the

corresponding subfiles available in its cache to its served user

immediately; thus the user can recover the desirable file. While

each F-AP in Ua\Ub−∆b+1 also recovers the corresponding

desirable subfiles, and then transmit them to its served user

at this time. In addition, the cloud server needs to update the

cache records of the active F-APs by adding a record of the

subfiles recovered by each F-AP in Ua at the end of this time

slot as its cache content. Note that updating the cache records

has no influence on the cache contents of the F-APs, which

stay unchanged in the delivery phase. The cache records is

used to help the cloud server identify whether the subfile to

be transmitted is ∅ in real time before transmission.

At the end of time slot B, all the requests of the F-

APs in Ua can be fulfilled together. Similarly, define χ′ =

max {1, s + |Ua| − |K|} and χ
′
= min {s, |Ua |}. For any S1 ⊆

Ua of cardinality
∣

∣

∣S1
∣

∣

∣ = χ and S2 ⊆ K\Ua of cardinality
∣

∣

∣S2
∣

∣

∣ = s − χ with any s and χ ∈
{

χ′, χ′ + 1, · · · , χ′
}

, the cloud

server transmits the coded-multicasting content as follows:

⊕k∈S1 Wa

k,(S1∪S2)\{k}
,

where all the subfiles Wk,(S1∪S2)\{k} are assumed to be zero-

padded to the number of bits of the longest subfile in the bit-

wise XOR operation. After that, each F-AP in Ua recovers the

subfiles of its requested file, and then transmits the recovered

subfiles and the subfiles available in its cache to its served

user; thus the user can recover the desirable file.

2) Synchronous Transmission Method: When ∆b = B,

the synchronous transmission method is chosen. Firstly, no

contents are transmitted at the end of time slot 1, 2, · · · , B−1.

At the end of time slot B, for all S with any s, the cloud server

4

Algorithm 2 The Proposed Asynchronous Coded Caching

Scheme
1: PLACEMENT
2: for k ∈ K , n ∈ N do
3: F-AP k independently caches a subset of MF/N bits of file Wn, chosen

uniformly at random.
4: end for

————————————————————-
5: DELIVERY
6: Initialize Ua = ∅, b = 1.
7: while b ≤ B do
8: if ∆b < B then

9: if b ≤ ∆b − 1 then

10: Ua = Ua ∪Ub,
11: At the end of time slot b, no contents are transmitted.
12: else if ∆b − 1 < b < B then

13: Ua = Ua ∪Ub.
14: for s = |K| , |K| − 1, · · · , 1 do
15: for χ = max {1, s + |Ub−∆b+1| − |K|} : min {s, |Ub−∆b+1|} do

16: for all S1 ⊆ Ub−∆b+1,S
2 ⊆ K\Ub−∆b+1 :

∣

∣

∣S1
∣

∣

∣ = χ,
∣

∣

∣S2
∣

∣

∣ =

s − χ do

17: At the end of time slot b, no contents are
transmitted if Wa

k,(S1∪S2)\{k}
= ∅ for k ∈

((

S1 ∪ S2
)

∩Ua
)

; Otherwise, the cloud server sends

⊕k∈((S1∪S2)∩Ua)Wa

k,(S1∪S2)\{k}
.

18: end for

19: end for
20: end for

21: Ua = Ua\Ub−∆b+1;
22: else

23: Ua = Ua ∪Ub.
24: for s = |K| , |K| − 1, · · · , 1 do

25: for χ = max {1, s + |Ua| − |K|} : min {s, |Ua|} do

26: for all S1 ⊆ Ua,S2 ⊆ K\Ua :
∣

∣

∣S1
∣

∣

∣ = χ,
∣

∣

∣S2
∣

∣

∣ = s − χ do
27: At the end of time slot B, the cloud server sends

⊕k∈S1 Wa

k,(S1∪S2)\{k}
.

28: end for
29: end for

30: end for

31: end if

32: else
33: if b ≤ B − 1 then

34: At the end of time slot b, no contents are transmitted.
35: else
36: for s = |K| , |K| − 1, · · · , 1 do

37: for all S ⊆ K : |S| = s do

38: At the end of time slot B, the cloud server sends
⊕k∈SWa

k,S\{k}
.

39: end for

40: end for

41: end if
42: end if

43: b = b + 1.
44: end while

transmits the coded-multicasting content as follows:

⊕k∈SWa
k,S\{k}

.

Then, each F-AP transmits all the subfiles of its requested file

to its served user; thus the user can recover the desirable file.

The detailed description of our proposed decentralized asyn-

chronous coded caching scheme is presented in Algorithm 2.

Note that χ is used to ensure that S1 ∩ S , ∅, so that the

coded-multicasting content transmitted by the cloud server for

S is useful to at least one F-AP in Ub−∆b+1 or Ua. Also note

that the problem setting allows for vanishing probability of

error as F → ∞.

Example 1: Assume that N = 4, K = 4, M = 2, B = 4,

T = 4 s, ∆t = 1 s, ∆b = 2, Ub = {b} and dk = k in

TABLE I. The contents transmitted during time slot 2

s χ S1 S2 Ua Coded-multicasting Content

4 1 {1} {2, 3, 4} {1, 2} Wa
1,{2,3,4}

⊕Wa
2,{1,3,4}

3 1 {1} {2, 3} {1, 2} Wa
1,{2,3}

⊕Wa
2,{1,3}

3 1 {1} {2, 4} {1, 2} Wa
1,{2,4}

⊕Wa
2,{1,4}

3 1 {1} {3, 4} {1, 2} Wa
1,{3,4}

2 1 {1} {2} {1, 2} Wa
1,{2}
⊕Wa

2,{1}

2 1 {1} {3} {1, 2} Wa
1,{3}

2 1 {1} {4} {1, 2} Wa
1,{4}

1 1 {1} ∅ {1, 2} Wa
1,∅

asynchronous coded caching. It is easy to see that this is

the worst-case request. According to Algorithm 2, the coded-

multicasting contents transmitted by the cloud server at the end

of time slot 2, 3, and 4 are illustrated in Table I, Table II, and

Table III, respectively. Note that ∅ indicates no contents are

transmitted in the tables. In addition, subfile Wa
3,{2,4}

is actually

∅ according to the updated cache records.

Consider the same setting as Example 1. Now, we explain

how Algorithm 2 implements our proposed encoding set

partition method. Focus on S = {1, 2, 3, 4}. Firstly, no contents

are transmitted at the end of time slot 1. At the end of time

slot 2, Wa
1,{2,3,4}

⊕ Wa
2,{1,3,4}

is transmitted with Ua = {1, 2}.

At the end of time slot 3, the cloud server decides not to

transmit Wa
2,{1,3,4}

⊕Wa
3,{1,2,4}

with Ua = {2, 3}, since Wa
2,{1,3,4}

is

∅ according to the updated cache records. Thus, no contents

are transmitted. Finally, Wa
3,{1,2,4}

⊕Wa
4,{1,2,3}

is transmitted with

Ua = {3, 4} at the end of time slot 4. Observe that Ws
1,{2,3,4}

⊕

Ws
2,{1,3,4}

⊕Ws
3,{1,2,4}

⊕Ws
4,{1,2,3}

is partitioned into two parts of

equal size, i.e., Wa
1,{2,3,4}

⊕ Wa
2,{1,3,4}

and Wa
3,{1,2,4}

⊕ Wa
4,{1,2,3}

,

for transmission in our proposed asynchronous coded caching

scheme.

Remark 1: The main innovation of our proposed scheme

is to partition the coded-multicasting contents in synchronous

coded caching by using our proposed encoding set partition

method, and then transmit the partitioned contents at the end

of different time slots. Our proposed scheme can create as

many coded-multicasting opportunities as possible while the

maximum request delay of each F-AP is no more than ∆b time

slots.

Remark 2: The asynchronous coded caching problem has

been considered in [10]. The authors described their proposed

approach based on a system using the centralized synchronous

coded caching scheme in [4], while they declared their ap-

proach can be applied to general placement schemes. In this

paper, we propose a decentralized asynchronous coded caching

scheme based on a different system model for the online case,

which is more applicable for practical scenarios. Moreover,

our proposed scheme can work well for both the online case

and offline case.

IV. SIMULATION RESULTS

In this section, the performance of our proposed decen-

tralized asynchronous coded caching scheme is evaluated via

simulations. We adopt the Maddah-Ali-Niesen’s decentralized

synchronous coded caching scheme and the uncoded caching

5

TABLE II. The contents transmitted during time slot 3

s χ S1 S2 Ua Coded-multicasting Content

4 1 {2} {1, 3, 4} {2, 3} ∅

3 1 {2} {1, 3} {2, 3} ∅

3 1 {2} {1, 4} {2, 3} ∅

3 1 {2} {3, 4} {2, 3} Wa
2,{3,4}

⊕Wa
3,{2,4}

2 1 {2} {1} {2, 3} ∅

2 1 {2} {3} {2, 3} Wa
2,{3}
⊕Wa

3,{2}

2 1 {2} {4} {2, 3} Wa
2,{4}

1 1 {2} ∅ {2, 3} Wa
2,∅

TABLE III. The contents transmitted during time slot 4

s χ S1 S2 Ua Coded-multicasting Content

4 2 {3, 4} {1, 2} {3, 4} Wa
3,{1,2,4}

⊕Wa
4,{1,2,3}

3 1 {3} {1, 2} {3, 4} Wa
3,{1,2}

3 1 {4} {1, 2} {3, 4} Wa
4,{1,2}

3 2 {3, 4} {1} {3, 4} Wa
3,{1,4}

⊕Wa
4,{1,3}

3 2 {3, 4} {2} {3, 4} Wa
3,{2,4}

(∅) ⊕Wa
4,{2,3}

2 1 {3} {1} {3, 4} Wa
3,{1}

2 1 {3} {2} {3, 4} ∅

2 1 {4} {1} {3, 4} Wa
4,{1}

2 1 {4} {2} {3, 4} Wa
4,{2}

2 2 {3, 4} ∅ {3, 4} Wa
3,{4}
⊕Wa

4,{3}

1 1 {3} ∅ {3, 4} Wa
3,∅

1 1 {4} ∅ {3, 4} Wa
4,∅

10 20 30 40 50 60 70 80 90 100

M

0

1

2

3

4

5

6

7

8

9

F
ro

n
th

a
u

l
lo

a
d

 (
 G

b
)

Asynchronous coded caching, b = 1

Asynchronous coded caching, b = 2

Asynchronous coded caching, b = 3

Maddah-Ali-Niesen's synchronous

Uncoded caching

Fig. 1. Fronthaul load versus M.

scheme as the baseline schemes. In our simulations, the

number of the F-APs whose requests arrive during time slot

b, i.e., |Ub|, is random. Other parameters are set as follows:

F = 1 Gb, N = 100, K = 10, T = 10 s, B = 5.

In Fig. 1, we show the effect of the normalized cache size

of each F-AP, i.e., M, on the fronthaul load of each scheme

for different ∆b. As shown, our proposed scheme can create

considerable coded-multicasting opportunities compared with

the uncoded caching scheme. Moreover, the fronthaul load de-

creases and its slope increases when M increases, which is the

same as the Maddah-Ali-Niesen’s decentralized synchronous

coded caching scheme.

In Fig. 2, we show how ∆b affects the fronthaul load of

each scheme for varying cache sizes. As shown, the fronthaul

load of our proposed scheme decreases when ∆b increases,

which means that our proposed scheme can create more coded-

multicasting opportunities with a relaxed delay requirement.

Furthermore, the larger ∆b is, the more the decrease of the

1 2 3 4 5

 b

0

1

2

3

4

5

6

7

8

9

F
ro

n
th

a
u
l
lo

a
d
 (

 G
b
)

Asynchronous coded caching, M = 10

Asynchronous coded caching, M = 50

Asynchronous coded caching, M = 90

Maddah-Ali-Niesen's synchronous, M = 50

Uncoded caching, M = 50

Fig. 2. Fronthaul load versus ∆b for varying cache sizes.

fronthaul load of our proposed scheme is when compared with

that of the uncoded caching scheme. And the performance gap

between the fronthaul load of our proposed scheme and that

of the Maddah-Ali-Niesen’s decentralized synchronous coded

caching scheme is smaller when ∆b is larger. The reason for

the above results is that a larger ∆b leads to a fewer number

of the partitioned subsets. Moreover, as ∆b determines the

upper bound of the request delay, it can be set to a relatively

small value in delay-sensitive scenarios and adjusted flexibly

to achieve the load-delay tradeoff in other scenarios.

V. CONCLUSIONS

In this paper, we have proposed a decentralized asyn-

chronous coded caching scheme for the online case in F-

RAN where users asynchronously request contents with the

maximum request delay. Our proposed scheme provides asyn-

chronous and synchronous transmission methods to fulfill

the delay requirements of different practical scenarios. The

simulation results have shown that more coded-multicasting

opportunities can be created when the maximum request delay

increases in asynchronous request scenarios.

ACKNOWLEDGMENTS

This work was supported in part by the Research Fund

of the State Key Laboratory of Integrated Services Net-

works (Xidian University) under grant ISN19-10, the Research

Fund of the Key Laboratory of Wireless Sensor Network

& Communication (Shanghai Institute of Microsystem and

Information Technology, Chinese Academy of Sciences) under

grant 2017002, the Hong Kong, Macao and Taiwan Science

& Technology Cooperation Program of China under grant

2014DFT10290, the Ericsson and SEU Cooperation Project

under grant 8504000335, the National Basic Research Program

of China (973 Program) under grant 2012CB316004, and the

U.K. Engineering and Physical Sciences Research Council

under Grant EP/K040685/2.

REFERENCES

[1] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan,
S. Maharjan, and Y. Zhang, “Energy-efficient offloading for mobile edge
computing in 5G heterogeneous networks,” IEEE Access, vol. 4, pp.
5896–5907, Aug. 2016.

[2] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role
of proactive caching in 5G wireless networks,” IEEE Communications

Magazine, vol. 52, no. 8, pp. 82–89, Aug. 2014.

6

[3] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. C. M. Leung, “Cache
in the air: Exploiting content caching and delivery techniques for 5G
systems,” IEEE Communications Magazine, vol. 52, no. 2, pp. 131–139,
Feb. 2014.

[4] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Transactions on Information Theory, vol. 60, no. 5, pp. 2856–
2867, May 2014.

[5] ——, “Decentralized coded caching attains order-optimal memory-rate
tradeoff,” IEEE/ACM Transactions on Networking, vol. 23, no. 4, pp.
1029–1040, Aug. 2015.

[6] U. Niesen and M. A. Maddah-Ali, “Coded caching with nonuniform
demands,” IEEE Transactions on Information Theory, vol. 63, no. 2,
pp. 1146–1158, Feb. 2017.

[7] J. Hachem, N. Karamchandani, and S. Diggavi, “Multi-level coded
caching,” in 2014 IEEE International Symposium on Information Theory

(ISIT), June 2014, pp. 56–60.

[8] M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “Order-optimal rate of
caching and coded multicasting with random demands,” IEEE Transac-

tions on Information Theory, vol. 63, no. 6, pp. 3923–3949, June 2017.

[9] M. A. Maddah-Ali and U. Niesen, “Coding for caching: Fundamen-
tal limits and practical challenges,” IEEE Communications Magazine,
vol. 54, no. 8, pp. 23–29, Aug. 2016.

[10] H. Ghasemi and A. Ramamoorthy, “Asynchronous coded caching,” in
2017 IEEE International Symposium on Information Theory (ISIT), June

2017, pp. 2438–2442.

	I Introduction
	II System Model
	III The Proposed Decentralized Asynchronous Coded Caching Scheme
	III-A The Proposed Encoding Set Collapsing Rule
	III-B The Proposed Encoding Set Partition Method
	III-C The Proposed Asynchronous Coded Caching Scheme
	III-C.1 Asynchronous Transmission Method
	III-C.2 Synchronous Transmission Method

	IV Simulation Results
	V Conclusions
	References

