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Abstract—Cooperative Intelligent Transport System (C-ITS)
applications require a continuous exchange of information be-
tween road users and roadside infrastructures. In this regard,
distributed consensus algorithms can play an essential role in
the definition of the information exchange rules between an ITS
station and its neighbors. Although the consensus approach for
networked systems is well-established, the efficiency of consensus
methods under real-world vehicular communication constraints
is largely unknown. This paper provides an ITS standard-
compliant framework for analysis of consensus algorithms in
vehicular networks with an emphasis on the role of robustness
to changes in network topology in highly dynamic and dense
environments. Our simulations reveal that in regular and realistic
traffic conditions, the implemented consensus algorithm is able
to achieve good performances in terms of both convergence
time and needed consensus iterations. However, numerical results
demonstrate that under dense and high-mobility traffic conditions
the frequent exchange of large amounts of range information
increases the Channel Busy Ratio (CBR) of the vehicular network
and reduces the effectiveness of the algorithm as well.

I. INTRODUCTION

Cooperative Intelligent Transport Systems (C-ITSs) are
evolving rapidly and have received significant attention in
recent years due to the need to increase road safety and
tackle growing emission and traffic congestion problems. The
technology is ready and in many respects, existing vehicles
are already connected devices. In such cooperative systems
road users and traffic managers are able to share information
and use it to coordinate their actions through vehicle to vehicle
(V2V) or vehicle to infrastructure communications (V2I). First
releases of the needed sets of specifications for C-ITSs have
been defined, in Europe with the ETSI ITS G5 standard and in
North America with the WAVE (Wireless Access in Vehicular
Environment) architecture [1], that is based on the IEEE 1609
and 802.11-2012 families. Concerning the access technologies,
both standards are based on IEEE 802.11p, specifically devel-
oped for vehicular ad-hoc networks (VANETs) in the 5.9 GHz
dedicated short-range communication (DSRC) spectrum. Since
C-ITS applications require reliable and accurate knowledge of
the local neighborhood, cooperative awareness messages are
periodically broadcast to one-hop neighbors with a frequency
typically ranging from 1 to 10 messages per second. In such
vehicular environments, the design of cooperative strategies
can be supported on both centralized and distributed schemes.
Distributed schemes reduce communication requirements us-

ing local V2X interactions, thus improving scalability, flexi-
bility, reliability and robustness. In this context, consensus is a
fundamental tool to be considered when designing distributed
cooperative inference and optimization methods.

Consensus problems have a long history in computer science
and form the foundation of the field of distributed computing
[2]. The aim of consensus is to reach an agreement of interest
for all the agents in a network, by only exchanging informa-
tion locally following a predefined strategy. In particular, we
consider the average consensus approach presented in [2] and
exploited in [3], based on successive refinements of local esti-
mates at vehicles and information exchange among neighbors.
To date, numerous scenarios for consensus networks have been
addressed in the literature for practical implementation. An
emerging paradigm is cooperative localization, in which nodes
help each other to determine their locations. In [3] average
consensus is introduced to define an Implicit Cooperative
Positioning (ICP) algorithm in which vehicle measurements
and information are fused through V2V links. In [4], the au-
thors describe several cooperative localization algorithms and
quantify their performances through an extensive measurement
campaign using US Federal Communications Commission
(FCC)-compliant UWB radios. In [5], the authors propose
a Bayesian method for distributed sequential localization of
mobile networks, while in [6] a consensus-based method has
been presented to enable the localization of an entire fleet
of entities (i.e., vehicles, pedestrians or any objects), at each
member of the fleet. In parallel, communication channel has
become a pivotal issue because of its unreliability and noise,
which may result in an impact on consensus. Link failures and
channel noises have been discussed for distributed cooperative
positioning in vehicular networks in [7] and more generally,
stochastic link failures have been addressed for distributed
average consensus in [8]. The performance of a consensus-
based application in a VANET largely depends on the amount
of neighborhood information that is available to a vehicle. For
instance in a CP-oriented algorithm, the general intuition is
that, the more neighbors that are in a vehicle’s transmission
range, the better accuracy can be achieved by CP [3]. However,
the increase in the number of neighbors may, at the same time,
deteriorate the network congestion conditions over the DSRC
wireless channel.

In this paper, we characterize the performance of a generic



average consensus algorithm under several DSRC communica-
tion scenarios. Through high-fidelity simulations performed in
a WAVE standard-compliant environment, we consider several
network topologies and traffic conditions, with the aim to
validate the investigated consensus method also in critical
vehicle-dense and dynamic scenarios. Numerical results show
that the accuracy achieved by the algorithm can be signifi-
cantly impaired in dynamic topologies and critical congestion
conditions, as the set of neighbors that a vehicle can actually
detect is not complete.

II. INTEGRATION OF CONSENSUS-BASED METHOD INTO
ITS ARCHITECTURE STANDARDS

A. Standard Average Consensus

Mathematically, average consensus is defined by a set of
Nv nodes, an initial state z

(0)
i ∈ RK for node i, and a set of

neighbors Ji for node i. At iteration r > 0, agent i updates
its local consensus variables by applying the following rule:

z
(r+1)
i = z

(r)
i +

∑
j∈Ji

wi,j(z
(r)
j − z

(r)
i ), (1)

where the weigths wij are chosen to ensure convergence to
the average:

lim
r→∞

z
(r)
i → 1

Nv

Nv∑
i=1

z
(0)
i (2)

A common implementation of the weights is the so-called
Metropolis update [8] where the weights are set to

wi,j =
1

max(di, dj) + 1
, (3)

where di and dj denote, respectively, the number of neighbors
of nodes i and j. Note, that Metropolis weights only require
information exchange between neighbors to be set.

B. Consensus Implementation

In the present work, we consider the IEEE 802.11p tech-
nology, which is the basis of WAVE and ETSI ITS standards,
in the USA and Europe, respectively. Specifically, in the
simulations the WAVE protocol stack has been used since the
network simulator (VEINS) provides a stable and accepted
implementation; however, similar results can be obtained also
for the ETSI standard. As mentioned above, by referring
to IEEE 802.11p, cooperative awareness messages are peri-
odically broadcast. For this purpose, in 2006 the US FCC
designated the service channel (SCH) 172 (5855-5865 Hz) for
V2V safety communications, i.e. to transmit the Basic Safety
Messages (BSMs). In our network implementation of average
consensus, only BSMs are exchanged and we encapsulate
the consensus-related information into the BSM payload. The
number of bits needed to represent the consensus-related
information can change according to the different use-cases.
However, the size of the single contribution is out of scope
of the present paper and according to the SAE J2735-defined
range, we will consider a BSM length of 150 Bytes in all
the performed simulations. In each transmitted message, each

TABLE I: Simulation parameters setting

Parameter Value
Frequency 5.9 GHz
Channel bandwidth 10 MHz
Modulation Rate 6 Mbps
BSM size 150 Bytes
Default BSM sending interval 100 ms

vehicle broadcasts (i) the transmitter ID, (ii) the consensus
variable z

(r)
i , (iii) the number of neighbors and (iv) a bit

flag to advertise the topology changes. The initial phase in
which a vehicle learns the network topology is necessary for
the nodes synchronization and it is hereinafter referred to as
learning period. Thus, once each vehicle has knowledge of
consensus variables in the network and associated vehicles, the
consensus iterations commence, according to (1) and (3). After
a consensus iteration, each vehicle broadcasts a new BSM
with the updated information. The algorithm is then iterated,
until one node detects a change in the network topology. In
this case, all vehicles in the network start a new learning
period and initialize the algorithm with a value z

(0)
i equal to

the last updated consensus variable. According to the specific
use case, in a future work we could consider a cluster-based
partitioning to avoid a deadlock situation that could be due to a
overly wide network. In section III, the described strategy will
be validated through a set of simulation trials under several
vehicular scenarios.

III. PERFORMANCE EVALUATION AND SIMULATION
RESULTS

In this section, we characterize the performance of the
consensus method in a vehicular environment through sim-
ulation experiments. We first present the simulation setup
in section III-A. Next, we evaluate the effectiveness of the
implemented consensus algorithm for several non-line-of-sight
(NLOS) conditions in both dense and mobile scenarios and
provide numerical results.

A. Simulation Setup

After a survey on the available solutions, VEINS seems
the best suited for our purposes: it is an open source inter-
vehicular communication simulation framework based on an
event-based network simulator (OMNeT++) and a road traffic
microsimulation model (SUMO) running in parallel [10].
The primary parameters are listed in Table I. To simulate a
realistic urban radio propagation environment, VEINS includes
a simple obstacle shadowing model that has been calibrated
and validated against real world measurements [11]. In our
simulations, the DSRC transmission range is set to 300 m.
Thus, we implemented a cross-road V2V scenario with a vari-
able number of vehicles. To initialize the consensus variable,
as soon as the simulation starts, a random initialization value
z
(0)
i ∈ R is generated by each vehicle i according to a uniform

distribution on the interval [0, 100]. We consider the following
metrics: (i) convergence time, node-wise defined as the time
(in seconds) until the deviation from the convergence value is



Fig. 1: Three different NLOS conditions in a V2V cross-road scenario.

within a factor of 0.15; (ii) Channel Busy Ratio (CBR), defined
as the fraction of time the channel is regarded as busy; (iii)
the number of sent messages before the consensus algorithm
achieves convergence.

B. A Realistic SUMO-Simulated Crossroad Scenario

In the first set of performed tests, we consider a generic and
static crossroad scenario and implement three basic network
topologies. As depicted in Fig. 1, the network consists of 3
nodes in case A and case B, and 4 nodes in case C. Due to the
obstacles’ layout (shown in Fig. 1 by the grey area) and to the
vehicles’ positioning, each topology has a different network
diameter, denoted as Dmax: the largest, minimal hop count
over all pairs of nodes. As a benchmark, we first study the
convergence speed of the implemented consensus algorithm
under an ideal scenario, in which we assume: (i) at any
time, each consensus agent (i.e. each vehicle) is aware of the
whole network topology; (ii) each consensus agent collects
the information from the neighbors isochronously. Then, we
investigate the actual consensus algorithm performance in a
realistic vehicular environment, according to the parameters
setting described in section III-A. In the latter case, before the
nodes start to perform the consensus algorithm, they collect
all the necessary neighborhood information, according to the
procedure described in section II. Fig. 2 shows the convergence
time measured for a reference node (i.e. node 7), for three

Fig. 2: Convergence time of the consensus algorithm in node 7
under different NLOS conditions.

Fig. 3: Vehicles are distributed on 3 geographical areas (A,
B and C), so that each area will include the same number of
vehicles; the network topology has a diameter of Dmax = 2.

different values of Dmax in both ideal and realistic scenar-
ios. As observed, the real-world communication constraints
increase the convergence time of the algorithm by 200 ms,
i.e., two additional BSM sending intervals. However, the two
bars follow the same trend, and the convergence time value
always remains below 600 ms. We note that the additional
information introduced by node 25 in Fig. 1-c, allows node 7
to converge faster for both realistic and ideal scenarios: this
behaviour is only due to the particular initialization values of
the consensus variables.

C. Dense Vehicular Environment and Channel Congestion

Since the performance of a consensus-based application is
expected to increase when the vehicles density grows [8] the
idea to use a consensus approach is particularly attractive in
C-ITSs. However, the intensive rate of information exchange
over the shared DSRC control channel naturally introduces
significant communication overhead into the vehicular network
[9]. In this section, our simulation study will show that
frequent range information exchange has a significant impact
not only on the reliability of communications but on the
consensus algorithm performance as well.

To assess the consensus algorithm performance in a dense
environment, we consider the cross-road scenario depicted
in Fig. 3, with a varying number of vehicles. As in Fig.1-
b, the network diameter is Dmax = 2 and the vehicles are
distributed on three geographical areas (A, B and C), so that



0

10

20

30

40

50

60
CB

R
[%

]

10 msgs/s 20 msgs/s 50 msgs/s

a) 60 nodes scenario

Node 7
Node 13
Node 19

0

10

20

30

40

50

0 0.5 1.0 1.5Time (s)

Co
ns

en
su

s
va

ria
bl

e

b bb bb bb bb bb bb bb b

b b

b b

b b
b b
b b b b b b b bb b b bb b b bb bb bb bb bb b b bb b b bb b b bb

u uu uu uu uu uu uu uu u

u uu uu uu uu u u u u uu u u uu u u uu u u uu u u u u u u uu uu uu uu uu uu

××× ×× ×× ×× ×× ×× ×

× ×

× ×

× ×
× ×

× ×
× ×× ×× ×× ×× ×× ×× ×× ×× ×× ×× ×× ×× ×× ×× ×× ×× ×× ××

t∗
7 = 0.52724s

b.1) 60 nodes - 20 msgs/s

b Node 7u Node 13
× Node 19

Mean value

0

10

20

30

40

50

0 0.5 1.0 1.5Time (s)

Co
ns

en
su

s
va

ria
bl

e

b bb bb bb bb bb bb bb bb bb b

b b
b b

b b
b b
b bb bb b

b bb b b bb b b bb b b bb bb b b bb bb bb bb bb bb bb b b bb bb bb bb bb bb bb bb bb b b bb b b bb b b bb b b bb bb bb bb bb bb bb bb bb b b bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb

u uu uu uu uu uu uu uu uu uu u

u uu uu uu uu uu uu uu uu uu uu uu uu uu uu uu uu uu uu uu uu uu uu uu uu uu uu uu uu uu u u uu uu uu uu uu uu uu uu uu uu uu uu uu uu uu uu uu uu uu u u uu uu uu uu uu uu uu uu uu uu uu uu uu uu uu

××××××××××××××××××××

××

××

××

××
××
×××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××

t∗
7 = 0.23090s

b.2) 60 nodes - 50 msgs/s

b Node 7u Node 13
× Node 19

Mean value

Fig. 4: a) CBR values for three different BSM rates; b) Consensus algorithm output as a function of time. t∗7 marks the
convergence time for node 7.

Fig. 5: a) Mean convergence time and b) mean number
of transmitted messages necessary to converge. Results are
measured on vehicles in area A.

each area includes the same number of vehicles. As in the
previous simulations, the scenario is static and mobility is
not implemented. Vehicles in area A can communicate with
vehicles in area B. Vehicles in area C can also see vehicles
in B. However, due to obstacles, vehicles in area A and C
cannot see each other. In this test we assume that all vehicles
in the same area have the same initial convergence variable
z
(0)
i . Thus, we simulate different vehicle densities (from 3

to 30 vehicles per area) and different BSM sending intervals
(from 10 msgs/s to 50 msgs/s according to the WAVE range
of permitted values [12]).

Fig. 4-a shows the measured Channel Busy Ratio (CBR) in
a 60-nodes network, for three nodes positioned in the three
different areas, for three different BSM rates. Referring to
the same scenario and to the same nodes, Fig. 4-b plots the
consensus iteration outputs as a function of time. In Fig. 4-
a, we note that the increment of the BSM transmit rate in a
vehicle-dense scenario leads to a massive impairment of the
V2V communications in terms of CBR. Therefore, as shown
in Fig. 4-b, whilst a higher rate allows a faster consensus
convergence, a higher CBR value (and the relative loss of
disseminated messages) prevents convergence to the expected
mean value of the consensus variables.

To further study the behavior, Fig. 5-a and Fig. 5-b show,
respectively, the mean value of the convergence time and the
mean value of the number of messages a node has to transmit
to achieve convergence, over all nodes within area A. As
expected, in Fig. 5-a we see that in a low-density scenario,
better performance of the consensus algorithm can be achieved
with higher BSM transmit rates. However, this assumption is
no longer valid for a larger number of vehicles. In the worst
case of 90 vehicles (i.e., 30 vehicles per area) the increase
of the message rate from 10 to 20 msgs/s can even lead to
a growth of the convergence time. Moreover, the decrease of
the convergence time with the highest rate of 50 msgs/s is no
longer profitable as in the lower-traffic density scenarios. This
issue is further confirmed by results in Fig. 5-b. The mean
number of BSMs to be transmitted to achieve convergence of
the consensus algorithm grows rapidly with the BSM transmit
rate. Due to the above-discussed CBR results, with a BSM
rate of 50 msgs/s we get a four-fold increase over the default
setting rate of 10 msgs/s. To summarize, for critical congestion
conditions, there is an overall impairment of the consensus
algorithm performances, in terms of both number of needed
iterations to convergence and duration of the learning period,
during which nodes collect information on the topology. Also,
due to the message loss and the high CBR, the algorithm could
be unable to converge to the average value.

D. Impact of Mobility in the Simulated Scenario

In this section, our consensus method implementation is run
in a scenario with mobility. As shown in Fig. 6a, we have two



(a) Mobility scenario at t = 2s.
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Fig. 6: a) V2V scenario with 10 mobile vehicles and 2 fixed
vehicles (node 7 and node 13); b) consensus algorithm output
as a function of the time for a mean speed of 30 m/s.

fixed nodes (i.e., node 7 and node 13) in a NLOS condition.
Then, we added a mobile flow of 10 vehicles. When vehicles
in the flow enter area C, they can communicate with both
node 7 and node 13, along a 30 m stretch of road. Several
simulations have been performed with different vehicle speeds
with the aim to validate the implemented algorithm in a highly
dynamic scenario. Simulation results show that when vehicles
move at a medium-low speed (e.g., 10–20 m/s), despite the
topology changes, the algorithm works correctly and the output
values converge to the expected value. On the other hand, with
higher speeds we observe that the convergence time starts to
increase quickly. In Fig. 6b the algorithm output is depicted
as a function of time, when vehicles in the flow move with
a mean speed of 30 m/s. For the sake of clarity, we show
just the first and the last node of the flow (i.e., node 19 and
node 73) when they pass through area C. All mobile vehicles
have the same initialization value z

(0)
r . In the case shown, we

implemented in area C a flow with a density of 2 vehicles per
second and we assume the first 2 vehicles are positioned within
the area at time t = 0s. In Fig. 6b it is shown how, because
of the rapid topology changes, the consensus converges to a
value which is far from the expected average value. In the

figure it is also clear how each vehicle starts a new learning
period periodically every second: this is related to the SUMO
update-period of 1 s used to determine the vehicle position.

IV. CONCLUSION

This paper proposes an ITS-standard compliant framework
to examine performance of a consensus algorithm imple-
mentation in a realistic vehicular environment. First, we ad-
dressed the issue concerning the implementation of distributed
consensus algorithms in a generic vehicular environment.
Then, we examined the effectiveness of a proposed consensus
algorithm implementation under several NLOS conditions.
Our consensus-based implementation has been validated in a
real urban scenario using both the SUMO traffic simulator
and OMNeT++. In the simulated high-density scenario, the
network congestion conditions are analyzed and measured in
terms of CBR. Numerical results show that the communica-
tion overhead significantly impacts the consensus algorithm
performance in terms of convergence time and number of
messages to be exchanged to achieve convergence. Finally,
vehicle mobility has been added, in order to observe the
response of the consensus algorithm in a dynamic scenario.
As in the other simulated scenarios, also in the dynamic
simulation, our results highlight the importance of a high ratio
of the time interval between two successive topology changes
(due to both vehicles speed and NLOS conditions) to the
consensus convergence time.
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