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Abstract—Traffic prediction plays an important role in evaluat-
ing the performance of telecommunication networks and attracts
intense research interests. A significant number of algorithms and
models have been put forward to analyse traffic data and make
prediction. In the recent big data era, deep learning has been
exploited to mine the profound information hidden in the data.
In particular, Long Short-Term Memory (LSTM), one kind of
Recurrent Neural Network (RNN) schemes, has attracted a lot
of attentions due to its capability of processing the long-range
dependency embedded in the sequential traffic data. However,
LSTM has considerable computational cost, which can not be
tolerated in tasks with stringent latency requirement. In this
paper, we propose a deep learning model based on LSTM,
called Random Connectivity LSTM (RCLSTM). Compared to the
conventional LSTM, RCLSTM makes a notable breakthrough in
the formation of neural network, which is that the neurons are
connected in a stochastic manner rather than full connected. So,
the RCLSTM, with certain intrinsic sparsity, have many neural
connections absent (distinguished from the full connectivity) and
which leads to the reduction of the parameters to be trained
and the computational cost. We apply the RCLSTM to predict
traffic and validate that the RCLSTM with even 35% neural
connectivity still shows a satisfactory performance. When we
gradually add training samples, the performance of RCLSTM
becomes increasingly closer to the baseline LSTM. Moreover,
for the input traffic sequences of enough length, the RCLSTM
exhibits even superior prediction accuracy than the baseline
LSTM.

Index Terms—Traffic prediction, big data, deep learning,
random connectivity, RNN, LSTM

I. INTRODUCTION

With the proliferation of mobile terminals and the aston-
ishing expansion of Mobile Internet, Internet of Things (IoT)
and cloud computing, the mobile communication network has
become an indispensable social infrastructure, which is bound
up with people’s lives and many social domains. Cisco’s latest
statistical result shows that mobile data traffic has grown 18-
fold over the past 5 years and it will increase 7-fold between
2016 and 2021 [1]. These trends inevitably lead to explosive
growth in the size and complexity of communication networks,
which leaves a series of challenging issues to be addressed.
For example, if the running status of communication networks
can be monitored and fine-tuned promptly or even in advance,

the networks’ stability and the user experience will be greatly
improved. Since data traffic is an important dimension to
measure the performance and the running status of networks,
traffic prediction is of fundamental significance to the opti-
mization and management of communication networks, such
as optimal routing & scheduling, energy saving, and network
anomaly detection [2]. Therefore, a precise traffic prediction
takes an valuable role in planning, management and design of
the communication networks.

Traffic prediction is a classical research field, which has
attracted a lot of attentions and great efforts in developing
various algorithms and protocols for wireless networks to
utilize the resources efficiently and effectively [3]. Several
methods for traffic prediction have been proposed in literature,
which can be classified into two categories: linear methods
and nonlinear methods [4]. For the aspect of linear prediction
methods, the most widely adopted algorithms are based on
AutoRegression Integrated Moving Average (ARIMA) [5].
However, ARIMA models have a severe limitation with their
natural tendency to concentrate on the mean values of the
past series data. Therefore, it is almost unable to capture the
rapid variational process underlying the traffic load [6]. On
the other hand, the most commonly used nonlinear algorithm
is Support Vector Regression (SVR) [7]. The success of
SVR lies in four factors, which include good generation,
global optimization solution, the ability to handle nonlinear
problem, and the sparseness of the solution [8]. Just like a
coin has pro and con, SVR is limited by the lack of structured
means to determine some key parameters in the model, thus
incurring the deficiency of knowledge on how to select the
key parameters [6].

In addition to the above conventional algorithms, more and
more studies have adopted Artificial Neural Networks (ANNs)
for traffic prediction in recent years [3], [4], [9]. Nikravesh et
al. have investigated the accuracy of Multi-Layer Perceptron
(MLP) (a typical architecture of ANNs) in predicting future
behavior of mobile network traffic when compared to Support
Vector Machine (SVM) and the results show MLP has better
accuracy than SVM [9]. Wang et al. used Local Stacked
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AutoEncoders (LSAEs) and Global Stacked AutoEncoder
(GSAE) to extract local traffic characteristics and then utilized
Long Short-Term Memory (LSTM) to predict the traffic of
cellular networks [3]. As a universal approximator that can
efficiently approach a continuous function with a desired level
of accuracy, ANNs are verified by their effectiveness in solving
nonlinear problems as long as they contain a sufficient number
of parameters. However, if the number of ANNs parameters
become extremely large, the total amount of computation and
training time will become too heavy to be applicable.

Inspired by the interesting finding that the Convolutional
Neural Networks (CNNs) with sparse neural connections have
a similar or even superior performance in many experiments
when compared to the conventional CNNs [11], we propose
a novel model (i.e. Random Connectivity LSTM, RCLSTM)
based on LSTM structure, which contains fewer parameters
than a conventional LSTM. Moreover, in this paper, we
construct a three-layer stack RCLSTM network1 to complete
the task of traffic prediction. The experiment results exhibit
that the RCLSTM network achieves a competitive performance
when compared to the conventional LSTM network, and
specifically the RCLSTM network with 35% neural connec-
tivity still possesses a strong capability in traffic prediction,
which validates the effectiveness of the RCLSTM approach.
What is more interesting is that when the length of input
traffic sequences increases, the RCLSTM outperforms the
conventional LSTM in terms of the prediction accuracy. To
the best of our knowledge, we are the first to leverage the
random connectivity for the formation of neural connections
in LSTM memory block, and investigate the effectiveness and
superiority of the RCLSTM with real traffic data.

The rest of this paper is organized as following. Section
2 presents the LSTM architecture and builds the RCLSTM
model. Experiments design and results analyses are given in
Section 3. Finally, Section 4 gives conclusions for this paper
and points out the future work.

II. BACKGROUND AND RCLSTM

A. Mathematical Background

Basically, as illustrated in Fig. 1, ANNs can be classi-
fied into two kind of paradigms. The first is Feed Forward
Neural Networks (FFNNs), which has no cycles formed in
neural connections and is widely used in many fields such
as data classification, object recognition, imaging processing,
etc. FFNNs operate on fixed-size window of input data. So,
they can only model the data within the window and are
unsuitable for handling historical dependencies. They can
provide limited capability of temporal modeling and traffic
prediction. By contrast, different from FFNNs, the recurrent
connections in Recurrent Neural Networks (RNNs) allow the
information of historical inputs to be stored in the network’s
internal state, and thereby make them capable of mapping
the whole historical input data to each output in principle. In

1Hereinafter, if not specifically mentioned, the “network” means “neural
network”, rather than “mobile network” or “telecommunications network”.

Fig. 1. Comparison of FFNN and RNN.

Fig. 2. An illustration of LSTM memory block.

theory, RNN can learn the knowledge of temporal sequence
without length constraints. However, for any standard RNN
architecture, the influence of a given input on the hidden
layers and finally on the network output, would either decay
or blow up exponentially when cycling around the network’s
recurrent connections. To address these problems, an elegant
RNN architecture (i.e., LSTM) has been designed [12]. LSTM
has shown cutting-edge performance for language modeling,
handwriting recognition [13], and phonetic labeling of acoustic
frames [14].

The key point that makes LSTM possess the ability to
model long-term dependencies is a component called memory
block. As illustrated in Fig. 2, memory block is a recurrently
connected subnet, which contains some functional modules
called memory cell and gates. The memory cell is in charge of
remembering the temporal state of the network, while the gates
composed of the sigmoid layers are responsible for controlling
the amount of information flow. According to the correspond-
ing practical functionalities, these gates are classified as input
gate, output gate and forget gate. Input gate controls how much
new information flows into the memory cell, while forget gate
controls how much information still remains in the current
memory cell through recurrent connection, and output gate
controls how much information is used to compute the output
activation of the memory block and further flows into the rest
of the network.

Suppose that the input vector at time t is xt, the hidden
state vector at time t is ht, the memory cell at time t is ct.
The i, o and f denote the output of input gate, output gate
and forget gate, respectively; and z denotes input activation.
� and ⊕ denote dot product and summation of two vectors.
σ(·) usually takes the sigmoid function, and ϕ(·) is usually



the hyperbolic tangent function2, respectively:

σ(x) =
1

1 + e−x (1)

ϕ(x) = 2σ(2x)− 1 (2)

After these definitions, whole functionalities of the LSTM
memory block implementation are formulated as follows:

it = σ(Wxixt + Whiht−1 + bi) (3)

ft = σ(Wxfxt + Whfht−1 + bf ) (4)

ot = σ(Wxoxt + Whoht−1 + bo) (5)

zt = ϕ(Wxcxt + Whcht−1 + bc) (6)

ct = ft � ct−1 + it � zt (7)

ht = ot � ϕ(ct) (8)

where the W terms with different subscripts denote different
weight matrices (e.g., Whf is the hidden-forget weight matrix),
and similarly the b terms with different subscripts denote
different bias vectors (e.g., bf is the bias vector for forget
gate).

B. Random Connectivity LSTM

In fact, the conventional LSTM (including its variants) ba-
sically follows the classical pattern that the neural connections
in memory block all exist and one cannot change the neural
connectivity in networks. However, neuroscience researchers
have found that for specific functional connectivity in neural
microcircuits, random topology formation of synapses can
provide a sufficient foundation [16]. This discovery stands on
the opposite side of the conventional cases, where that neural
connectivity is considered to be more heuristic so that neurons
need to be connected in a more fully organized manner. In
regard to LSTM, it does beg the question as to whether a
formation strategy of more random neural connectivity like in
the brain may yield potential benefits to LSTM performance
and efficiency. Holding with this idea, we build up the Random
Connectivity LSTM (RCLSTM) model.

For simplicity of representation, we reformulate the equa-
tions from Eq. (3) to Eq. (8). Firstly, we concatenate xt and
ht−1, and this operation is denoted as [xt,ht−1]. Then, we
regard W terms as the weight matrices between [xt,ht−1] and
the gates (e.g., Wf denotes the forget weight matrix). After
these definitions, the reformulated equations are obtained as:

2Interested readers could refer to [15] (and references therein) for more
details.

it = σ(Wi[xt,ht−1] + bi) (9)

ft = σ(Wf [xt,ht−1] + bf ) (10)

ot = σ(Wo[xt,ht−1] + bo) (11)

zt = ϕ(Wc[xt,ht−1] + bc) (12)

ct = ft � ct−1 + it � zt (13)

ht = ot � ϕ(ct) (14)

It is easy to prove that the above formulas are equivalent to
the corresponding equations Eq. (3) to Eq. (8).

Actually, the parameters that require to be trained in LSTM
only exist between the input part (i.e., [xt,ht−1]) and the
functional layers (i.e., the gates layers and the tanh layer for
input activation). Hence, if we regard the input part as the
input layer and the conjunction of functional layers as the
output layer, then a LSTM memory block can be transformed
to a simple two-layer FFNN. Accordingly, LSTM memory
block can be represented as a random graph G(V, p), where V
denotes the set of neurons V = {vlk|l ⊂ {1, 2}, 1 6 k 6 nl},
with vlk representing the kth neuron at layer l, nl representing
the number of neurons at layer l, and p representing the prob-
abilities that neural connections occur between neurons (e.g.,
p[i → j] represents the probability that a neural connection
occurs between the neurons v1i and v2j).

Using the definitions above, one can reform the neural
connections within a LSTM memory block as a realization of
the random graph G(V, p) by initializing with a set of neurons
V , meanwhile randomly inserting neural connections among
the set of neurons independently in a stochastic manner with
probabilities of p. The strategy to establish neural connections
in RCLSTM is:

e[i→ j] exists where p[i→ j] > T (15)

where e[i→ j] denotes the neural connection between neuron
v1i and neuron v2j , and T is a threshold which indicates the
sparsity of neural connectivity in RCLSTM.

Based on the aforementioned model, we construct a repre-
sentative RCLSTM as illustrated in Fig. 3. It can be observed
that the RCLSTM has a large number of distinct formation
because of the random nature of the formation process during
neural connections. Accordingly, by randomly forming the
structure of LSTM memory block, the corresponding neural
network can be highly sparse and bring considerable decrease
in the number of involved parameters as well as the compu-
tational loads.

Remark. The RCLSTM manifests a strong capability in traffic
prediction while the number of parameters to be trained is
reduced, which in effect decreases the computational loads
and complexity. Moreover, the RCLSTM exhibits superior
performance than the conventional LSTM when the length of
input traffic sequences increases.



Fig. 3. A representative example of RCLSTM block.

III. NUMERICAL EXPERIMENTS

In this section, our goal is to verify the performance of
RCLSTM in traffic prediction. In order to achieve this purpose,
we construct a three-layer RNN network with the newly
designed RCLSTM memory block. Its structure and unfolding
form are described in Fig. 4. Firstly, we take advantage of
the model to predict traffic, and explore the changing features
of prediction accuracy when using RCLSTM memory blocks
with different sparsity patterns generated from the random
neural connections. Then, we gradually reduce the number
of training data samples to investigate the effect of the size
of training data set on the prediction accuracy. Finally, we
use different length of input traffic sequences to train the
RCLSTM network and explore the capability of the RCLSTM
to model long-term dependencies compared to the conven-
tional LSTM. Recently, Godfreyet al. [17] have proved that
LSTM performs better than ARIMA and SVR on time-series
forecasting through a large number of experiments. Therefore,
we only discuss the comparison between the RCLSTM and the
conventional LSTM.
A. Traffic Data Description and Processing

Here we will evaluate the model’s performance on traffic
prediction depending upon real traffic data from the GÉANT
backbone networks3. GÉANT is a pan-European data source
for the research and education communities. It builds up
the European National Research and Education Networks
(NRENs) which interconnect various universities and research
institutions. The traffic data are obtained from the GÉANT
network by 15-min interval for several months. In this study,
because of the absence of some data, we only select 7289

3https://www.geant.org/Projects/GEANT Project GN4

Fig. 4. The designed RCLSTM network for numerical experiment.

traffic data from 76 workdays measured between 2005-01-01
00:00AM and 2005-04-30 00:00AM. Then we normalize these
data samples according to the following formula:

x− µ(x)
σ(x)

(16)

where x is the original data, µ(x) denotes the average of x, and
σ(x) denotes the standard deviation of x. Because the number
of the traffic data we obtained is so large that we cannot
depict them neatly in a graph. Therefore, Fig. 5 describes some
intercepted traffic data after normalization. Next, we apply a
variable sliding window to specify a fixed number of previous
timeslots to learn before predicting the current traffic data.
This operation is to deal with the issue that the total number
of timeslots may be too big to compute. Finally, we split the
processed data into two sets (i.e., training set and test set). The



Fig. 5. The intercepted traffic data after normalization.

training set is used to train the RCLSTM network while the
test set is used to evaluate and validate its prediction accuracy.

B. Evaluation Metrics

Evaluation metrics are necessary to evaluate the perfor-
mance of our traffic prediction model. Accordingly, Mean
Square Error (MSE) and Mean Absolute Error (MAE) are used
to estimate the prediction accuracy. MSE measures the average
of squared errors, which quantifies the difference between the
predicted values and the actual values. MAE, defined as the
average of absolute error, is a measure of difference between
two variables as well. The expressions of MSE and MAE are
mathematically formulated as:

MSE =
1

N

N∑
i=1

(yi − ŷi)2 (17)

MAE =
1

N

N∑
i=1

|yi − ŷi| (18)

where yi is the actual value, ŷi is the predicted value and N
represents the total number of predictions.

C. Testing Results and Analyses

Fig. 6 shows the MSE and MAE under different percentages
of neural connectivity in RCLSTM (note that 100% con-
nectivity means the baseline LSTM), where the connection
probability obeys a uniform distribution (pg ∼ U(0, 1)).
It can be observed from Fig. 6 that neural connectivity of
35% is a turning point, below which the MSE and MAE
are both serious (increasing rapidly to larger values) while
above which the prediction accuracy stability remains with
impressive performance. Fig. 7 provides the comparison of
the actual and predicted traffic values when we set 35% neural
connectivity in RCLSTM. We observe that the predicted values
can match the varying trend and features of the actual values
very well. This means that the RCLSTM can attain strong

Fig. 6. MSE and MAE over the percentage of neural connectivity.

Fig. 7. Comparison of the actual and predicted traffic.

predication ability while decreasing the number of neural
connections, which in effect decreases the computational loads
and complexity.

Then, we examine the prediction performance when the
number of training samples varies in Fig. 8. When the number
of training samples increases, the MSEs of both RCLSTMs
and the conventional LSTM decrease. Moreover, when the
number of training samples is less than 5000, there exists a big
gap between the RCLSTM with 35% neural connectivity and
the other two settings. But the gap gradually disappears when
the number of training samples increases. On the other hand,
the RCLSTM with just 50% neural connectivity is capable of
achieving the performance similar to the conventional LSTM
with full neural connections.

Furthermore, we investigate the capability of RCLSTM
to characterize long-term dependencies by conducting a set
of experiments based on different length of input traffic
sequences obtained by variable sliding window, and the results
are shown in Fig. 9. It can be observed that when the
length of input traffic sequences increases, the MSE of the



Fig. 8. MSE over the number of training samples.

Fig. 9. MSE over the length of input traffic sequences.

conventional LSTM varies greatly, while the MSEs of the
RCLSTMs fluctuate faintly and become substantially lower
than that of the conventional LSTM. These results indicate
the interesting finding that RCLSTM has a better performance
than the conventional LSTM when the input traffic sequences
have sufficiently long timeslots.

IV. CONCLUSIONS

In this paper, we have reinvestigated the field of traffic
prediction with deep learning and proposed a new model
named Random Connectivity LSTM (RCLSTM) based on the
conventional LSTM. The key point of RCLSTM is to construct
the neural network by forming and realizing a random graph
and then grant a certain probability to the neural connectivity.
We have checked the effectiveness of the RCLSTM model
by applying it to predict actual traffic data, and validated that
although the neural connections in the RCLSTM model are
sparse, its performance is as satisfactory as the conventional
LSTM network. Moreover, when the input data is a time series
of considerable length, the RCLSTM is even better than the

conventional LSTM. The RCLSTM can be used in a number of
learning and prediction scenarios, but we need to further verify
its contribution to decrease the computational complexity in
a quantification manner, which will be our research works in
the future.
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