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Abstract—Recent developments have made autonomous vehi-
cles (AVs) closer to hitting our roads. However, their security is
still a major concern among drivers as well as manufacturers.
Although some work has been done to identify threats and
possible solutions, a theoretical framework is needed to measure
the security of AVs. In this paper, a simple security model
based on defense graphs is proposed to quantitatively assess the
likelihood of threats on components of an AV in the presence
of available countermeasures. A Bayesian network (BN) analysis
is then applied to obtain the associated security risk. In a case
study, the model and the analysis are studied for GPS spoofing
attacks to demonstrate the effectiveness of the proposed approach
for a highly vulnerable component.

Index Terms—Autonomous vehicles, Bayesian network model,
defense graph, security measurement and analysis.

I. INTRODUCTION

An autonomous vehicle (AV) is able to perceive its envi-

ronment, navigate, and maneuver without human action. AVs,

unlike traditional vehicles, rely solely on sensors, processing

systems, and communication messages for making driving

decisions. This very large amount of sensing and data pro-

cessing creates opportunities for adversaries to compromise

vulnerable components in AVs. AVs will be regularly used

only if their security level is higher than a predefined threshold.

Therefore, it is vital to recognize threats, classify them, and

develop protection strategies for AVs. Protection solutions

must eventually result in quantitative measurements to assure

AV reliability.

In recent years, experts have continuously sought to identify

gaps towards improving the security of AVs. Some researchers

[1]–[3] have studied potential cyberattacks and their impli-

cations on automated and cooperative AVs. In particular,

Petit and Shladover [1] categorized threats as high, medium,

and low, based on some criteria used in [4], such as the

feasibility of attack, the probability of attack success, etc.

In order to evaluate countermeasures on AVs, Petit et. al

[5] applied some redundancies and optic materials. While

this work and similar studies are crucial to identify research

gaps and possible solutions, they have not provided a unified

platform for security measurement in the presence of anti-

attack techniques. On the other hand, researchers have widely

employed attack and defense graphs as powerful tools to

analyze computer networks’ security. An attack graph is a

graphical representation of all paths through a system that

end in a state where an intruder successfully exploits the

system. A defense graph, as explained later, is a mitigation

mechanism which is formed similar to an attack graph, with

the only difference that the leaf nodes are countermeasures

[6]. Several authors in [7], [8] introduced countermeasure and

attack-defense trees as graphical models to study the security

of systems using probabilistic analysis. In spite of such efforts,

there is no platform based on defense graphs to measure the

likelihood of threats and risks for vulnerable components in

AVs.

In this paper, we take a novel yet simple approach using the

defense graph concept to address the existing gap for quanti-

tative security assessment in AVs. Our main contributions can

be summarized as follows:

• We propose a plain security model in which vulnerable

components can be monitored through their security

states. These states together represent the security state

of an AV.

• We employ a defense graph as a security model, and then

evaluate it based on prominent risk assessment models

such as EVITA (E-safety vehicle intrusion protected ap-

plications) in order to study the effect of countermeasures.

• We derive a Bayesian defense graph for detecting fake

GPS signals in the presence of anti-spoofing techniques.

Using probabilistic inference, we demonstrate that threat

likelihoods of less than 0.01% can be reached using a set

of protection techniques.

The rest of this paper is organized as follows. Section II

explains the proposed model, threat identification and risk

assessment, and BN model in the presence of uncertainties

in forming a defense graph. Section III applies the proposed

model to the GPS unit as a highly vulnerable component in

AVs. Various combinations of GPS anti-spoofing techniques

are considered towards measuring the protection levels pro-

vided by them collectively. Section IV concludes the paper.

II. MODELING OF SECURE AUTONOMOUS VEHICLES

USING BAYESIAN NETWORKS

In this section, we provide a theoretical model to measure

the security of AVs. First, we describe a security model based

on defense graphs for monitoring vulnerable components in

an AV. Then, we explain how we consider threats and risk

assessment for the model. Finally, we apply BN analysis as a

simple but powerful tool to perform security measurements in

this model.
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Fig. 1: (a) Security monitoring unit for AV, and (b) graphical

model for a secure GPS component in AV.

A. Proposed Security Model

A security monitoring unit is an essential part of an AVs’

central processor, which investigates all required data to assure

the security of a vehicle. Fig. 1(a) shows a typical security

monitoring unit consisting of major attack surfaces [1]. Here,

each attack surface is referred to as “component”. As a part

of processor, this unit has access to all required data for

protection purposes.

In order to monitor the security status of an AV, we assess

all vulnerable components. Let us define SV as the security

state of an AV as follows:

SV , {S1, S2, ..., Sn}, (1)

where Si denotes the security state of the ith vulnerable

component. Each security state could be either normal or

abnormal. A component is in an abnormal state when an

attacker successfully mounts an attack on the component (i.e.,

the component is exploited). To ensure security, we could

employ countermeasures for vulnerable components to prevent

them from being exploited. Consideirng this point, we define a

set of defense techniques as observable contexts to determine

the security states as follows:

Si = f(Ci1, Ci2, ..., Cik). (2)

Each observable context Cij refers to the jth element of an

defense technique related to the ith vulnerable component. To

clarify this, consider Fig. 1(b) as a graphical representation

model for protecting a GPS component. Hence, this graph

can be considered as a defense graph. As shown, we employ

several techniques such as a timing check (vi) in the processor

to detect counterfeit GPS signals. Each technique needs some

elements, such as clock consistency (w1), to be accomplished.

These predefined elements as part of defense techniques

provide observable contexts (Cij’s). We utilize information

from observable contexts and apply Bayesian inference as a

mathematical reasoning method to characterize unobservable

security states (Si’s). In the following section, we discuss

threats against Cij ’s and the risk assessment of Si’s.

B. Threat Identification and Risk Assessment

Threat identification is the first step towards devising a

security model for a system. In this paper, we assume that

vulnerable components of an AV have been already identified,

thanks to previous works such as [1]–[3]. This allows us to

employ defense graphs formed by countermeasures to protect

AVs. Threats in the context of a defense graph could be

interpreted as possible ways that counterfeit signals could

go through the countermeasures without being detected. This

means that a vulnerable component can be successfully ex-

ploited if none of corresponding countermeasures detect the

fake signal. For instance, if an attacker remains undetected by

the authentication countermeasure in Fig. 1(b), it might be able

to tamper with GPS information, causing a major threat. There

exist several frameworks such as Microsoft’s STRIDE (Spoof-

ing, Tampering, Repudiation, Information disclosure, Denial

of service, and Elevation of privilege) for threat identification

that have been demonstrated to work well for AVs [9].

Once threats are identified, risk assessment could be carried

out to determine the level of security in a system. There exist

some methodologies to do the risk assessment, such as EVITA

and CVSS (Common Vulnerability Scoring System). Risk as-

sessment contains two fundamental parts: impact (or severity)

of threats, and likelihood of threats. In order to estimate the

impact of a threat, one could employ parameters that directly

associate with harm to stakeholders. Safety, privacy of drivers,

operational performance, and financial losses of a vehicle are

four factors commonly used in automative risk models [10],

[11]. The level of each factor can be categorized as none, low,

medium, and high. To approximate the likelihood of a threat,

one should calculate the probability of a successful attack. This

could also be evaluated based on the above risk assessment

models. For instance, expertise, knowledge of target, window

of opportunity (including time requirement), and equipment

are four main parameters in EVITA to estimate the likelihood

of threats. The level of each can be rated between 0 to 3. Table

I shows examples of evaluation of impact and likelihood of

threats.

Having the levels of impact and likelihood, we can compute

the risk which is a function of both. A standard risk model



TABLE I: Example of EVITA risk assessment factors: (a)

Impact of an attack on GPS, (b) Likelihood of a threat

against the ToA countermeasure in Fig. 1.

High Medium High Medium

Expertise EquipmentWindow of
Opportunity

ToA 2 1 3 1

(a)

(b)

Safety Financial Privacy Operational

GPS High Medium High Medium

Safety Financial Privacy Operational

GPS M di M di

ToA 2 1 3 1

Expertise EquipmentWindow of
OpportunityOpppportunityy

Knowledge of Target

can be defined as follows:

Risk = Likelihood× Impact (3)

where risk indicates risk for a set of countermeasures. The

effect of countermeasures appears only in the likelihood, and

not the impact, of a threat. Therefore, countermeasures directly

affect the value of likelihood, while impact is determined by

the functionality of a component (such GPS) within the AV.

Also, the intrinsic uncertainty of attacks leads us to assess pa-

rameters based on probabilities. Here, impact can be directly

estimated from the parameters in risk rating methodologies,

such as Table I(a). To obtain likelihood for a component,

however, two points should be considered: i) the quantity and

the quality of the employed countermeasures and ii) cause-

effect relationships between the elements of countermeasures.

The former can be captured through standard parameters (e.g.

Table I.(b)), and the later can be represented by directed

acyclic graph (DAG) as a defense graph. Having the graph

with related parameters enable us to infer likelihood using

BN analysis.

C. Bayesian Network and Uncertainty

A Bayesian network is a graphical model for probabilis-

tic inference that denotes the relationship between a set of

variables by a directed acyclic graph (DAG). A BN is a pair

(S, P ), where S denotes a network structure, and P denotes a

set of conditional probability distributions. Let us consider a

DAG S = (V,E), where V = {v1, v2, ...., vn} represents a set

of nodes, and E = {e1, e2, ...., en} represents a set of edges.

Using this definition, each node could denote a countermeasure

technique, such as time checking in Fig. 1(b), or an element of

it, such as clock consistency. A directed edge exists from node

vi to node vj , only if there is the possibility for an exploit to

be instantiated from vi to vj . Generally, in order to build a

defense graph, the functionality of each node as well as cause-

effect relationships between nodes (w.r.t. an application) must

be captured in the BN framework.

Once we build a BN, we are able to perform probabilistic

inference. Here, we are interested in applying marginal and

posterior probability distributions to measure vulnerability

for components. To clarify this, assume that we want to

quantitatively measure the vulnerability of vi that is shown

A B C
T F

D
ND

D θ1

θ2 1− θ2
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A B
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Fig. 2: (a) portion of a defense graph, and (b) corresponding

conditional probability table.

in Fig. 1(b). Assuming W = {w1, w2} as parent nodes of vi,

we can compute the following:

p(vi) =
∑

p(vi|w1, w2) p(w1, w2), (4)

p(vi|W) ∝ p(W|vi)p(vi). (5)

Equation (4) is a marginal probability distribution to obtain

prior probability for vi, and equation (5) represents a pos-

terior probability distribution using the prior probability and

p(W|vi) as a likelihood distribution. Using equations (4) and

(5), we are able to calculate the likelihood of a successful

attack on vi, given the vulnerability of W (vi’s parent nodes).

Before applying the BN theory to obtain the security state of

each vulnerable component, we need to capture uncertainties

related to a realistic AV application. To this end, let us

assume that Fig. 2(a) shows a portion of a complete BN. Each

node represents an anti-attack element to protect a vulnerable

component. For instance, let us assume nodes A and B

are two anti-attack elements for a secure component C. To

yield a successful attack on node C, nodes A and B must

have been unable to detect the attack. Hence, the framework

for the reasoning of our defense graph is AND logic. Fig.

2(b) indicates a conditional probability table (CPT) in which

different scenarios of detection (D) and not detection (ND) are

considered. The true (or false) state signifies a successful (or

unsuccessful) detection on a component, respectively.

Here, we also account for the uncertainty between neighbor-

ing nodes due to their imperfect accuracy and trustworthiness.

In addition, there exists an inherent uncertainty in attack struc-

tures. That is, even though an attack is successfully mounted

on nodes A and B, there is no guarantee for the attacker to

successfully carry out its attack on node C. To capture these

points, we consider coefficients ζ1 and ζ2 between nodes, as

shown in Fig. 2(a). Considering these coefficients, we define

θi in the CPT to indicate the probability of a true state in

node C. In a defense graph, it is reasonable to have a high

reliability between nodes, which implies small values for θi,

i = 1, 2, 3, and a value close to 1 for θ4.

In the next section, we investigate the security measurement

of GPS signals as a vulnerable component. Other vulnerable

components in an AV (e.g., LiDAR, camera) could be inves-

tigated in the same fashion.



TABLE II: Prior probabilities of anti-spoofing techniques for detecting fake GPS signals using EVITA and CVSS.

EVITA

CVSS

NMA PubSCAToA CLK-Cons. Multi-Ant Syn-AppC/N Abs-power RAIM RAIM-INS VSD

0.73 0.820.57 0.34 0.72 0.660.53 0.72 0.650.36 0.88

0.75 0.830.58 0.50 0.66 0.580.750.58 0.42 0.75 0.83EVITAA

CVSS

NMA PubSCAToA CLK-Cons. Multi-Ant Syn-AppC/NC/C/ Abs-popower RAIM RAIM-INSNS VSD

0.73 0.820.57 0.34 0.72 0.660.53 0.72 0.650.36 0.8888

0.75 0.830.5858 0.50 0.66 0.580.750.58 0.42 0.75 0.8383

TABLE III: Example of conditional probability table

ToA
Clock

Consistency
Timing Check

T F

0.57 (D)
0.34 (D)

0.66 (ND)

0.34 (D)

0.66 (ND)
0.43 (ND)

0.005 0.995

0.05 0.95

0.10 0.90

0.995 0.005

ToA
Clockck

Consistency
Timing Check

TT FF

0.57 (D))
0.34 (D4 (D)0.30.34 (D)

0.66 (ND)

0.34 (D)0.34 (D)

0.66 (ND)
0.40.40.43 (ND)D)

0.0050.0.00005 0.9950.0.99995

0.0505 0.95

0.1010 0.90

0.0.99995 0.005

III. CASE STUDY: SECURE GPS COMPONENT

GPS spoofing is among the highest threats for AVs. Hence,

in this case study, we investigate the security measurement of

GPS using the proposed BN model. In particular, we would

like to obtain likelihood and risk for a defense graph shown

in Fig. 1(b).

A. Modeling and Parameterizing

A principle objective of this work is to quantify the security

of a GPS component for AVs, by means of the following: (a)

building a defense graph using BN model, and (b) parameter-

izing elements of the graph. Combining these two allows us

to make an inference for likelihood, hence risk.

In order to model a defense graph for a GPS component,

all possible ways to detect counterfeit GPS signals must be

considered. Here, six most effective anti-spoofing techniques

are selected. Each technique includes different elements for

sensing abnormalities. Fig. 1(b) shows a defense BN model

for a GPS component obtained from cause-and-effect relation-

ships among the elements of anti-spoofing techniques. These

techniques are well studied in [12]–[16]. As can be seen, each

technique (e.g., timing check) contains a few elements (e.g.,

clock consistency) to sense environment and send the required

data for processing purposes. However, there is a possibility

for an attacker to defeat an anti-spoofing technique which leads

us to likelihood.

To find the value of likelihood, we need to determine

the prior probability of each element and the conditional

probability between the elements in the graph. We employ

three approaches to make these evaluations: (a) EVITA as a

risk assessment model, (b) CVSS that uses existing databases

such as the National Vulnerability Database (NVD), and (c)

several studies that have already addressed similar issues (e.g.,

[12], [13], [17], [18]). We apply the first two to find the prior

probability and the last one to find the conditional probability.

As we mentioned in section II-B, we use four parameters

for EVITA evaluation. For instance, as can be seen in Table

I(b), since the summation of values is 7 and the total possible

value is 12, we derive 7

12
as the probability of detection for

ToA. In CVSS, we consider two major concepts in calculating

the scores: the base score (BS) and the temporal score (TS).

The BS quantifies the intrinsic attribute of each vulnerability,

which is independent of time and user environment. The

TS, however, assesses the vulnerability based on properties

that might change over time. Using BS and TS scores, the

CVSS generates a value from 0 to 10 that can be simply

converted to a probability by dividing the score over 10
[19]. Table II indicates the values of prior probabilities based

on EVITA and CVSS. To obtain conditional probabilities

between graph nodes, we use previous literature to consider all

dependencies between anti-spoofing elements. We define four

discrete probability levels w.r.t. the accuracy of anti-spoofing

methods: 0.995 (almost sure), 0.99 (probable), 0.95 (highly

expected), and 0.90 (expected). These values represent θis in

the CPT table of Fig. 2(b). For instance, Table III shows a CPT

using CVSS for the timing check unit. CPTs for the rest of the

anti-spoofing techniques can be obtained in the same fashion.

Having a BN graphical model and its corresponding CPTs, the

next step is to perform an inference to find likelihood for the

GPS component.

B. Evaluation and Discussion

In what follows, we evaluate likelihood of threats and risks

using equations (5) and (3). To obtain likelihood, we apply

Bayesian inference. We initially determine the states of BN

model and their roles for detection. It is shown in Fig. 1(b) that

there are 16 nodes, each of which has two states that provide

216 possible states. By employing CPTs such as Table III,

these states are reduced to 26. Then, we apply equation (5) to

obtain the posterior probability of fake GPS signal detection

(likelihood) given the incorporated anti-spoofing techniques.

Assuming impact = 0.833 given by Table I(a) for a GPS

component, we can derive the risk defined in (3).

Table IV shows resulted beliefs for likelihood and risk.

Since all the 26 states could not be shown here, a few

combinations are selected. It can be seen that the likelihood

and the risk of threats are generally decreased by utilizing

a higher number of countermeasures. For instance, based on

EVITA, the likelihood of attack could be reduced from 5.3% to

less than 0.1% and 0.01% by using, respectively, five and six

anti-spoofing techniques instead of just one. As can be noted,

results for CVSS and EVITA are close to each other. This

is not surprising, as the prior probabilities of anti-spoofing



TABLE IV: Likelihood of threats and risk probabilities for a sample of combinations of GPS anti-spoofing techniques.

Authentication (Aut)

Aut, Timing Check (CT)

Aut, CT, and
Signal Processing (SP)

Aut, CT, SP, and
Amp/Pwr Monitoring (APM)

Aut, CT, SP, APM,
and RAIM/INS

Aut, CT, SP, APM,
RAIM/INS, and VSD

Anti-attack GPS

Techniques
RiskRiRisksk

CVSS EVITAAnti tt k GPS CVSS EVITA

Likelihood RiskLikelihood

0.0599 0.0499 0.04400.0528

0.02080.02500.03020.0362

0.0098 0.0081 0.00580.0071

0.0014 0.00110.00190.0022

0.00080.0009 0.00030.0004

6.5× 10
−5

7.8× 10
−51.1× 10

−4
1.3× 10

−4

1 % 5 % 10 %

0.0533

0.0300

0.0087

0.0018

0.0005

0.0001

0.0554

0.0509

0.0173

0.0043

0.0015

0.0004

0.0580

0.0823

0.0334

0.0104

0.0042

0.0013

Likelihood (EVITA) + Errors

elements (Table II) are also close. This type of analysis

could also help in choosing the number and type of anti-

attack techniques to be deployed in the presence of energy,

size, and cost limitations. Furthermore, in order to study the

resilience of the proposed model, the likelihood of threats is

evaluated for different levels of errors. The cause of these

errors could vary from noise and inaccurate processing of data

to hardware problems in deployed countermeasures. It can be

seen that threat likelihood, hence the risk, can be contained to

small values, particularly for small errors, when five or more

countermeasures are present.

IV. CONCLUSION

We have introduced a framework using a Bayesian defense

graph to study the cybersecurity of AVs. In particular, we have

employed risk assessment models such as EVITA to study the

threat likelihood and risk for vulnerable components in AVs

in the presence of countermeasures. In a case study, we have

applied this framework to infer a belief for the likelihood of

threats and risks for GPS signals. Our results confirm that

the likelihood of threats can be reduced to 0.01% depending

on what anti-spoofing techniques are employed. Future work

will focus on the impact of cooperation between vehicles to

improve the security of an AV.
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