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Abstract—The recent advances in wireless sensors and Un-
manned Aerial Vehicles have created new opportunities for
environmental control and low cost aerial data gathering. In this
paper, we propose to use an Unmanned Aerial Vehicle (UAV) for
data gathering. Basically, we have proposed a method for UAV
path planning based on virtual forces and potential fields. In
addition, and more importantly, we present a new approach to
compute the attractive forces of the potential field.

I. INTRODUCTION

The latest technological advances in wireless communica-
tions have allowed the development of wireless sensors with
low energy consumption. These small devices are intercon-
nected to form wireless sensor networks and are then deployed
in an area of interest to handle specific tasks. These networks
are useful in many fields such as: military, environmental,
industrial and medical applications[2] [4]. Recent progress
has led to the development of increasingly efficient sensors
that can now handle increasingly complex data. The expected
contribution of these elements makes it possible to envisage
autonomy and a direct interaction with the environment thus
offering the users a set of increasingly complex actions /
reactions. The richer this interaction is, the more relevant the
services to the users are. This type of sensor, however, brings
their share of constraints, mainly due to hardware limitations
as well as the types of information processed.

One of the consequences of the proliferation of wireless
sensors is the development of flying equipment (also called
drones or UAVs) at low cost and which can be used for a
multitude of civilian or military applications. This new type
of wireless sensor can be used in a variety of applications such
as vehicle tracking, traffic management, fire detection, and
assistance of crisis response teams [18] [15] [1]. These mobile
wireless sensors are able to fly autonomously at different
altitudes and are generally equipped with units to monitor the
environment and communicate to exchange data with other
drones, ground sensors or even central stations. Among the
possible applications are the collection and dissemination of
data in environments that are difficult to access or hostile.
Indeed, one or more drones can be used as a mobile data
collection sink to navigate an area where wireless sensors are

already deployed. In this case, the objective of the drone(s)
is to collect information in an efficient and coordinated man-
ner [7] [8].

UAV path Planning has been used (combined) with many
other methods such as Genetic Algorithms [13], A* Algo-
rithms [12] and the Artificial Potential Field (APF) [16]. The
APF method is commonly used in path planning because of
its concise mathematical description and the suitability for the
real time control [14] [6].

In this paper, we are interested in the use of a potential
field method for data collection in wireless sensor networks.
We follow on from the idea proposed by [16]. Indeed, in this
approach they use a robot that is in charge of collecting WSN
data. Each sensor is a source of an attractive force that attracts
the robot. The robot will then have to move towards the node
that emits the strongest signal (i.e., the sensor node containing
the most data). The aim of our work is to collect the maximum
amount of data while limiting the energy consumption of the
drone (its flight time).

The remainder of this paper is organized as follows. Section
II shows a state of the art on the different studies already
proposed for the use of the potential field method for UAV
guidance. Sections III and IV describe the system and the
platform proposed for UAV data gathering. Tests and results
are reported in Section V. Finally, Section VI concludes this
paper.

II. THE STATE OF THE ART

The artificial potential field (APF) for robot obstacle avoid-
ance was first used by Khatib [11]. Briefly, this method
consists in providing the workspace with an artificial potential
field, in which the obstacles are represented by repulsive forces
that push the robot back and prevent it from colliding with
these obstacles. While the destination point is modeled by an
attractive force that helps the UAV to reach the goal. The state
of the art for UAV path planning using APF presents different
uses of this method [3].

Target tracking is one of the application uses of the APF
method. These approaches are designed to find a known
number of targets that are in motion in a workspace. In [5]



the authors present a system to track a moving target using a
swarm of UAVs under the influence of an artificial potential
field. In their approach, they choose one UAV as the leader
of the group, this leader being endowed with virtual attractive
force to keep the swarm together. Each member of the group
has repulsive forces to prevent from colliding together. The
swarm of UAVs is under the influence of the moving target
witch is endowed with an attractive force to help the leader
to reach the target position. [19] presented a dynamic target
tracking and obstacle avoidance system using a drone. This
system is based on Potential Fields and it is extended to take
into account not only the relative position of the target but
also to modify the velocity of the UAV so that it will be able
to pursue it.

The second use cases of potential fields are to help the
robots (or UAVs) to reach a set of goal locations. In [14]
the authors use the method of potential fields for the path
planning of their drone. They update the method by an
additional control force that helps the UAV get out from a
local minimum. At first, the authors bring together in one
block obstacles that are geographically close to one another
to avoid the drone getting blocked between them. In a second
step, they define virtual points equipped with attractive forces
that help the UAV to avoid local minima points. In [12] the
authors present an autonomous navigation system for UAVs.
Their method is based on a combination of virtual potential
fields and the A* algorithm. Virtual forces are used to set
up the environment (define obstacles and goals) while the A*
algorithm is used to optimize the path. Thus, they study the
performances of their different algorithms ( the hierarchical
A* 3D Algorithm, the A* 3D and the receding Horizon A*
3D) in terms of processing time and distance traveled by
the UAV. Another study [6] presents a UAV path planning
method using an artificial potential field updated by optimal
control theory. They use an improved APF method enhanced
by introducing additional control forces, based on performance
constraints (the speed and acceleration), the space constraint
(the UAV needs to avoid the obstacles) the dynamic constraints
(the relation between the force, the acceleration, the speed
and the position) and the boundary condition (the path is
represented by a starting point and a target point). Therefore,
the constrained optimization problem is translated into an
unconstrained optimization problem.

Finally, the APF method can be used to explore an area
in order to map the environment. Another contribution [10]
presents a cooperative research algorithm where drones ex-
plore the environment to search for several unknown targets
while avoiding the obstacles. They aim to minimize the search-
ing time. The authors in [18] present the different parameters
to be taken into account when using potential fields for search
and rescue operations. Their study is mainly based on time,
i.e., they aim to reduce the time of discovery of a target
(of a victim in a natural disaster for example). In a separate
study [16] propose a potential field approach for collecting
data from sensor networks using mobile robots. They consider
a capture field consisting of m sensor nodes and a robot

R whose function is to circulate in the workspace in order
to collect the captured data. The authors consider that each
sensor node is a source of an attractive potential function,
which leads to choosing the radial basis function (RBFs)
centered on each sensor node, this choice is motivated by the
possibility to determine the region of influence of each of the
forces. The cost function that the authors use is based on the
amount of data harvested; specifically, the robot goes to the
nodes with the least available space. When the robot is in the
communication space of a node, the available space is equal
to the capacity of the node from which the space occupied
by the captured data is deduced, adding to this the amount
of data transferred to the robot. On the other hand, when the
robot is far from a sensor node, the remaining space is equal to
the initial space minus the space occupied by the sensed data.
Once the forces have been calculated, the direction vector to
be followed by the robot is obtained by adding all the vectors
to the same vector of the strongest attractive force

III. PROBLEM DEFINITION

In the following, we consider a drone D, and a set of m
sensors N = (s1, s2, ..., sm) deployed within a sensing area
A. In addition, we assume that there is no obstacles in the
considered area. The drone is represented by its coordinates
qd = (xd, yd, zd). We do consider that the sensor nodes are
on the ground, each node is represented by its coordinates on
a 3D plane si = (xi, yi, zi), in our case, the coordinate of the
3rd dimension of all the nodes is equal to ”0”.

Each sensor node has several sensors (temperature, humid-
ity, etc.) and is able to communicate with the other sensor
nodes as well as with the drone through a wireless communica-
tion device with a communication range ri. The sensor nodes
have a limited storage capacity denoted as Ci : ∀i ∈ m. We
consider that each sensor is able to capture the environmental
data with a capture frequency denoted as gi : ∀i ∈ m (different
frequencies for each node of the network). Thus, the amount
of data collected by a sensor node at a time t is represented
as di(t) = gi ∗ t.

As introduced earlier, in this paper we extend the work
proposed by Pereira and al. Thus, as in [16], in this work we
aim to collect as much data as possible while minimizing both
the time needed to collect this data and the drone’s traveling
time. To achieve this goal, our UAV will have to go towards
the region presenting the maximum data to harvest or the areas
that contain the nodes having the least available storage space.
The remaining space ci for each sensor node is estimated with
respect to the data transfer frequency hi as well as the distance
between the sensor nodes and the drone as depicted in the
following:

ci(t) =

{
Ci − di(t) + hi ∗ t for||qd − qi|| < rd

Ci − di(t) otherwise
(1)

Thus, the amount of data stored by each sensor node is then
equal to the capacity of this node from which we subtract the



remaining storage space. The following formula summarizes
this property:

Di = [Ci − ci], 1 ≤ i ≤ m (2)

As in [16], we use potential fields to direct the drone.
We considered that we have only attractive forces, and the
drone will be attracted by the point that emits the greatest
force of attraction. However, unlike [16], in this case, we
do not consider that the sensor nodes are the sources of
attractive forces but all possible points within the sensing area
A. For seek of simplicity, we discretized this space into small
hexagonal cells, and the center of each cell is considered as
being a possible position of the drone. In this case, the center
of the cell is considered as a possible the source of an attractive
force.

According to the last considerations, each point of the area
A is than a possible destination of the drone. If the drone is
placed on this point, we have to compute the amount of data
that could be collected by the drone. In this paper, we assume
that the amount of data available at each cell is equal to the
sum of data available at each sensor located at a maximum
range of rd from that cell. Formally, the amount of potentially
harvested data in each cell is computed by the following
equation:

Qdata(k) =
∑
j∈Vk

Dj (3)

where Vk is the set of neighboring cells of cell k and Dj is
the amount of data present in each cell.

IV. POTENTIAL FUNCTIONS

As defined previously, the Virtual Potential Fields (VPF)
method consists of an artificial potential field that models
the workspace. The obstacles are modeled by repulsive forces
while the goal(s) is represented by attractive force. In this
paper, we consider that our workspace is represented by a
potential function where the drone is attracted by the cells
containing the maximum amount of data. We make use of
the Radial Basis Function [17] defined for each cell of the
capture field. With this feature, we can manage the intensity
of the strength of each cell and its radius of influence. The
function used is of the form:

φk(qd) = αke
− 1

2P2
k

‖qd−qk‖2
(4)

where, k denote the kth hexagonal cell. αk is the maximum
amplitude of the function. Pk is the basis radius. qd refer to
the drone’s position. qk are the coordinates of the center point
of the hexagons.

In this case, we can define the gradient of the function as
following:

5φk(qd) = −αk
‖qd − qk‖

P 2
k

e
− 1

2P2
k

‖qd−qk‖2
(5)

The basis radius of this function must be defined so that
the area with the most amount of data has the largest basis
radius and areas with less data have a smaller basis radius; the

computation of the basis radius of each zone Pk is shown by
the following equation:

Pk = ε[Qdata(k)] (6)

In addition, the amplitude of the function must also be
proportional to the amount of data present in the cell, and
therefore proportional to the base radius. For this, as in [16],
we have used a parameter b that links these two parameters
(αk and Pk) ad following:

αi = pbi (7)

As we can see, as the amount of data increases, the basis
radius and the magnitude of the function increase, which
increases the force of attraction on the drone.

After computing the strength of each cell, the drone must
then move to the area that has the largest basis radius (the
greatest force of attraction). It will have to follow a vector v:

v = max(5φi(qd)) (8)

Finally, by following the vector with the maximal force, the
drone harvests the data that is on its way to the destination
point. The quantity of data collected at a time t is equal to the
sum of the data found on the path of the drone.

V. TEST AND RESULTS

In this section, we evaluate the performance of our ap-
proach. Our aim is to collect the maximum amount of data
while minimizing both the time needed to collect this data
and the drone’s traveling time. The first step is to divide the
network into hexagonal cells, as shown in Figure 1. The second
step is to define and compute the potential functions of each
cell and, finally, that the drone follows the greatest force.

Fig. 1: Representation of the division of the sensing area into
hexagonal cells

We have conducted some tests, considering an area of
250m x 250m which we divided into a set of hexagonal
cells of 34x29 cells. We deployed sensors using the Random
Poisson Process over the sensing area. The drone was initially
positioned at coordinate (0.0, 0.0). Finally, we consider 50
sensor nodes randomly deployed in A.



TABLE I: Characteristics of CC2420

parameter Value
Communication Range 20 m
Battery Capacity 1000 mAh
Voltage 3.3V
Tx Current 17.4mA
Rx Current 18.4mA
Data Packet Length 26 Bytes
Buffer size 1000kbyte

We consider that all the sensor nodes have the same com-
munication range, the same initial energy (battery capacity)
and the same initial storage capacities. Regarding the energy
consumption model, we used the energy values of the CC2420
family [9]. Table I illustrate the characteristics of the consid-
ered sensors.

In order to evaluate the performances of our approach, we
compare our results with the performances achieved using the
approach proposed by Pereira et al. in [16]. We computed the
amount of data collected by the drone when using each of
the two methods. Figure 2 shows the amount of data collected
over time.
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Fig. 2: Time Versus Amount of Data

We note that our method offers better results than Pereira’s
method in terms of data collection time. Over a time interval
of 20 seconds, for example, we find that when we use Pereira’s
method, the amount of data collected is equal to 3500 Bytes
while in the same using our approach we were able to harvests
5900 Bytes. This is due to the fact that the drone is moving
towards areas where we can collect the data of more than one
sensor node, whereas with the Pereira method, the drone is
moving towards a sensor node and collects only that node’s
data.

In figure 3, we plot the amount of data collected versus
the distance traveled by the drone for both our approach and
Pereira’s approach. We can clearly see that when the drone
travels small distances, the performances of both algorithms

are quite similar. Indeed, by traversing up to 1000 m, both
methods allow the drone to harvest about 2000 Bytes. How-
ever, when the drone travels a longer distance, the amount of
data collected using our approach is much greater. For exam-
ple, for a flight of 5000 m, the drone harvests 10000 Bytes
using our method while with the other method it harvests only
5900 Bytes.
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Fig. 3: Distance Versus Amount of Data

In Figure 4 we plot the distances traveled by the drone
to collect different amounts of data. As we can see, using
Pereira’s method the drone need to cover a greater distance
to collect the same amount of data as our algorithm. More
precisely, for a small amount of data 1000 Byte, the drone
travels almost the same distance for both methods. However,
when we increase the amount of data to collect, we find that
using Pereira’s method, the drone travels more than twice the
distance traveled using our method.

Finally, we carried out a second series of simulations when
we varied the number of sensor nodes within the network
(from 10 sensors to 100 sensors), and we computed the
distances required to collect the data. The obtained results are
plotted in Figure 5. As we can see, increasing the number
of sensors leads to a decrease in the traveled distance. For
example, using Pereira’s method and for 10 sensor nodes, the
drone has to travel nearly 16 km to collect 8000 bytes while
for 50 sensor nodes the distance is reduced to 9 km. On the
other hand, using our method and for 10 sensors, the drone
need to travel 10 km to harvest this amount of data. While
using 50 sensor nodes, the distance is reduced by more than
a half. Comparing the two methods, we find that our method
gives better results in terms of the distance necessary to collect
different amounts of data using different numbers of nodes

To conclude, according to our simulations, we found that
our method provides an improvement in performance com-
pared to the method proposed by [16], in terms of distance
traveled and amount of data collected.
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by the drone to collect different quantities of data
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VI. CONCLUSION

In this paper, we presented a simple potential field-based
model for collecting data using a drone. We use as our starting
point the idea used by Pereira et al. [16]. However, we extend
this work by considering that each cell in the area apply an
attractive force on the drone, not only the deployed sensors.
We compared our results with those obtained with Pereira’s
method and we obtained better performance in terms of data
collection time. In other words, for the same period of time
our method collect more data. The second advantage of our
approach is that it leads to a significant reduction in the
distance that the drone must travel.

In future work, we intend to extend this approach by de-
ploying several drones to collect the data. This will introduce

a new challenge to this problem since we also need to consider
repulsive forces in order to avoid collisions between drones.

REFERENCES

[1] S.M. Adams and C.J. Friedland. A Survey of Unmanned Aerial
Vehicle (UAV) Usage for Imagery Collection in Disaster Research and
Management. publisher not identified.

[2] Giuseppe Anastasi, Marco Conti, Mario Di Francesco, and Andrea
Passarella. Energy conservation in wireless sensor networks: A survey.
Ad hoc networks, 7(3):537–568, 2009.

[3] Chris Baker. A combined mechanism for UAV explorative path planning,
task allocation and predictive placement. PhD thesis, University of
Southampton, 2016.

[4] Armir Bujari, Carlos T Calafate, Juan-Carlos Cano, Pietro Manzoni,
Claudio Enrico Palazzi, and Daniele Ronzani. Flying ad-hoc network
application scenarios and mobility models. International Journal of
Distributed Sensor Networks, 13(10):1550147717738192, 2017.

[5] Kai Chang, Yuanqing Xia, Kaoli Huang, and Dailiang Ma. Moving
target tracking of a uav formation. In Control and Decision Conference
(CCDC), 2016 Chinese, pages 2542–2547. IEEE, 2016.

[6] Yong-bo Chen, Guan-chen Luo, Yue-song Mei, Jian-qiao Yu, and Xiao-
long Su. Uav path planning using artificial potential field method
updated by optimal control theory. International Journal of Systems
Science, 47(6):1407–1420, 2016.

[7] Calvin Coopmans and Yiding Han. Aggieair: An integrated and effective
small multi-uav command, control and data collection architecture. In
ASME 2009 International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference, pages 641–
647. American Society of Mechanical Engineers, 2009.

[8] Stephen R Dixon, Christopher D Wickens, and Dervon Chang. Compar-
ing quantitative model predictions to experimental data in multiple-uav
flight control. In Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, volume 47, pages 104–108. SAGE Publications
Sage CA: Los Angeles, CA, 2003.

[9] Texas Instruments. 2.4 ghz ieee 802.15. 4/zigbee-ready rf transceiver.–
2007. Received, 2:20, 2009.

[10] Xiaoting Ji, Xiangke Wang, Yifeng Niu, and Lincheng Shen. Coop-
erative search by multiple unmanned aerial vehicles in a nonconvex
environment. Mathematical Problems in Engineering, 2015, 2015.

[11] Oussama Khatib. Real-time obstacle avoidance for manipulators and
mobile robots. The international journal of robotics research, 5(1):90–
98, 1986.

[12] Taufik Khuswendi, Hilwadi Hindersah, and Widyawardana Adiprawita.
Uav path planning using potential field and modified receding horizon
a* 3d algorithm. In Electrical Engineering and Informatics (ICEEI),
2011 International Conference on, pages 1–6. IEEE, 2011.

[13] Yanping Liu and Kamal K Bharadwaj. A hybrid artificial potential field:
genetic algorithm approach to mobile robot path planning in dynamic
environments. In Computer Science and Convergence, pages 325–333.
Springer, 2012.

[14] Yuecheng Liu and Yongjia Zhao. A virtual-waypoint based artificial
potential field method for uav path planning. In Guidance, Navigation
and Control Conference (CGNCC), 2016 IEEE Chinese, pages 949–953.
IEEE, 2016.

[15] Jaime Paneque-Gálvez, Michael K McCall, Brian M Napoletano,
Serge A Wich, and Lian Pin Koh. Small drones for community-based
forest monitoring: An assessment of their feasibility and potential in
tropical areas. Forests, 5(6):1481–1507, 2014.

[16] Guilherme AS Pereira, Marcelo Borghetti Soares, and Mario Fer-
nando Montenegro Campos. A potential field approach for collecting
data from sensor networks using mobile robots. In Intelligent Robots and
Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International
Conference on, volume 4, pages 3469–3474. IEEE.

[17] Michael JD Powell. Radial basis function for multivariable interpolation:
a review. In IMA Conference on Algorithms for the Approximation of
Functions ans Data, 1985. RMCS, 1985.

[18] Sonia Waharte and Niki Trigoni. Supporting search and rescue op-
erations with uavs. In Emerging Security Technologies (EST), 2010
International Conference on, pages 142–147. IEEE, 2010.

[19] Alexander C Woods and Hung M La. Dynamic target tracking and
obstacle avoidance using a drone. In International Symposium on Visual
Computing, pages 857–866. Springer, 2015.


