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Abstract—The use of multiple antennas in a transmit and
receive antenna array for MIMO wireless communication allows
the spatial degrees of freedom in rich scattering environments to
be exploited. However, for line-of-sight (LOS) MIMO channels
with uniform linear arrays (ULAs) at the transmitter and receiver,
the antenna separations at the transmit and receive array need
to be optimized to maximize the spatial degrees of freedom and
the channel capacity. In this paper, we first revisit the derivation
of the optimum antenna separation at the transmit and receive
ULAs in a LOS MIMO system, and provide the general expres-
sion for the optimum antenna separation product, which consists
of multiple solutions. Although only the solution corresponding
to the smallest antenna separation product is usually considered
in the literature, we exploit the multiple solutions for a LOS
MIMO design over a range of distances between the transmitter
and receiver. In particular, we consider the LOS MIMO design in
a vehicle-to-vehicle (V2V) communication scenario, over a range
of distances between the transmit and receive vehicle.

I. INTRODUCTION

The spatial degrees of freedom offered by a MIMO system

with a transmit and receive antenna array can be exploited

in the presence of a rich scattering environment. However, in

LOS MIMO channels with little or no scattering, the channel

responses can become highly correlated, leading to a MIMO

channel of rank 1. Nevertheless, with a proper placement of

the antennas in the arrays [1], [2], [3], the channel capacity

and rank of the LOS MIMO channel can be maximized.

With ULAs at the transmitter and receiver, the best antenna

placement is obtained by optimizing the separation between

the antennas in the transmit and receive arrays. Although for

ULAs there are multiple solutions [4], [5] for the optimum

antenna separation product, i.e. the product of the antenna

separation at the transmit and receive array, the one corre-

sponding to the smallest antenna separation product is usually

considered, as this leads to the smallest arrays [4].

The previous cited works consider a fixed distance between

the transmit and receive array. However, for many applications,

a LOS MIMO channel needs to be designed for a range

of distances between the transmitter and receiver. Since the

optimum antenna separation depends on the distance between

the transmitter and receiver, there is a performance degradation

when the distance is varied for a given antenna placement

of the transmit and receive arrays. To reduce the sensitivity

to distance variations between the transmitter and receiver,

non-uniform linear arrays have been proposed [6], [7]. The

optimum antenna placement in such cases was found using an

exhaustive search, with the aim of maximizing the range where

a minimum condition number or capacity can be guaranteed.

In this paper, we first revisit the derivation of the optimum

antenna separation for LOS MIMO systems with ULAs at the

transmitter and receiver. In contrast to prior work, we provide

the general expression for the optimum antenna separation

product, which consists of multiple solutions. In addition, we

propose to use the multiple solutions for the LOS MIMO

design over a range of distances. In particular, we consider

the LOS MIMO design for a V2V communication scenario

over a range of distances between the transmit and receive

vehicle. Although the optimum antenna placement can not be

met at all distances, we exploit the fact that some antenna

separations are optimum at several distances. We show that

larger antenna separations can be beneficial in certain cases.

This paper is organized as follows. Section II introduces the

LOS MIMO channel model. The optimum antenna separation

is derived in Section III. The V2V scenario is described in

Section IV, where numerical results for the LOS MIMO design

are presented. We conclude the paper with Section V.

II. LOS MIMO CHANNEL MODEL

In this paper, we use lower case and capital boldface

letters to denote vectors and matrices, respectively. In addition,

(•)T and (•)H denote the transpose and conjugate transpose,

respectively. The cardinality of the set P is denoted by |P|.
We consider a MIMO channel with a pure LOS between a

transmitter and a receiver consisting of a ULA with N > 1
and M > 1 antennas, respectively. The antenna separation

at the transmit (Tx) and receive (Rx) ULA is dTx and dRx,

respectively. The distance between the first antenna of the Tx

ULA, placed at the origin, and the first antenna of the Rx ULA

is given by R as shown in Fig. 1. With the Tx array placed on

the xz-plane, we assume an arbitrary orientation of the arrays

given by the angles θTx, θRx and φRx as shown in Fig. 1, where

0 ≤ θTx ≤ π
2 and 0 ≤ θRx ≤ π

2 . The carrier frequency and

wavelength of the signal are given by fc and λ, respectively.

The normalized channel matrix for the LOS MIMO system

is denoted as

H =
[

h1 h2 · · · hN

]

∈ C
M×N , (1)

where the n-th column of H, i.e. hn, corresponds to the

channel vector from the n-th antenna at the Tx array to the M

antennas at the Rx antenna array. With the path loss included
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Fig. 1. LOS MIMO channel with a transmit and receive ULA

in the receive SNR, the normalized channel vector hn ∈ C
M

is determined with ray tracing, i.e. with the spherical wave

model instead of the planar wave assumption, and is given as:

hn =
[

exp
(

j 2π
r1,n
λ

)

, · · · , exp
(

j 2π
rM,n

λ

) ]T
. (2)

where rm,n corresponds to the path length between the n-th Tx

antenna and the m-th Rx antenna, for n = 1, . . . , N and m =
1, . . . ,M , respectively. The path length rm,n can be obtained

from the coordinates (xTx

n , y
Tx

n , z
Tx

n ) of the n-th Tx antenna and

the coordinates (xRx

m, yRx

m, zRx

m) of the m-th Rx antenna, which

from Fig. 1 are given by

n-th Tx ant. : xTx

n = −(n− 1)dTx sin θTx,

yTx

n = 0, zRx

m = (n− 1)dTx cos θTx

m-th Rx ant. : xRx

m = R+(m−1)dRx sin θRx cosφRx,

yRx

m=(m−1)dRx sin θRx sinφRx, zRx

m=(m−1)dRx cos θRx.

With the above coordinates, rm,n can be determined as follows

rm,n =

(

(xRx

m − xTx

n)
2
+ (yRx

m − yTx

n )
2
+ (zRx

m − zTx

n )
2
)

1

2

=

(

(R+(m−1)dRx sin θRxcosφRx+(n−1)dTx sin θTx)
2+

(

(m−1)×

dRx sin θRx sinφRx

)2
+((m−1)dRxcos θRx−(n−1)dTx cos θTx)

2
)

1

2

=

(

R+(m−1)dRx sin θRx cosφRx + (n− 1)dTx sin θTx

)(

1+

((m−1)dRx sinθRx sinφRx)
2+((m−1)dRx cosθRx−(n−1)dTxcosθTx)

2

(R+(m−1)dRx sin θRx cosφRx + (n− 1)dTx sin θTx)
2

)
1

2

≈ R+(m−1)dRx sin θRx cosφRx + (n− 1)dTx sin θTx+

((m−1)dRxsin θRxsinφRx)
2
+((m−1)dRxcos θRx−(n−1)dTxcos θTx)

2

2R
,

(3)

where the last step results from the first order approximation of

the Taylor series of
√
1 + a with a ≪ 1, i.e.

√
1 + a ≈ 1+ a

2 ,

and from R ≈ R+(m−1)dRx sin θRx cosφRx+(n−1)dTx sin θTx in

the denominator of the argument of the square root, where both

approximations hold if the distance R between the transmitter

and receiver is much larger than Tx and Rx array dimensions.

III. OPTIMUM ANTENNA SEPARATION

Consider the case when N ≤ M , such that1 rank (H) ≤ N .

As discussed in [4], the capacity of the LOS MIMO system at

1The case N > M can be derived in a similar manner by simply
interchanging the tranmsitter and the receiver.

high SNR is maximized if HH
H = M1N , i.e. if the columns

of H are orthogonal. For this case, H achieves the maximum

rank of N and the N eigenvalues of H
H
H are all equal to

M , as tr
(

H
H
H
)

= MN .

A. Solution of the Orthogonality Condition

In order to design the channel matrix H of the LOS MIMO

system to have orthogonal columns, from (1) we need to have

h
H
k hl = 0, for k 6= l; k, l = 1, · · · , N. (4)

Using (2), we can write

h
H
k hl =

M
∑

m=1

exp

(

j 2π
rm,l − rm,k

λ

)

(a)≈
M
∑

m=1

exp

(

j 2π

(

γ

λ
− dTxdRx cos θTx cos θRx

λR
(l−k)(m−1)

))

(b)
= Γ ·

M−1
∑

m′=0

exp

(

j 2π
dTxdRx cos θTx cos θRx

λR
(k − l)m′

)

(c)
= Γ · 1− exp

(

j 2π dTxdRx cos θTx cos θRx

λR
M(k − l)

)

1− exp
(

j 2π dTxdRx cos θTx cos θRx

λR
(k − l)

) , (5)

where step (a) results from

rm,l − rm,k ≈ γ − dTxdRx cos θTx cos θRx

R
(l−k)(m−1), (6)

which follows from using the approximation (3) for rm,n, and

where γ=(l−k)dTx sin θTx − ((l−1)2−(k−1)2)d2

Tx cos
2 θTx

2R . For step

(b), we use the substitutions m′ = m−1 and Γ=exp
(

j 2πγ
λ

)

,

with Γ being independent of m′. For step (c), we employ the

expression for the finite sum of a geometric series for w 6= 1:

M−1
∑

m′=0

wm′

=
1− wM

1− w
, (7)

with w = exp
(

j 2π dTxdRx cos θTx cos θRx

λR
(k − l)

)

.

Given that hH
k hl depends on (k− l), as observed from (5),

and that |hH
k hl| = |hH

l hk|, the conditions given in (4) required

to have orthogonal columns of H are equivalent to

h
H
k hl = 0, for (k − l) = 1, · · · , N − 1. (8)

From (5) and as Γ 6= 0, the equivalent orthogonality conditions

in (8) are fulfilled2 if

1− ej 2πδMq

1− ej 2πδq
= 0, ∀ q ∈ {1, 2,· · ·, N−1}, (9)

where we introduce q = k − l and define

δ
∆
=

dTxdRx cos θTx cos θRx

λR
. (10)

Solving (9) with respect to δ, allows us to determine the

optimum antenna separations dTx and dRx of the Tx and Rx

2Due to the approximation (3) for rm,n, (8) can only be fulfilled approx-
imately with (9). As the error introduced with (3) is negligible for practical
systems [5], we assume in the following that (9) can be met with equality.



ULAs, which lead to a channel matrix H that maximizes the

capacity of the LOS MIMO system.

To satisfy (9), the numerator of the expression in (9) needs

to be zero while the denominator is non-zero, i.e.

ej 2πδMq = 1, ∀ q ∈ {1, 2,· · ·, N−1}, (11)

while

ej 2πδq 6= 1, ∀ q ∈ {1, 2,· · ·, N−1}. (12)

As the solution of (11) for q = 1 is also a solution of (11)

for q = 2, · · · , N − 1, the solution of (11) for all q results

from ej 2πδM = 1, i.e. the solution of (11) is

δ =
p

M
, ∀ p ∈ Z+, (13)

where Z+ represents the set of positive integers. The set of

negative integers is excluded from the solution since all the

terms in δ are positive, as can be seen in (10).

On the other hand, to avoid the denominator of the expres-

sion in (9) being zero for any value of q, from (12) we get

δ 6= p1

q
, ∀ p1 ∈ Z+, q ∈ {1, 2,· · ·, N−1}. (14)

Thus, given (13) and (14), we have that (9) is fulfilled if

δ = p
M

for p ∈ Z+ but excluding the integers p for which
p
M

= p1

q
for q = 1, 2, · · · , N−1, i.e. when

δ =
p

M
, ∀ p ∈ Z+ \

{

p′ : p′=
p1M

q
,
p1 ∈ Z+, p

′ ∈ Z+,

q ∈ {1, 2,· · ·, N−1}

}

.

(15)

Writing q as the product of any two (positive integer) factors,

i.e. q = q1q2, p′ = p1M
q

is an integer if p1

q1
and M

q2
are both

integers. As there is always a p1 ∈ Z+ such that
p1

q1
∈ Z+, we

only need to consider when M
q2

is an integer for any factor q2

of q. Given that q2 ≤ q ≤ N − 1, ∀q, we have that p′ = p1M
q

is an integer if M
q

is an integer for q = 1, . . . , N − 1. The

possible values, in ascending order, of M
q

for q = 1, . . . , N−1,

are M
N−1 , M

N−2 , . . . M
2 , M , out of which those that are integers

(recall that N ≤ M ), correspond to the divisors of M which

are larger than or equal to M
N−1 . Let us denote the set of

divisors of M which satisfy this condition as DM (N), i.e.

DM (N) =

{

ν : ν | M, ν ≥ M

N − 1

}

, (16)

where a | b means that a is a divisor of b. Given (16), we can

rewrite the solution (15) for the orthogonality conditions as

δ =
p

M
, ∀ p ∈ Z+ \ {p′ ν, p′ ∈ Z+, ν ∈ DM (N)} , (17)

i.e. (9) is fulfilled if δ = p
M

for the set of positive integers

p excluding the multiples of divisors of M which are larger

than or equal to M
N−1 .

Prior solutions of (9) provided in the literature, e.g. as in [5],

include only a subset of the possible integers p given in (17).

In addition, in contrast to prior work, our derived expression

(17) shows the dependency on N , which corresponds to the

number of Tx antennas and the rank(H). We discuss this

dependency with two examples: N = 2 and N = M . For

N = 2, M
N−1 = M such that from (16), DM (2) = {M}.

On the other hand, for N =M , M
N−1 = 1 + 1

M−1 such that

DM (M) = {ν : ν | M, ν > 1}, i.e. DM (M) consists of all

the divisors3 of M except 1. As |DM (M)| ≥ |DM (2)|, we see

that in general a larger set of positive integers p are excluded

in (17) when N = M > 2 compared to when N = 2. This

is a consequence of the fact that the orthogonality conditions

in (9) becomes more stringent with increasing N : for N = 2,

only two channel vectors need to be orthogonal, whereas for

N = M , M orthogonal channel vectors need to be designed.

B. Design of LOS MIMO Systems

Using (10), we rewrite (17) in terms of the antenna sepa-

ration product (ASP) [4], i.e. in terms of the product of the

antenna separation at the transmitter and receiver

dTxdRx = p · λR

M cos θTx cos θRx

, (18)

∀ p ∈ Z+ \ {p′ ν, p′ ∈ Z+, ν ∈ DM (N)} ,

for N ≤ M . For N > M , the optimum solution for the ASP

results from exchanging N with M in the expression above.

By setting the antenna separations dTx and dRx of the Tx

and Rx ULAs according to (18), the channel matrix H of

the LOS MIMO system can be designed to have orthogonal

columns, for a given distance R between the arrays and a given

orientation of the arrays. Although multiple solutions for the

ASP exist4, only the first solution of (18), i.e. p = 1, is usually

considered in the literature as this leads to the smallest antenna

separations and hence, to the smallest arrays [4], [5].

However, for certain applications, other solutions for the

ASP, i.e. p > 1, might be of interest. Take for instance the

LOS MIMO design over a range of distances between the

transmitter and receiver, which is relevant for many applica-

tions. As observed in (18), the optimum antenna separations at

the Tx and Rx arrays depends on the fixed distance R between

the arrays. Thus, varying the distance between the transmitter

and receiver with a given optimum antenna separation, leads

to a capacity reduction, i.e. reduced rank(H) or non-equal

eigenvalues of H
H
H. To reduce the sensitivity to distance

variations, non-uniform linear arrays have been proposed [6],

[7], where the optimum antenna placement is found via an

exhaustive search, in order to maximize the range for which a

certain metric can be guaranteed. In this paper, we propose the

use of ULAs for the LOS MIMO design over a set of distances

between the transmitter and receiver, by exploiting the multiple

solutions for the ASP given in (18). In particular, we consider

the LOS MIMO design for a V2V link as discussed next.

IV. LOS MIMO DESIGN FOR V2V

Due to the importance of V2V communication in future

wireless networks, e.g. 5G, we consider the LOS MIMO

3If M is prime, DM (M) = {M} and hence, (17) is independent of N .
4Despite infinite solutions, not all solutions fulfill (8) in practice. As p→∞,

the length of the arrays increase such that the assumption that the distance
between the arrays is much larger than the array dimensions becomes invalid.



design for a V2V link between two vehicles located in the

same lane, where the front car (Tx car) is communicating

with a rear car (Rx car) separated by a longitudinal distance

D as shown in Fig. 2. The Tx car is equipped in the rear

bumper with a Tx ULA consisting of N antennas, whereas

the Rx car is equipped in the front bumper with a Rx ULA

consisting of M antennas. The maximum length of the Tx and

the Rx ULA is assumed to be LTx and LRx, respectively. From

Fig. 2, we can see that the Tx ULA and the Rx ULA are

always parallel and hence, the orientation of both arrays are

the same, i.e. θTx = θRx (c.f. Fig. 1). We assume a pure LOS

channel between the Tx ULA and the Rx ULA, as well as

the same speed for the Tx and Rx car. We assume a carrier

frequency of fc = 28 GHz (λ ≈ 10.7 mm) and a normalized

LOS channel as discussed in Section II, with a fixed receive

SNR = 13 dB for the considered distances D, i.e. with perfect

sidelink power control.

Lane Width

3.5 m

Longitudinal Distance D

between cars
R

θRx

θTx

Rx Car with
Rx ULA in

front bumper

Tx Car with
Tx ULA in
rear bumper

≤ LRx

≤ LTx

Tx ULA with
N antennas

Rx ULA with
M antennas

Fig. 2. V2V Scenario with two vehicles within a lane

We consider the LOS MIMO design over a range of

distances D between the two cars with 10 ≤ D ≤ 100. Due to

lack of space, we do not consider the horizontal displacement

of the two cars within the lane (of width equal to 3.5 m),

which leads to slightly different orientation angles of the

arrays. We assume the cars are facing each other, such that

θTx = θRx = 0 and R = D. Furthermore, we assume the same

number of antennas in the Tx and Rx array and set it to 3, i.e.

N = M = 3, as well as the same antenna separation d at both

the Tx and Rx array, i.e. d = d
Tx
= d

Rx
. The maximum length

of the arrays is assumed to be equal and set to 1.8 m, in order

to fit in the bumpers of a standard car, i.e. LTx = LRx = 1.8 m.

Note that for the considered distances, D ≫ LTx = LRx = 1.8.

From (18) with d
Tx
= d

Rx
= d, R = D, and N = M = 3,

the optimum antenna separation for both arrays is given by

d =

√

p · λD
M

for p ∈ {1, 2, 4, 5, 7, 8, · · · } , (19)

where only the multiples of M = 3 are excluded from the

set of positive integers for the possible values of p in (18).

To observe the multiple solutions for the optimum antenna

separation d which maximize the capacity, i.e. which result

in an orthogonal LOS MIMO channel with 3 equally strong

eigenmodes, we plot d given in (19) as a function of the

longitudinal distance D between the cars for the first eight

values of p. As mentioned before, only the solution corre-

sponding to p = 1 is usually considered in the literature, as

this corresponds to the smallest optimum antenna separation

which then results in the shortest Tx and Rx arrays.
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Fig. 3. Optimum Antenna Separations for the V2V link

However, the curves for p > 1 result in larger antenna

separations which also maximize the channel capacity. For

a given distance D between the arrays, the optimum antenna

separation increases with
√
p as can be shown in (19). This

results in an increasing length of the arrays with p, given by

(M − 1)
√

p · λD
M

. Due to the maximum length of the Tx

and Rx arrays (car bumpers) in our V2V scenario given by

LTx = LRx = 1.8 m, we consider only those solutions for d

which are less than or equal to 1.8
M−1 , i.e. with M = 3, we

consider only the optimum antenna separations which fulfill

d ≤ 0.9. (20)

With this constraint, we observe from Fig. 3 there are at least

two possible antenna separations which guarantee a 3 × 3
orthogonal LOS MIMO channel for each distance D in the

considered range of distances up to 100 m.

More interestingly we observe in Fig. 3 that some an-

tenna separations are optimum at several distances! For ex-

ample, d = 0.5976 is an optimum antenna separation at

D = 10, 12.5, 14.2857, 20, 25, 50 and 100 m, which can

be obtained from (19). At these distances, the LOS MIMO

channel matrix with d = 0.5976 is orthogonal with three

equally strong eigenmodes as shown in Fig. 4, where the

eigenvalues of H(D)HH(D) are depicted for the considered

range of distances between the cars. As tr
(

H(D)HH(D)
)

=
MN = 9, the capacity with H(D) is maximized when the



three eigenvalues of H(D)HH(D) are equal to 3. The channel

matrix H(D) ∈ C
3×3 corresponds to a LOS MIMO system

given by (1), (2) and (3) with a Tx and Rx ULA consisting

of 3 antennas with an antenna separation of 0.5976 and a

distance D between the Tx and Rx arrays. H(D) is given as

a function of D to highlight its dependency on the distance

R = D between the arrays via (3). From Fig. 4, we also

see that at certain distances some eigenvalues go to zero and

hence, the LOS channel H(D) becomes rank deficient, e.g. at

D = 34 and D = 68 the channel rank is 1 and 2, respectively.
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0
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Fig. 4. Eigenvalues of H(D)HH(D) with d = 0.5976

To elaborate further on the performance over the considered

range of distances, we depict in Fig. 5 the capacity of the

LOS MIMO channel for the described V2V link for three

different antenna separations d = 0.5, 0.5976, 0.7 for the Tx

and Rx ULAs. In this case, the maximum capacity with an

SNR of 13 dB is 13.18 bps/Hz, whereas the capacity is 10.72
and 7.50 bps/Hz when one or two eigenmodes go to zero,

respectively. As can be seen in Fig. 5, the maximum capacity

with d = 0.5976 is achieved for the set of distances mentioned

previously. For d = 0.5 and d = 0.7, the maximum capacity

is achieved at other sets of distances. In fact, we observe a

stretching and shift to the right of the capacity curve as the

antenna separation d increases, which can be explained as

follows. Given that (19) can be rewritten as d2

D
= p λ

M
, we

can find other pairs of antenna separation d′ and distance D′

which achieve the same value p · λ
M

, i.e.

d′,2

D′
=

d2

D
, such that D′ = D

d′,2

d2
. (21)

For instance, from Fig. 3 the optimum antenna separation for

p = 2 at D = 50 is d = 0.5976. From (21), the distance D′

which achieves the same value p· λ
M

as the previous setting but

with d′ = 0.7 is given by D′ = 50 · 0.72

0.59762 = 68.8 m. Thus, in

Fig. 5 the point on the capacity curve for d = 0.5976 at D =
50 is shifted to the right by a factor of 0.72

0.59762 ≈ 1.37 when

the antenna separation d = 0.7 is employed. The stretching of

the capacity curve can also be explained in a similar manner.
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Fig. 5. Capacity of the LOS MIMO channel for different antenna separations

V. CONCLUSION

We have derived the general expression for the optimum

antenna separation product for maximizing the capacity of a

LOS MIMO channel with a Tx and Rx ULA. The expression

leads to multiple solutions of the optimum antenna separation

product which depend on the number of Tx and Rx antennas.

We have proposed to exploit the multiple solutions for the

LOS MIMO design over a range of distances between the

transmitter and receiver, such as for V2V. We have shown

that larger antenna separations can be beneficial and that some

antenna separations are optimum at several distances. The

provided results can serve as guidelines for the LOS MIMO

design for V2V. Future work includes considering non-uniform

linear arrays as well as the ground reflection in the V2V link.
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