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Abstract—Recently, a higher competition in logistics business
introduces new challenges to the vehicle routing problem (VRP).
Re-route planning, also known as dynamic VRP, is one of the
important challenges. The re-route planning has to be performed
when new customers request for deliveries while the delivery
vehicles, i.e., trucks, are serving other customers. While the re-
route planning has been studied in the literature, most of the
existing works do not consider different uncertainties. Therefore,
in this paper, we propose two systems, i.e., (i) an offline package
pickup and delivery planning with stochastic demands (PDPSD)
and (ii) a re-route package pickup and delivery planning with
stochastic demands (Re-route PDPSD). Accordingly, we formu-
late the PDPSD system as a two-stage stochastic optimization. We
then extend the PDPSD system to the Re-route PDPSD system
with a re-route algorithm. Furthermore, we evaluate performance
of the proposed systems by using the dataset from Solomon
Benchmark suite and a real data from a Singapore logistics
1company. The results show that the PDPSD system can achieve
the lower cost than that of the baseline model. In addition, the
Re-route PDPSD system can help the supplier efficiently and
successfully to serve more customers while the trucks are already
on the road.

Index Terms—VRP, optimization, Stochastic, Re-route, Dy-
namic

I. INTRODUCTION

In Singapore, the e-commerce industry is predicted to grow

more than five times and reach S$7.5 billion by 2026 [1]. The

e-commerce introduces complicated logistics requirements for

package pickup and delivery. The vehicle routing problem

(VRP) was first proposed in 1959 [2] to help a shipper

effectively plan its delivery. Many researchers have extended

the traditional VRP in many aspects. One of the significant

aspects is stochastic VRP, which can be referred to as VRP

with one or more random parameters. The random parameters

are common in a real situation in which shippers and suppliers

do not have complete information about the delivery demand

and other parameters a priori. Moreover, the planning by the

shipper has to be dynamic as the customers can request for

package pickup and delivery anytime. This is known as re-

route planning issue in which the shipper must adjust and re-

optimize truck utilization dynamically. Note that the planning

becomes more challenging when the available trucks of the

shipper cannot support all the requests, and the delivery has

to be outsourced to a third-party carrier to minimize the

customers’ dissatisfaction.
In this paper, we consider the re-route planning of the

shipper. In the scenario under consideration, the pickup and

delivery requests from customers are generated dynamically,

e.g., throughout the day. The shipper first decides whether

to accept or reject the requests given available trucks. If the

request is accepted, the shipper has to decide how to utilize

and re-route the trucks that might be already serving other cus-

tomers to accommodate the new request. On the other hand, if

the request is rejected, the shipper will outsource the package

pickup and/or delivery to a third-party carrier which typically

incurs a higher cost. To achieve an efficient solution for the

shipper, we propose a re-route package pickup and delivery

planning with stochastic demand (Re-route PDPSD) system.

The Re-route PDPSD system aims to help the shipper to (i)

plan trucks’ routing given that customers’ package sizes are

random, (ii) decide whether to accept or reject new customers

while the trucks are serving the other customers, and (iii) re-

plan the trucks’ routing when the new customer requests are

accepted. The main objective is to minimize the total delivery

cost. In this regard, we first present the offline package pickup

and delivery optimization with stochastic demand (PDPSD)

system formulated as a two-stage stochastic optimization. The

optimization can be solved as a linear programming. In the

first stage, trucks are reserved in advance while the routes of

trucks are decided in the second stage. Secondly, the Re-route

PDPSD system is presented as an extension of the PDPSD

system. In this case, a re-optimization algorithm is developed

and included in the Re-route PDPSD system. To this end,

we perform performance evaluation of the Re-route PDOSD

system by using dataset from both Solomon benchmark suite

and a real dataset obtained from Singapore logistics company.

Compared with the offline version, the Re-route PDOSD

system enables the shipper to serve more customers with a

lower total delivery cost.

II. RELATED WORK

A number of researchers studied the Vehicle Routing Prob-

lem (VRP) to help a shipper effectively plan its delivery. The

traditional VRP has been analyzed from different aspects, and

the VRP with uncertainty is one of the major aspects [3] [4].

The VRP with uncertainty can be divided into two types, i.e.,

non-anticipative and anticipative. The former is only react

to updates based on the new data, and the latter considers

knowledge on the new data (e.g. probability) to predict the

future [5]. In general, the non-anticipative method is designed

for a dynamic and deterministic problem, while the antici-

pative method is developed for a static and stochastic (also

known as offline stochastic) problem. The difference between

http://arxiv.org/abs/1908.07827v1
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TABLE I: Classification of VRP with uncertainty

Deterministic input Random inputs

Inputs are known in advance static and deterministic static and stochastic
Inputs change overtime static and dynamic dynamic and stochastic

dynamic and stochastic are explained in Table I. Moreover,

the survey [6] shows that few existing works consider both

dynamic and stochastic problems simultaneously. Furthermore,

almost all of them are dedicated for the VRP with one

random parameter, e.g. customer location, customer demand,

or traveling time.
The authors in [7] proposed a model to solve the dynamic

and stochastic VRP with a sample scenario hedging heuris-

tic. They considered the case that customers’ addresses and

demands are known at the same time. They formulated the

model as a multi-stage stochastic optimization. Each stage is

separated from the other stages by the event that new requests

are generated. In their system formulation, the first stage and

the second stage decision variables are not decided at the same

time. This means that the solution of the first stage is not

based on the second stage. In their study, only the results

from the heuristic solver were analyzed. Later on, the authors

in [5] considered the dynamic and stochastic VRP with random

customers’ locations and demands as in [7]. The authors in [5]

proposed a new framework, which is java implementation of

the multiple scenario approach. The adaptive variable neigh-

borhood search is used in the framework. However, they only

focused on the heuristic solver. In addition, the authors in [8]

and [9] also focused on modeling and formulating the dynamic

and stochastic optimization problem for logistics application.

They obtained their experiment results from CPLEX solver.

However, their main goal is on the container allocation, not

vehicle routing.
Unlike the above works and other existing studies, we

focus on defining reasonable scenarios and realistic system

model as well as developing problem formulations, i.e., an

exact method. We also consider both customers’ locations and

demands as the random parameters, where the values of both

may or may not be known at the same time. As such, the

system model is more suitable in practice, and the problem

formulations are more general. Then, we propose the Re-

route PDPSD system with two components, i.e., the stochastic

optimization and the re-route algorithm. New dependency

constraints and capacity constraints are proposed for pickup

and delivery VRP. The optimization is formulated as a linear

programming, which can be solved by standard solvers.

III. SYSTEM MODEL AND ASSUMPTIONS

In this section, we present the system model for the re-route

planning for a shipper. Then, we discuss the offline PDPSD

and the Re-route PDPSD systems. The offline PDPSD system

only considers the customers that submit requests before the

first stage begins, i.e., a day before the delivery date. On the

contrary, the Re-route PDPSD system allows the shipper to

serve the customers that submit the requests later, i.e., when

the trucks are already serving the other customers. Figure 1

shows the timing diagram of both the systems. Again, the Re-

route PDPSP system is an extension of the offline PDPSD

Fig. 1: Timing Diagram of the offline PDPSD system and the

extended Re-route PDPSD system

system. In both the PDPSP systems, we consider two type of

services, i.e., package pickup and delivery. The detail of each

stage is explained as follows:
• First stage: Trucks are reserved in advance, and the customers

are allocated to be served by either the shipper’s truck or a
third-party carrier.

• Second stage: After the sizes of customer packages are ob-
served, the trucks’ routes are decided.

• Third stage: Trucks perform delivery based on the routes from
the second stage. Meanwhile, a new customer may request for
a service, i.e., either pickup or delivery.

• Fourth stage: When the re-route/re-plan time is required, the
system helps the shipper to decide whether to accept or reject
customer requests. Note that the re-route/re-plan time needs
to be set by the shipper. Meanwhile, the trucks still perform
delivery on the road based on the routes from the second stage.

• Fifth stage: After the actual sizes of customer packages are
observed, the trucks’ routes are re-generated by adding new
customers to the plan and removing the served customers from
the plan.

Note also that the shipper can set multiple re-route time points

by repeating the third, fourth, and fifth stages iteratively as

shown in Figure 1.

In both the systems, we consider the problem that all trucks

must start and end their journey at the shipper’s depot. The

depot is denoted as D. Let T = {. . . , Tt, . . . } denote a set of

trucks. Each truck has its capacity limit denoted as lt. Let C =
{. . . , ci, . . . } denote a set of customers. Each customer may or

may not require the service, i.e., pickup service and delivery

service. If customer ci requires the service, then ki = 1, and

ki = 0 otherwise. Without loss of generality, we consider that

one customer has one package to be picked up or delivered.

The package size of customer i is denoted as ai. Here, ai has

a negative value if customer i requires the delivery service,

and ai has a positive value if customer i requires the pickup

service. In the first stage, the sizes of packages are unknown.

Let Ω = {. . . ,Ωω, . . . } be a set of package size scenarios,

where each ω consists of ai for all i ∈ C, and thus ai(ω)
represents the size of package of customer i when scenario ω

occurs.
When a customer requires the pickup or delivery service, the

shipper can either serve the customer by a truck or outsource

the customer to a carrier, i.e., pay penalty. Let L = C ∪ {D}
denote a set of locations. A dependency may exist between

two locations in L, where u and v are the indexes of set L.

For example, customer i requires a truck to pick up a package,

and this package needs to be delivered to customer j. As such,
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customer i must be visited before customer j. Let du,v denote

a dependency input, where du,v = 1 when location u needs

to be visited before and location j, and di,j = 0 otherwise.

There are three costs involved in the systems. Let Ĉt denote

the initial cost of truck t, C̈u,v denote the routing cost from

location u to location v, and C̄ denote the penalty or the

outsourcing cost.

IV. OPTIMIZATION FORMULATIONS

We present both the offline PDPSD and Re-route PDPSD

formulations in this section. The offline and Re-route PDPSD

systems are distinguished by the number of times that infor-

mation is received. For the offline PDPSD system, the shipper

plans the trip at the beginning of the day. By contrast, for

the Re-route PDPSD system, the shipper can plan and re-plan

package pickup and delivery of customers multiple times in a

day. Let T = {0, 1, 2, . . .} denote a set of the request times

that the shipper re-route/re-plans the trip in one day, and T

denote the index of set T. As shown in Figure 1, T = 0
represents the time before the first stage, T = 1 represents the

third stage, T = 2 represents the sixth stage, and so on. In

the Re-route PDPSD system, the first/initial plan is decided

based on the customers’ information at time T = 0, and

the system re-generates the new plan at time T = h based

on (i) the previous trip at time T = r, r ≤ h and (ii) the

customer requests that the shipper receives before time T = h.

The offline PDPSD system considers only the request at time

T = 0, while the Re-route system considers all the request

times in set T.

A. Offline PDPSD system formulations

We formulate the offline PDPSD system as a stochastic

programming. The objective is to minimize the total delivery

cost, i.e., (i) the initial cost, (ii) the routing cost, and (iii)

penalty or the outsourcing cost for handle the packages which

are not served by a shipper’s truck. The objective function is

defined as in (1).

In the PDPSD system, four binary, one integer, and one

floating decision variables are defined. The details of the

variables are given as follows:

• Ut is an indicator whether truck t will be used or not.

Ut = 1 when truck t will be used, and Ut = 0 otherwise.

• Wi,t is an indicator of the truck allocation. Wi,t = 1
when customer i will be served by truck t, and Wi,t = 0
otherwise.

• Vu,v,t(ω) is an indicator whether truck t will use the path

from location u to location v or not. Vu,v,t = 1 when the

path will be used, and Vu,v,t = 0 otherwise.

• Yi is an indicator whether customer i will be served by

the third-party carrier or not. Yi = 1 when none of the

shipper’s trucks will serve customer i and penalty or

outsourcing cost needs to be paid, and Yi = 0 otherwise.

• Qi(ω) is an auxiliary variable to ensure that the weight of

all packages on the truck does not exceeds the capacity

limit.

• Si,t(ω) is an auxiliary variable for subtour elimination,

i.e., Si,t(ω) ∈ {1, 2, . . . , n}, where n =
∑

i∈C ki is the

total number of customer demands.

Minimize:
∑

t∈T

ĈtUt +
∑

i∈C

C̄Yi +
∑

t∈T

∑

i,j∈L

∑

ω∈Ω

P (ω)C̈u,vVu,v,t(ω) (1)

Subject to: (2) to (17).
∑

i∈C

Wi,t ≤ ∆Ut, ∀t ∈ T (2)

∑

t∈T

Wi,t + Yi = ki, ∀i ∈ C (3)

∑

u∈L

Vi,u,t(ω) = kiWi,t, ∀i ∈ C, t ∈ T , ω ∈ Ω (4)

∑

u∈L

Vu,j,t(ω) = kjWj,t, ∀j ∈ C, t ∈ T , ω ∈ Ω (5)

∑

i∈C

∆VD,i,t(ω) ≥
∑

i∈C

Wi,t, ∀t ∈ T , ω ∈ Ω (6)

∑

i∈C

VD,i,t(ω) ≤ 1, ∀t ∈ T , ω ∈ Ω (7)

The constraint in (2) ensures that the initial cost must be paid

when the truck is used. The constraint in (3) ensures that

a customers, who require the service, must be served by a

shipper’s truck. Otherwise, the shipper needs to pay an extra

cost for the outsourcing. The constraints in (4) to (7) control

the correctness of the routing path of each truck.

Si,t(ω)− Sj,t(ω) + nVi,j,t(ω) ≤ n− 1,∀i, j ∈ C, t ∈ T , ω ∈ Ω
(8)

Si,t(ω) ≥ Wi,t,∀i ∈ C, t ∈ T , ω ∈ Ω (9)

di,jSi,t(ω) ≤ Sj,t(ω)− 1,∀i, j ∈ L, t ∈ T , ω ∈ Ω (10)

di,jYi ≤ Yj ,∀i, j ∈ C (11)

di,j ≤ Yi − Yj + 1, ∀i, j ∈ C (12)

di,jWi,t ≤ Wj,t,∀i, j ∈ C, t ∈ T (13)

di,j ≤ Wi,t −Wj,t + 1, ∀i, j ∈ C, t ∈ T (14)

Qi,t(ω) + aj(ω)−Qj,tω +∆Vi,j,t(ω) ≤ ∆,∀i, j ∈ C, t ∈ T , ω ∈ Ω
(15)

qD + ai(ω)−Qi,tω +∆VD,i,t(ω) ≤ ∆,∀i ∈ C, t ∈ T , ω ∈ Ω
(16)

Qi,t(ω)− l
(c)
t +∆Wi,t ≤ ∆,∀i ∈ C, t ∈ T , ω ∈ Ω (17)

The constraints in (8) and (9) eliminate a subtour from the

solution. A subtour is a tour that consists of two or more

unconnected routes in the solution. The constraint in (10)

ensures that the selected route must follow to the dependency

input. For example, if di,j = 1, then customer i must be visited

before customer j, Si,t(ω) ≤ Sj,t(ω). The constraints in (11)

and (14) ensure that when the dependency exists between

customer i and customer j, the shipper assignment for these

two customers must be the same, i.e., either serving them by

the same truck or outsourcing them to the third-party carrier.

The constraints in (15) to (17) ensure that the weight of all

packages on a truck does not exceed the capacity limit of the

truck.

The above optimization can be solved as a linear program-

ming. Let Ut, Wi,t, Vu,v,t(ω), Yi, Qi(ω), and Si,t(ω) denote

the optimized solutions of Ut, Wi,t, Vu,v,t(ω), Yi, Qi(ω), and

Si,t(ω) respectively.
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Next, the Re-route PDPSD system is discussed. We propose

a new stochastic optimization formulation, which is dedicated

to the Re-route PDPSD system together with the re-route

algorithm.

B. Re-route PDPSD system

We then propose the Re-route PDPSD system with two com-

ponents, i.e., (i) stochastic optimization formulation and (ii) re-

route algorithm. The re-route algorithm calls the optimization

as an inner function to re-plan the trip for the shipper.

1) Re-route Algorithm: The re-route algorithm starts with

solving the offline optimization problem in IV-A, as presented

at Line 2 in Algorithm 1. While the shipper’s trucks travel

to serve customers according to the plan, which is obtained

from solving the offline PDPSD problem. New customers may

request for the shipper service, which the shipper may know

or may not know the package sizes. When the new customer

requests for the service, the system automatically adds the

customer and updates the customer detail as presented at line

5 to Line 8 of Algorithm 1. Once it reaches the next re-plan

time, the shipper observes (i) the actual customer package

sizes, (ii) the current weights of the packages remaining in

the trucks, (iii) the routes that the trucks visited and (iv) the

current locations of the trucks (new origins), as presented

at Line 9 to Line 16 of Algorithm 1. Note that the shipper

may set the re-planning time to be any instant, e.g. re-plan

every two hours, re-plan at 12.00 am., or re-plan when the

truck arrives at customer i. Let OT denote the origin of all

trucks at time T, i.e., OT = {OT1
, OT2

, . . . } and Ot denote

the new origin of truck t, where Ot is the location of the last

customer that truck t visited. Let qOt
denote the weight of

truck t at origin Ot. Let F denote a set of the depots and the

served customers which does not include the last customer

that trucks visited, i.e., Ot, ∀t ∈ T . Let CT denote a set of

the customers that have not been served at time T and the

origin location, i.e., CT = CT−1 \ F . Then, {D} ∪ CT = LT

, where LT is also the location that trucks can visit. Let S
denote a set of only customers that need to be served, where

S = CT \ OT. After that, the Re-route PDPSD optimization

problem, which is presented in the next section, is solved as

linear programming by using the new parameters of time T as

presented at Line 15 of Algorithm 1.

The algorithm will continue adding new customers and re-

plan the trip by solving the online optimization problem until

the shipper wants the system to terminate, e.g., at the end of

the day. The solution is the combination of routes from the first

plan to the last plan. An example of the solution can be found

in Section V-B. The detail of the optimization formulation of

the re-route PDPSD system is presented next.

2) Stochastic Optimization Formulation for Re-route

PDPSD system: This optimization is an extension of the

optimization in (1). The objective function of the Re-route

PDPSD optimization is presented in (18), and it is subject to

nine constraints similar to those of the offline PDPSD system.

Again, we can obtain the value of Ut, the value of Vu,v,t,

the value of Yf , set O, set S, and the value of qOt
from the

previous plan. Nonetheless, instead of using CT, OT and LT,

Algorithm 1: Online optimization

1 T = 0
2 Solve the optimization problem in (1). The values of decision variables (e.g. Ut,

Vu,v,t(ω)) are obtained as the solution at time T = 0.
3 while Delivery time is not ended do

4 Pick up and deliver packages according to the plan at time T

5 if A new customer requests for the service then

6 Add the customer to sets LT+1 and CT+1

7 Update customer detail, i.e., ki , ai(ω), di,j

8 end

9 if Shipper re-plans the trip then

10 Observe the actual visited customers (F ), and CT+1 = CT \ F

11 Update the new origin (Ot ∈ OT+1 )
12 Update the current weight of the packages in the truck (qt)
13 Observe the occurred scenario, i.e., ω′, and use only

Vf,f′,t = Vf,f′,t(ω
′) for the next plan

14 T = T + 1.
15 Solve the optimization problem in (18). The values of decision

variables (e.g. Ut , Vu,v,t(ω)) are obtained as the solution at time
T.

16 end

17 end

we use C, O and L in the formulations as only one time T is

considered at a time.
Minimize:

∑

t∈T

ĈtUt +
∑

t∈T

∑

f,f ′∈F

C̄f,f ′Vf,f ′,t +
∑

f∈F

C̈Yf

+
∑

i∈C

C̈Yi +
∑

ω∈Ω

∑

t∈T

∑

u,v∈L

P(ω)ĉu,vVu,v,t(ω), (18)

subject to: (3), (4), (8) to (15), (17), and (19) to (23).
∑

i∈C

Wi,t ≤ ∆Ut, ∀t ∈ T (19)

∑

j∈C

Vj,s,t(ω) = ksWs,t, ∀s ∈ S , t ∈ T , ω ∈ Ω (20)

∑

i∈C

VOt,i,t(ω) = 1, ∀t ∈ T , ω ∈ Ω (21)

∑

i∈C

Vi,{D},t(ω) = 1, ∀t ∈ T , ω ∈ Ω (22)

The constraints in (19) and (23) are adapted from the con-
straints in (2) and (16), respectively, where the decision
variable Ut and qD are replaced by new parameters Ut and
qOt

. The truck reservation Ut cannot be changed when the
trucks already start the trip, and the trucks do not start their
trips from the depot when time T 6= 0. The trucks must start
from the new origin (Ot). The constraints in (20) to (22) ensure
the correctness of the route where truck t departs the origin
(Ot), visits all customers, and returns to the depot (D).

qOt + ai(ω)−Qi,t(ω) +∆VOt,i,t(ω) ≤ ∆,∀i ∈ C, t ∈ T , ω ∈ Ω
(23)

Similar to the offline PDPSD system, this optimization for Re-

route PDPSD system can be solved as a linear programming

problem. The optimization is called as a function inside

Algorithm 1.

V. PERFORMANCE EVALUATION

A. Parameter Setting

We consider the system with one truck. The truck belongs to

shipper (c̈t = S$0 and lt = 50). The routing cost of a truck is

calculated as ĉ = 0.1×1.05×Distance, where 0.1 represents

the average fuel consumption and 1.05 represents the average

fuel price in Singapore [10]. The package weights are varied
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Fig. 2: Real Road Map

for different experiments. The penalty of not serving a package

or outsourcing a package to a carrier is set as S$16 per

packages, which is based to the cost of delivering 5 kilogram

package by the Speedpost service offered by Singpost [11].
We evaluate the system model with customer locations

from the Singapore dataset and Solomon benchmark suite

C101 [12]. We assume that all customers have demand, i.e.,

ki = 1, ∀i ∈ C. The optimizations are implemented by using

GAMS scripts and solved by the CPLEX solver [13].

B. A Solution Example

We first present an example to help the readers understand

the system clearly. We consider three plan and re-plan times

per day (eight stages) in this example. At time T0, ten

customers, i.e., customers c1 to c10, request for the service.

At times T1 and T2, five customers request for the service,

for which customers c11 to c15 submit the requests at T1, and

customers c16 to c20 submit the requests at T2. The package

weights of customers in T0 and T2 are known when the system

receives the requests, where all packages at time T0 are set as

−5 kilograms (package delivery requests), and all the packages

at time T2 are set as 15 kilograms (pickup requests). The

requests at time T1 have two possible scenarios, which are

Qi(ω1) = 5 when i = {c11, c13, c15}, Qi(ω1) = −5 when

i = {c12, c14}, Qi(ω2) = 10 when i = {c11, c13, c15}, and

Qi(ω1) = −10 when i = {c12, c14}. Customer c11 must

be visited before c12, as well as customer c13 and c14, i.e.,

D11,12 = 1 and D13,14 = 1. Moreover, we set the occur

scenario as ω2. The reason is that, in reality, we know the

occur scenario before the fifth stage (refer to Figure 1). The

locations of customers and the depot are presented in Figure 2.

The solutions of each time T (loop iteration) are presented in

Table II. The re-planning is done when the truck arrives at the

third customer from the end of the route. According to Table II,

the origin of the second plan is the location of customers c10.

Customers c3 and c9, which are planned to be served after

customer c10 in the first plan, are also included in the second

plan. The actual route of the truck is shown in Table II with

the total delivery cost of S$80.715.

C. Impact of Stochastic model: Simulation Results

We test the PDPSD system with ten customers from the

Solomon benchmark and the real Singapore dataset. We as-

sume that two scenarios can happen, i.e., Ω = {ω1, ω2},

where ai(ω1) = 15 kilograms and ai(ω2) = 10 kilograms,

∀i ∈ C. All the customers request for the pickup service.

However, customers c2, c6, and c10 request for the delivery

service, and the dependencies are set as D1,2 = 1, D5,6 = 1,

and D8,10 = 1). The simulation program is implemented in

Matlab [?]. We compare the proposed PDPSD system, i.e.,

the solution of (1), with three different input settings of the

deterministic system. The deterministic system is referred to

as the baseline models, i.e., (i) all data are unknown, and thus

the largest package weight (15 kilograms) is considered for

all customers (ii) all data are known, which only scenario ω1

can happen, and (iii) all data are known, which only scenario

ω2 can happen. For the PDPSD system, the probabilities are

set as P (ω1) = P (ω2) = 0.5.

In reality, the package sizes may not be known when the

shipper plans the trips for its trucks. Figure 3 indicates that

when the data are unknown, the PDPSD system achieves a

much lower cost than that of the deterministic system in both

datasets. Furthermore, the PDPSD system can yield marginally

different total costs compared with the case that all data are

known. Note that the PDPSD system achieves the lower total

cost than that of the deterministic system with all data are

known (ω1 happens) in the real Singapore dataset. The reason

is that we simulate both ω1 and ω2 with P (ω1) = P (ω2) = 0.5
for the PDPSD system, while only ω1 with P (ω1) = 1 is used

for the latter system as we assume that all data are known.

Note that the total cost is higher when scenario ω1 happens

than when scenario ω2 occurs.

D. Effectiveness of The Re-route PDPSD system

We next present an impact of the re-route planning, which

is presented in Section IV-B2. In this experiment, only the

Solomon data is used, and only one scenario is considered. All

the customers request for the pickup service with a 5 kilograms

package. We assume that the shipper owns a large truck, which

can carry all customers’ packages. We consider four plan and

re-plan times per day (T = 0, 1, 2, 3), and each T has five

customers request for the service except the time T = 0 has

ten customers. At time T = 0, we set C = {c1, . . . , c10}. At

time T = 1, we set C ∪ F \ {D} = {c1, . . . , c15}. At time

T = 2, we set C ∪ F \ {D} = {c1, . . . , c20}. Finally, at time

T = 3, we set C ∪ F \ {D} = {c1, . . . , c25}.

In reality, we have no information about the future requests

from the customers. Therefore, the initial plan can serve only

the customers at time T = 0, which are ten customers as

indicated in Figure 4 (a), and thus the shipper needs to pay

the outsourcing cost or penalty to meet the demand of the

customers that cannot be served by the truck. The total delivery

cost including the penalty is presented in Figure 4 (b).

After the first plan, i.e., at time T = 0, the shipper can

choose when to re-plan the pickup and delivery for the new

customers. In this experiment, we consider the cases that the

shipper re-plans its pickup and delivery when the truck arrives

at the third and the fifth customers from the end of the plan.

For example, the routing of the current plan is D− c10 − c8 −
c9−c6−c2−c4−c1−c3−c5−c7−D, and then the third and

the fifth customers from the end are c3 and c4, respectively.
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TABLE II: The Solution Example of Section V-B

Loop
Iteration

Starting
Weight

Scenario Routing Plan Outsourcing
Objective

Cost
Distance

1 50 ω1 Depot−c2 − c4 − c5 − c7 − c8 − c1 − c6 − c10 − c3 − c9−Depot 10.028 95.5

2 10
ω1 c10 − c15 − c11 − c3 − c9 − c13 − c12 − c14−Depot

10.290 98.0
ω2 c10 − c15 − c11 − c3 − c9 − c13 − c12 − c14−Depot

3 30 ω1 c13 − c18 − c12 − c16 − c14−Depot c15, c17, c19, c20 70.678 63.6
Actual

Route
50

Depot−c2 − c4 − c5 − c7 − c8 − c1 − c6 − c10 − c15 − c11−
c3 − c9 − c13 − c18 − c12 − c16 − c14−Depot

c15, c17, c19, c20 80.715 159.2

ω1
ω2

Fig. 3: Simulation

T T T T T T T T

(a) (b)

Fig. 4: Effectiveness of the Re-route PDPDS system, (a) delivery cost and (b) total

delivery cost including the penalty, and thus every customers are served in (b)

Note that when re-planning at the third customer from the

end, customers c3, c5, and c7 will be considered in the re-

optimization with the new customers. As shown in Figure 4,

we observe that the total delivery costs are not different when

the shipper re-plans the trip at the third and the fifth customers

from the end because the number of different customers is too

low, i.e., 2 customers.

From Figure 4, when the shipper receives more requests,

the number of serving customers increases accordingly, as well

as the delivery cost without penalty because the routing cost is

higher when the shipper serves more customers. In contract, to

satisfy all customers, the total delivery cost decreases when the

shipper accepts more requests in the Re-route PDPSD system.

VI. CONCLUSION

In this paper, we have proposed the offline package pickup

and delivery planning with stochastic demand (PDPSD) sys-

tem and the re-route package pickup and delivery planning

with stochastic demand (Re-route PDPSD) system to help

a shipper effectively plans its delivery while the sizes of

customer packages are random.

The experiments have shown that when the customer pack-

age sizes are unknown, the PDPSD system can achieve a

much cheaper total delivery cost than that of the deterministic

system, i.e., baseline model. Moreover, the Re-route PDPSD

system can help the shipper plan to serve all customers with

a lower cost than that of the offline PDPSD system. For the

future work, we will consider more advance formulations and

techniques to covert the Re-route PDPSD system to be a fully

online system.
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