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Abstract—With balanced system performance, implementa-
tion complexity and hardware cost, hybrid antenna array is
regarded as an enabling technology for massive multiple-input
and multiple-output communication systems in millimeter wave
(mmWave) frequencies. Angle-of-arrival (AoA) estimation using a
localized hybrid array faces the challenges of the phase ambiguity
problem due to its localized nature of array structure and
susceptibility to noises. This paper discusses AoA estimation
in an mmWave system employing dual-polarized antennas. We
propose an enhanced AoA estimation algorithm using a localized
hybrid dual-polarized array for a polarized mmWave signal.
First, the use of dual-polarized arrays effectively strengthens
the calibration of differential signals and resulting signal-to-
noise ratio with coherent polarization combining, leading to
an enhanced estimate of the phase offset between adjacent
subarrays. Second, given the phase offset, an initial AoA estimate
can be obtained, which is used to update the phase offset.
By employing the updated one, the AoA is re-estimated with
improved accuracy. The closed-form mean square error (MSE)
lower bounds of AoA estimation are derived and compared with
simulated MSEs. The simulation results show that the proposed
algorithm in combination with hybrid dual-polarized arrays
significantly improves the estimation accuracy compared with
the state of the art.

Index Terms—Hybrid dual-polarized array, localized sub-
arrays, angle-of-arrival estimation, polarization diversity and
mmWave communications.

I. INTRODUCTION

Millimeter wave (mmWave) hybrid antenna array is known
as a highly promising technique to achieve great balance
between performance and cost for future cellular communi-
cations [1]–[4]. Unlike the microwave channels characterized
by rich scattering, the line-of-sight propagation dominates
the mmWave channels. Therefore, its angle-of-arrival (AoA)
acquisition is of great concern for signal reception at the
receiver array. Particularly when receiving a polarized signal,
the use of a single-polarized hybrid array often incurs the
received signal power loss and thus poor AoA estimation
accuracy because of the polarization mismatch between the
receiving antennas and the incoming wave. As a result, hybrid
dual-polarized array [5]–[7] is regarded as an effective solution
to immunizing the degradation of signal-to-noise ratio (SNR)
and improving the AoA estimation performance.

A hybrid antenna array typically consists of multiple analog
subarrays with phase-tunable antenna elements. It is classified
into two types of regular configurations, i.e., localized and
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interleaved arrays in terms of antenna distribution in a subarray
[4]. The localized array is easier to build and form a larger
array with multiple modules in feeding networks, and thus
is more practical in terms of hardware feasibility. The AoA
estimation using a localized array has been studied in [8]–[13].
All of them exploit the cross correlations between consecutive
subarrays to extract the AoA information, and seek to solve the
phase ambiguity problem. The phase ambiguity results from an
unknown integer multiple of 2π difference between N times
of an AoA information parameter (i.e., Nu) and the argument
of the cross correlations, where N is the number of antennas in
a subarray and u denotes the AoA information parameter. The
works in [8]–[10] leverage the same phase shift configuration
across different subarrays for constructive accumulation of
cross correlations. In [8], a differential beam search algorithm
is proposed to search all possible beams and select the estimate
with the maximum output power, which however introduces
a long estimation delay. An adaptive searching and tracking
algorithm is then developed in [9] to speed up the searching
process. To avoid this delay, a frequency-domain AoA esti-
mation algorithm applied to a wideband array is proposed in
[10], whereas the noise induced by the conjugate product of
cross correlations is greatly amplified.

The authors in [11] propose a novel subarray-specific phase
shift configuration to remove the ambiguity by directly es-
timating u. Its basic idea is that Nu is firstly estimated by
calibrating the signs of cross correlations and combining them
constructively. By suppressing ejmNu in the mth subarray
output signal, one can take its inverse discrete Fourier trans-
form (IDFT), and then calculate the correlations of the Fourier
coefficients to unambiguously estimate u. Furthermore, the
authors in [12], [13] generalize the phase shift designs of
[11] to narrowband and wideband systems respectively, and
find the cross correlations with the same signs except the
greatest one. This improves the calibration accuracy of cross
correlations and thus coherent combining for estimating Nu.
Without consideration of the polarization, all of the above
works only study the AoA estimation using a single-polarized
hybrid array. However, in practice, the reception of a polarized
wave has a significant impact on AoA estimation accuracy due
to polarization mismatch. Therefore, we propose to employ
hybrid dual-polarized arrays for the AoA estimation of a
polarized wave.

In this paper, we study the reception of a polarized mmWave
signal using a localized hybrid dual-polarized array. It is shown
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Fig. 1. Illustration of a localized dual-polarized array with two subarrays.

that exploiting dual-polarized arrays can efficiently align the
signs of differential signals and thus enhance the SNR of Nu
estimation with polarization combining. An enhanced AoA es-
timation algorithm using subarray-specific time-varying phase
shifts is proposed accordingly, where the AoA information,
u, is re-estimated by updating the estimate of Nu. In the
context of both dual-polarized and single-polarized arrays, we
also derive the closed-form mean square error lower bounds
(MSELBs) for the AoA estimation, respectively. Simulation
results demonstrate that the proposed algorithm together with
hybrid dual-polarized arrays outperforms the state of the art
in terms of estimation accuracy.

II. SYSTEM MODELS

Consider a uniform linear hybrid dual-polarized array with
M localized subarrays, each having N electromagnetic vector
sensors (EMVS) [14]. Each EMVS includes two spatially
collocated orthogonal dipoles, denoted by x-axis and y-axis
dipoles respectively, which are used to measure the com-
ponents of the incoming electric field projected onto the
directions of x- and y-axes. As a result, two replicas of the
signals collected from all the x- and y-axis dipoles can be
obtained respectively for subsequent signal processing. Prior to
coherent combining of the received signals from dual dipoles,
each of them is separately and identically processed in analog
and digital domains. An example of a dual-polarized array with
two localized subarrays and the associated signal processing
modules are illustrated in Fig. 1, where the radio frequency and
down conversion modules are omitted for simplicity. Note that
the module named “Two y-axis Dipole Subarrays” enclosed in
the solid box has the same components with the one named
“Two x-axis Dipole Subarrays” shown in the dashed box.

Consider the reception of a transverse electromagnetic
wave signal s̃(t) with elevation angle θ and polarization
state (γ, η) produced by its electric field [14]. γ ∈ [0, π2 )
and η ∈ [−π, π) represent the auxiliary polarization an-
gle and the polarization phase difference, respectively. For
example, η = 0 refers to linearly-polarized waves, while

γ = π
4 and η = ±π2 refer to left/right circularly-polarized

wave. As a result, the electric field vector e is expressed
in Cartesian coordinates as e = exvx + eyvy + ezvz ,
where v is a unit vector along the subscript’s coordinate,
and [ex, ey, ez] = [sin γ cos θejη, cos γ,− sin γ sin θejη] de-
note the responses of the corresponding subscripts. After
down-conversion and analog-to-digital (A/D) conversion, the
received signal through the mth subarray, m = 0, ...,M − 1,
can be expressed as

[smx (t), smy (t)] =[ex, ey] · s̃(t)Pmt (u)ejmNu

+ [nmx (t), nmy (t)], (1)

where smx (t) and smy (t) denote the signals received by x- and
y-axis dipoles respectively, and Pmt (u) is the radiation pattern
of the mth subarray at the tth symbol, expressed as

Pmt (u) =

N−1∑
n=0

P̌mn (u)ej(nu+α
m
t (n)), (2)

with P̌mn (u) denoting the radiation pattern of the nth x-/y-axis
dipole (n = 0, ..., N−1) at the mth subarray. As in [11], [12],
we assume that P̌mn (u) = 1 in this paper. αmt (n) denotes the
corresponding phase shift of the nth EMVS and u = 2π

λ d sin θ.
λ is the wavelength of the carrier, and d denotes the spacing
between adjacent EMVS. [nmx (t), nmy (t)] are the independent
complex additive white Gaussian noises corresponding to x-
and y-axis dipoles at the outputs of the mth subarray with the
same power σ2

n.

III. ENHANCED AOA ESTIMATION ALGORITHM

In this section, we apply the phase shift designs in [12]
to hybrid dual-polarized arrays to obtain an estimate of Nu,
which is then used to suppress ejmNu in the output signal of
the mth subarray followed by the estimation of u.

A. Estimation of Nu

As in [12], the nth (n = 0, ..., N − 1) phase shift of the
mth (m = 0, ...,M − 1) subarray at the tth (t = 0, ..., T − 1)
symbol is given by

αmt (n) = −nαmt =
−2πn(mod{m,K}T + t)

L
, (3)

where αmt denotes the phase shift difference between any two
adjacent EMVS of the mth subarray at the tth symbol, which
indicates that each subarray directs at a predefined direction;
K is the number of different phase shifts for any symbol.
Specifically, K ∈ (2,M ] and N = QK, where Q is an integer;
T is the number of reference signals; L = TK is the overall
number of different phase shifts adopted in the system. The
configuration given by (3) enables the array to sweep L evenly
distributed directions within [−π, π), thereby guaranteeing
AoA acquisition using at least one of the L beams with high
gain; mod{·, ·} stands for the modulo operation, and thus
mod{m,K} implies that the cycle of αmt occurs every K
subarrays in a symbol.



By substituting (3) into (2), one can rewrite it as

Pmt (u) =

N−1∑
n=0

ejn(u−α
m
t ) = ej(N−1)ω

m
t

sin(Nωmt )

sin(ωmt )
, (4)

where ωmt = (u − αmt )/2. When the first K subarrays are
considered, ωmt can be simplified as ωmt = u

2 − π(mK + t
L ).

Calculating the differential signals between the output signals
of the mth and (m+ 1)th subarrays generates

[ρmx (t), ρmy (t)]

=[(smx (t))∗sm+1
x (t), (smy (t))∗sm+1

y (t)]

= [|ex|2, |ey|2] · |s̃(t)|2Gmt (u)ejNu︸ ︷︷ ︸
signal component

+[zmx (t), zmy (t)], (5)

where

Gmt (u) =(Pmt (u))∗Pm+1
t (u)

=e
−j(N−1)π

K
sin(Nωmt ) sin(Nωm+1

t )

sin(ωmt ) sin(ωm+1
t )

=e
−j(N−1)π

K
(−1)Q sin2(Nωmt )

sin(ωmt ) sin(ωm+1
t )

, (6)

[zmx (t), zmy (t)] are approximated as the zero-mean complex
Gaussian noises given by

zml (t) =(nml (t))∗nm+1
l (t)+e∗l s̃

∗(t)(Pmt (u))∗e−jmNunm+1
l (t)

+ els̃(t)P
m+1
t (u)ej(m+1)Nu(nml (t))∗, l ∈ {x, y}

and (·)∗ and |(·)| represent the conjugate and absolute value
of (·), respectively. Eq. (5) shows that ρmx (t) and ρmy (t) have
an identical phase, Nu, in signal component, and their sum
has their individual components added in phase.

It is also stated by the Theorem 1 [12] that among the
terms, Gmt (u), m = 0, ...,K−1, only Gm

′

t (u) with the largest
amplitude has the opposite sign of the remainings. Therefore,
we propose to find m′ which leads to the largest amplitude of
ρmx (t) + ρmy (t), i.e.,

m′ = argmax
m=0:K−1

{
|ρmx (t) + ρmy (t)|

}
. (7)

Given m′, the signs of the differential signals can be aligned
following

[ρ̃mx (t), ρ̃my (t)] =

{
(−1)Q[ρmx (t), ρmy (t)], m 6= m′

(−1)Q+1[ρm
′

x (t), ρm
′

y (t)], m = m′
(8)

to perform in-phase combination for the estimate of Nu, N̂u.
Specifically, we can combine ρ̃mx (t) and ρ̃my (t) across all
subarrays and symbols constructively to improve the accuracy
of N̂u as shown in Algorithm I, where arg{·} denotes the
argument of the complex number (·).

Note that, compared with Step 11 of Algorithm 1 in [12],
Step 6 of our algorithm can enhance the ability of identifying
the correct m′ by in-phase combining the differential signals
of EMVS, thus effectively suppressing the noise and indirectly
improving the SNR of estimation. This will be verified in
simulation results. Also, we exploit the coherent combining
of the aligned differential signals from dual dipoles at Step 10
to directly achieve SNR gains over that in [12].

Algorithm 1 Enhanced AoA Estimation
Input: [smx (t), smy (t)], m = 0 : M − 1, t = 0 : T − 1;
Output: û;

1: for t = 0 : T − 1 do
2: Calculate [ρmx (t), ρmy (t)] by (5), m = 0 : M − 2;
3: if K = M then
4: ρK−1l (t)← (sK−1l (t))∗s0l (t), l ∈ {x, y};
5: end if
6: Determine m′ by (7);
7: ρ̃ml (t)← (−1)Qρml (t), m = 0 : M − 2, l ∈ {x, y};
8: ρ̃ml (t)← −ρ̃ml (t), m = m′ : K : M − 2, l ∈ {x, y};
9: end for

10: N̂u← arg

{
e
j(N−1)π

K

T−1∑
t=0

M−2∑
m=0

(ρ̃mx (t) + ρ̃my (t))

}
;

11: for t = 0 : T − 1 do
12: s̃ml (t)← sml (t)e−jmN̂u, m = 0 : M − 1, l ∈ {x, y};
13: for q = 0 : bM/Kc − 1 do
14: s̃ql (t)←

{
s̃qKl (t), s̃qK+1

l (t), ..., s̃
(q+1)K−1
l (t)

}
;

15: S̃ql (t)← IDFT {s̃ql (t)};
16: end for
17: s̃

bM/Kc
l (t)←

{
s̃
bM/KcK
l (t), ..., s̃M−1l (t),

18: s̃
M−bM/KcK
l (t), ..., s̃K−1l (t)

}
;

19: S̃
bM/Kc
l (t)← IDFT

{
s̃
bM/Kc
l (t)

}
;

20: end for

21: I(t)←
bM/Kc∑
q=0

∑
l∈{x,y}

(
S̃ql (t)

)∗
(1:K−1)

(
S̃ql (t)

)T
(2:K)

;

22: û← arg

{
T−1∑
t=0

e
j2πt
L I(t)

}
;

23: N̂u← Nû, and repeat Steps 11-22.

B. Estimation of u

Given N̂u, one can calibrate the output signals of
subarrays, [smx (t), smy (t)], by multiplying e−jmN̂u, i.e.,
[smx (t), smy (t)]e−jmN̂u. Given that ejm(Nu−N̂u) ≈ 1,
[smx (t), smy (t)] can be nearly perfectly calibrated. Then, by
performing the K-point IDFTs of [smx (t), smy (t)]e−jmN̂u, one
can produce [S̃kx(t), S̃ky (t)], m, k = 0, ...,K − 1, given by

[S̃kx(t), S̃ky (t)] ≈ [ex, ey] · s̃(t)pkt (u) + [Nk
x (t), Nk

y (t)], (9)

where

pkt (u) = ej[k(u−
2πt
L )+(N−K)(u2−

πt
L )] sin

(
Nu
2 −

Nπt
L

)
sin
(
Ku
2 −

Kπt
L

) (10)

and [Nk
x (t), Nk

y (t)] are the K-point IDFTs of
[nmx (t), nmy (t)]e−jmN̂u, m, k = 0, ...,K − 1.

We compute the differential signals between any two ad-
jacent IDFT outputs, [(S̃kx(t))∗S̃k+1

x (t), (S̃ky (t))∗S̃k+1
y (t)], to

obtain an estimate of u. The differential signals, denoted by



[dkx(t), dky(t)], k = 0, ...,K − 2, can be expressed as

[dkx(t), dky(t)]=[|ex|2,|ey|2]|s̃(t)|2
∣∣∣∣∣sin

(
Nu
2 −

Nπt
L

)
sin
(
Ku
2 −

Kπt
L

)∣∣∣∣∣
2

ej(u−
2πt
L )

︸ ︷︷ ︸
signal components

+ [Ñk
x (t), Ñk

y (t)], (11)

where

Ñk
l (t) =(Nk

l (t))∗Nk+1
l (t) + e∗l s̃

∗(t)(pkt (u))∗Nk+1
l (t)

+ els̃(t)p
k+1
t (u)(Nk

l (t))∗, l ∈ {x, y}

can be approximated as complex Gaussian noises with zero
means, and noise powers σ2

Ñl
= 2|el|2|s̃(t)|2|pkt (u)|2σ2

Nl
. σ2

Nl

denotes noise power of Nk
l (t) (l ∈ {x, y}) given by σ2

Nl
=

σ2
n/K. It is seen from (11) that the estimate of u, û, can be

unambiguously obtained by û = arg
{

(dkx(t) + dky(t))e
j2πt
L

}
.

Likewise, [dkx(t), dky(t)] over all subarrays and symbols can be
merged to improve the accuracy of û.

Unlike the Algorithm 2 in [12], we propose to use û to
update N̂u, i.e., N̂u← Nû, and in turn to re-estimate u. As
a result, the estimation accuracy of u is improved after one
iteration due to the upgraded N̂u. The improved MSE perfor-
mance of N̂u and the resulting û will be demonstrated in the
simulation results. The enhanced AoA estimation algorithm is
summarized in Algorithm I, where

(
S̃ql (t)

)
(k1:k2)

denotes the

vector consisting of the k1th to k2th elements of S̃ql (t) and
(·)T represents the transpose of (·).

C. Extension to Uniform Planar Array

The proposed algorithm can be readily extended from
uniform linear arrays to uniform planar arrays. Let Mx and
My denote the numbers of subarrays along x- and y-axis
directions, and Nx and Ny , the numbers of EMVS in a
subarray along the two directions. At the tth symbol, the (nx,
ny)th (nx = 0, ..., Nx − 1; ny = 0, ..., Ny − 1) phase shift of
the (mx, my)th (mx = 0, ...,Mx − 1; my = 0, ...,My − 1)
subarray is given by

α
mx,my
t (nx, ny) =− 2πnx (mod{mx,Kx}/Kx + t/Lx)

− 2πny (mod{my,Ky}/Ky + t/Ly) ,
(12)

and the associated radiation pattern is

P
mx,my
t (ux, uy) =ej(Nx−1)ω

mx
x,t

sin(Nxω
mx
x,t )

sin(ωmxx,t )

· ej(Ny−1)ω
my
y,t

sin(Nyω
my
y,t )

sin(ω
my
y,t )

, (13)

where ux = 2π
λ d sin θ cosφ, uy = 2π

λ d sin θ sinφ and φ
denotes the azimuth angle of the received signal; ωmxx,t =
ux
2 − π(mxMx

+ t
Lx

) and ω
my
y,t =

uy
2 − π(

my
My

+ t
Ly

) assuming
Kx = Mx and Ky = My; (Kx, Ky) and (Lx, Ly) are
the extensions of K and L to the x- and y-axis directions,
respectively.

For the subarrays along x-axis direction, the corresponding
Gmxt (ux, uy) in (6) is given by

Gmxt (ux, uy)

=(P
mx,my
t (ux, uy))∗P

mx+1,my
t (ux, uy)

=e
−j(Nx−1)π

Kx

(−1)Qx sin2(Nxω
mx
x,t )

sin(ωmxx,t ) sin(ωmx+1
x,t )

·

∣∣∣∣∣ sin(Nyω
my
y,t )

sin(ω
my
y,t )

∣∣∣∣∣
2

, (14)

where Qx is the extension of Q to the x-direction. It is

observed from (14) that since
∣∣∣∣ sin(Nyωmyy,t )sin(ω

my
y,t )

∣∣∣∣2 > 0 assuming

sin(Nyω
my
y,t )

sin(ω
my
y,t )

6= 0, the Theorem 1 [12] is still applicable here,
i.e.,

m′x = argmax
mx=0:Kx−1


∣∣∣∣∣∣
My−1∑
my=0

(
ρmxx (t) + ρmxy (t)

)∣∣∣∣∣∣
 , (15)

where ρmxx (t) and ρmxy (t) denote the differential signals be-
tween the output signals of the (mx, my)th and (mx + 1,
my)th subarrays for x- and y-axis dipoles, respectively. All
available subarray outputs along y-axis direction are coherently
combined for finding m′x in order to improve the SNR of the
differential signals. Given m′x, the signs of [ρmxx (t), ρmxy (t)]
can be aligned following (8) as [ρ̃mxx (t), ρ̃mxy (t)]. As a result,
N̂xux can be obtained by

N̂xux=arg

e j(Nx−1)π
Kx

T−1∑
t=0

My−1∑
my=0

Mx−2∑
mx=0

(ρ̃mxx (t) + ρ̃mxy (t))

 .

Likewise, we have N̂yuy by determining m′y . Given N̂xux and
N̂yuy , we can estimate ux and uy unambiguously following
a similar way to the estimation of u in Algorithm I.

IV. AOA ESTIMATION PERFORMANCE EVALUATION

In the following, we evaluate the performance of the pro-
posed algorithm using the MSEs of û, and derive its closed-
form MSELBs. The ideal case for û occurs when N̂u = Nu,
i.e., ejm(Nu−N̂u) = 1. This corresponds to the case where
the output signals of all subarrays are perfectly aligned. From
(11) and Step 22 in Algorithm I, the estimation of u is
formulated as the phase estimation of the accumulation of
dqK+k
x (t)+dqK+k

y (t) over all k, q and t (denoted by D), given
s̃(t), u, γ and η (collectively denoted by c). For convenience of
analysis, consider M = K, and hence D is complex Gaussian
distributed with conditional mean

mD = (|ex|2 + |ey|2)

T−1∑
t=0

K−2∑
k=0

|s̃(t)|2|pkt (u)|2ej(u− 2πt
L ) (16)

and conditional variance

σ2
D =

T−1∑
t=0

K−2∑
k=0

(σ2
Ñx

+ σ2
Ñy

)

=
2(|ex|2 + |ey|2)σ2

n

K

T−1∑
t=0

K−2∑
k=0

|s̃(t)|2|pkt (u)|2. (17)



As a result, the conditional SNR of D given c, γc, is given
by

γc =
|mD|2

σ2
D

=
K(|ex|2 + |ey|2)

2σ2
n

T−1∑
t=0

K−2∑
k=0

|s̃(t)|2|pkt (u)|2.

(18)

Taking the expectation of γc over c and assuming d = λ/2,
we have the average SNR of D, γ̄, as

γ̄ =
Kγs

2

T−1∑
t=0

K−2∑
k=0

Eu,γ
{
|pkt (u)|2(sin2γ(1−u2/π2)+cos2γ)

}
=
Kγs

2

T−1∑
t=0

K−2∑
k=0

Eu
{
|pkt (u)|2

}
− Kγs

2π2

T−1∑
t=0

K−2∑
k=0

Eγ
{

sin2 γ
}
· Eu

{
|upkt (u)|2

}
(a)
=
NT (K − 1)γs

2
− K(K − 1)γs

8π3

·
T−1∑
t=0

∫ π

−π

∣∣∣∣∣u sin
(
Nu
2 −

Nπt
L

)
sin
(
Ku
2 −

Kπt
L

) ∣∣∣∣∣
2

du, (19)

where γs = E
{
|s̃(t)|2
σ2
n

}
. (a) holds because

Eu{|pkt (u)|2} =
1

2π

∫ π

−π

∣∣∣∣∣ sin
(
Nu
2 −

Nπt
L

)
sin
(
Ku
2 −

Kπt
L

) ∣∣∣∣∣
2

du = N/K

(20)

by assuming u uniformly distributed within [−π, π), denoted
by u ∼ U(−π, π). We also assume γ ∼ U(0, π/2) in (19).

Denote the probability density function (pdf) of û as fû(û).
Assuming that |s̃(t)| is Rayleigh distributed, we have fû(û) =
f1(û, γ̄). At high SNRs, f1(û, γ̄) is approximated as [8]

f1(û, γ̄) ≈
√
γ̄π2 + 1

2π(γ̄û2 + 1)3/2
, −π ≤ û < π. (21)

If |pkt (u)| achieves the maximum value Q, f1(û, γ̄) will be
the true pdf of û. However, since |pkt (u)| ≤ Q, ∀k, t, u, there
will be an SNR reduction. Moreover, our derivation is based
on the assumption of N̂u = Nu. As a result, the actual MSE,
σ2
û, will always be greater than that calculated using f1(û, γ̄),

i.e.,

σ2
û ≥

∫ π

−π
û2f1(û, γ̄)dû

=

√
γ̄π2 + 1

πγ̄3/2
sinh−1(

√
γ̄π)− 1

γ̄
= MSELB. (22)

This MSELB is asymptotically tight as T and K increase.
Similarly, when the signal reception is performed with a
single-polarized hybrid array, the average SNRs of D using
x- or y-axis dipoles only are given by γ̄x = γ̄ − γ̄y and
γ̄y = NT (K−1)γs

4 , respectively. By substituting them into (22),
it can be verified that the MSELB in [12] is a special case of
our results.
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Fig. 2. Detection probability of m′, Pd versus γa, where N = 8 and T = 4.

V. SIMULATION RESULTS

In this section, we present the simulation results to eval-
uate the proposed algorithm and analysis using hybrid dual-
polarized arrays. We also simulate the state of the art [12]
using hybrid single-polarized arrays for comparison. Denote
the average SNR per EMVS as γa, which is given by
γa = Nγs. The reference signals, s̃(t), are generated following
complex Gaussian distributions. Considering the reception of
polarized signals following u ∼ U(−π, π), γ ∼ U(0, π/2) and
η ∼ U(−π, π), simulation results are obtained by averaging
50000 independent trials.

Fig. 2 compares the detection probability of m′, Pd, versus
γa using dual-polarized and single-polarized (x-axis dipoles)
arrays, where the number of EMVSs in each subarray, N , is
fixed to be 8 and the number of reference signals, T , is set to
be 4. As shown in the figure, the dual-polarized array outper-
forms the single-polarized one in the state of the art in terms
of Pd, which is defined as the probability of correctly finding
the index of differential signals with the largest amplitude.
It indicates that the use of dual-polarized arrays is better on
calibrating the signs of differential signals and thus improves
the accuracy of N̂u. Also, using more subarrays results in
higher detection probability as γa increases.

The MSEs of the estimates are shown as a function of γa
in Fig. 3, where N = 8 and M = K = T = 4. It can be seen
that the MSEs of both ejN̂u (refer to Step 10) and û1 (refer to
initial estimate at Step 22) in Algorithm I using dual-polarized
arrays (plus sign marker) are lower than those using single-
polarized arrays (diamond marker), which are in line with the
results in Fig. 2. Along with the update of N̂u (red plus sign
marker) to be Nû1 (red circle marker), its MSE performance
is improved by up to 5dB at the MSE of 0.1. It is also shown
that a resulting 2dB improvement of AoA estimation from û1
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Fig. 3. The MSEs under different scenarios versus γa, where N = 8 and
M = K = T = 4.

(black plus sign marker) to û2 (black circle marker and refer
to the updated estimate at Step 23) can be achieved because
of the improved N̂u. The MSEs of û (cross marker) under
the assumption that N̂u = Nu, i.e., the output signals of all
subarrays are perfectly aligned, are displayed for comparison.

The simulated MSEs and calculated MSELBs using dual-
polarized and single-polarized (x/y-axis dipoles) arrays under
different numbers of reference signals are respectively plotted
in Fig. 4, where γa is fixed to be 0dB, N = 16 and M = K =
8. It is seen from Fig. 4 that the MSELBs become increasingly
tight to the proposed algorithm using dual-polarized arrays as
the number of reference signals increases. The gaps between
the simulated MSEs and MSELBs for the proposed one are
closer than those in [12].

VI. CONCLUSION

An enhanced AoA estimation algorithm using localized
hybrid dual-polarized arrays is developed to improve the
AoA estimation accuracy for a polarized mmWave signal.
Employing the polarization diversity, dual-polarized antennas
can effectively enhance the calibration capability of the signs
of differential signals, and thus the SNR for AoA estimation.
Simulation results of MSEs show that, through updating
the estimate of phase offset between adjacent subarrays, the
proposed algorithm is able to dramatically improve the AoA
estimation performance.
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