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Abstract—Spatial modulation (SM) and space shift keying
(SSK) use only one out of several transmit antennas at a time
to transmit data via an antenna index. In such a system, the
information is encoded by exploiting channel randomness i.e.
the fact that channels between different transmit and receive
antennas are random. This difference is used to distinguish
among the transmit antennas. While SSK uses only antenna index
to transmit data, SM also uses ordinary signal modulation. In
wireless secrecy systems, one of the key performance measures
is secrecy capacity. It specifies the rate at which the transmitter
can communicates on the main link to the desired receiver while
this information cannot be decoded by the eavesdropper. We
investigate SM and SSK in the context of wireless secrecy capacity
when the underlying modulation and the difference between the
legitimate and eavesdropper signal to noise ratios (SNRs) are
varied.

I. INTRODUCTION

A novel multiple transmitting antenna system, termed spa-

tial modulation (SM), has been developed in [1]. The key

concept is that only one of several transmit antennas is active at

any one time. This approach is used to convey information. For

example, in the case of four transmit antennas, the fact that a

specific antenna is active carries two bits, in addition to the bits

transmitted by the signal itself. While the rate of this system

increases only logarithmically with the number of transmit

antennas, its simplicity offers an interesting complexity–rate

tradeoff. In [2], the SM optimum detector has been developed.

A special case, termed spatial shift keying (SSK) where only

antenna indices are used to transmit bits, has been studied in

[3].

In this paper, we study SM and SSK systems in the

context of secure wireless communications. The basic setting

in physical layer security in wireless systems can be described

as follows. In the main link, the transmitter communicates to

the intended receiver, while the eavesdropper tries to decode

this information. One of the important goals is to determine

the rate at which the main link can be used in such a way

that the eavesdropper cannot successfully decode the same

information. In classical secrecy communication, a Gaussian

wiretap channel has been studied where secrecy capacity is

shown to be the difference between the main and eavesdropper

channel capacities when the former is greater than the latter

and zero otherwise [4, 5].

In recent years, multiple-input multiple-output systems [6–

8] and the effects of fading [9] on secrecy capacity have been

studied. In this paper, we focus on how randomness, due to

the fading of the wireless channel, can help distinguish among

different transmit antennas in the context of secrecy capacity.

The part of the data bits which is transmitted via the antenna

index is called the spatial component of the capacity of SM.

This spatial components of the capacity of SM and the capacity

of SSK are studied in the context of secure communication.

This concept of using a specific transmit antenna and detection

of its index at the receiver in order to transmit data is termed

spatial keying. In SM case, it offers higher rate than the SISO

system with the same signal constellation size. Spatial keying

also has lower rate but also less complexity than the usual

multiple transmit antenna techniques which require antenna

synchronisation and complex receiver for decoding the parallel

streams which interfere with each other.

The paper is organised as follows. In Section II, we briefly

explain spatial encoding of the data. Section III explains spatial

detection. In Section IV, we review symmetric channel capac-

ity results. Section V introduces wireless secrecy concepts. In

Section VII, we provide simulation results. Finally, Section

VIII summarises key findings and concludes the paper with

suggestions for future work.

II. SPATIAL ENCODING OF DATA

A. Spatial Modulation

SM uses only one out of several transmit antennas (per

channel use) to convey information in two different ways.

Part of the transmitted message is encoded in the antenna

number. In other words, the fact that a specific antenna is

active is utilised to transmit bits. This idea relies on the

ability of the receiver to distinguish between the antennas

since the randomness of wireless channels associated with

each transmit-receive antenna pair generally provides different

channels. In simulations, it is assumed that channel coefficients

are Rayleigh distributed. The remaining part of the message is

encoded in a usual manner, via the signal constellation. Bits

encoded in the antenna index form the spatial symbol while

conventional modulation bits form the radiated symbol.

The SM system model has NT transmit and NR receive

antennas. The underlying signal constellation is of size M .



Since log2(M) bits are transmitted via conventional modula-
tion and log2(NT) bits are transmitted via the antenna index,
then one channel use corresponds to log2(NT) + log2(M)
total transmitted bits. A sequence of data bits of length

log2(NT) + log2(M) is mapped to a vector x of length

NT which is to be transmitted. Vector x satisfies the unity

power constraint: E[xHx] = 1. The channel is represented
with the matrix H of size NR by NT, while the noise is

expressed as a vector n of length NR. H and n contain

independent and identically distributed components with zero

mean, unity variance complex Gaussian distribution, CN (0, 1).
The received signal y can then be written as y =

√
γHx+n,

where γ is the average received signal-to-noise ratio (SNR)
at each receiving antenna. When vector x specifies activated

antenna at position i from which the mth constellation symbol

is sent, it is denoted as xim and the constellation symbol is

denoted by xm. Therefore, the received signal can be written

as y =
√

γhixm + n where hi denotes the ith column of H.

B. Space Shift Keying

One can view SSK as a special case of SM since there are no

bits transmitted via the conventional modulation symbol xm

but only via the antenna index i since xm = 1 always holds.
Equivalently, the fact that the only non-zero entry in vector x

is at the ith position is used to transmit information. Notation
xi is used to denote ith active antenna. The received signal
y can initially be expressed as y =

√
γHx + n. The received

signal can be more succinctly written as y =
√

γhi + n. In

other words, the transmitted symbol determines which column

of H is used. SSK relies on a unique channel which can be

recognised at the receiver in order to decode the information

bits. One can therefore view the columns of H as random

constellation points of SSK modulation. For example, if two

antennas are available at the transmitter, activating either

antenna can transmit one bit.

We note that generalised SSK and SM have been developed

in [10, 11] where more than one antenna can be active and

where antenna locations are still used to encode the data but

this approach is outside of the scope of the current work.

III. SPATIAL DETECTION

A. Optimal SM Detection

The maximum likelihood (ML) detector for SM jointly

detects the antenna index î and conventional modulation
symbol m̂ in the following manner [2]:

[̂i, m̂] = arg max
i,m

pY(y|xim,H)

= arg min
i,m

√
γ||gim||2F − 2Re{yHgim}

where || · ||F denotes the Frobenius norm, gim = hixm,

1 ≤ i ≤ NT, 1 ≤ m ≤ M and pY(y|xim,H) =
π−NR exp

(

−||y −√
ρHxim||2

F

)

is the probability density

function (pdf) of y conditioned on xim and H. Knowledge

of the channel H can be acquired by transmitting the known

training sequence since the channel is assumed to be quasi-

static, as in [9]. On the one hand, there is no closed form

solution for the error performance of ML detector in SM [12].

The union bound approach provides a relatively tight upper

bound but only for relatively large SNRs [12]. On the other

hand, simulation will be used to compute the error probability

of antenna detection, which is denoted by pSM. This error can

then be used in conjunction with results from Section IV to

ascertain the capacity of the spatial component of SM.

B. Optimal SSK Detection

The ML detector for SSK detects the antenna index î used
at the transmitter in a manner similar to SM [3]:

î = argmax
i

pY(y|xi,H)

= argmin
i

√
γ||hi||2F − 2Re{yHhi}

where pY(y|xi,H) = π−NR exp
(

−||y −√
ρHxi||2F

)

is the

pdf of y conditioned on xi and H.

As in SM case, there is no known closed form solution for

the error performance of ML detector in SSK setting and the

union bound approach provides relatively tight upper bound

only for large SNRs [3, 13]. Simulations are therefore used to

compute the error probability of antenna detection, denoted by

pSSK. However, in a simple case when NT = 2 and NR = 1,
pSSK is known in closed form [14]:

pSSK =
1

2

(

1 −
√

γ

2 + γ

)

. (1)

IV. SYMMETRIC CHANNEL

In a binary symmetric channel (BSC), there are two inputs

which are correctly received at the output with probability

1 − p and incorrectly with probability p. The capacity of this
channel is

CBSC = 1 − H(p) bits per channel use, (2)

where H(p) denotes the binary entropy function: H(p) =
−p log2(p)−(1−p) log2(1−p), [15]. The capacity is achieved
for equally likely inputs. We can use the BSC approach to

evaluate the capacity of the spatial component of SM and the

SSK capacity with two transmitting antennas by noting that

their error probabilities of antenna detection, pSM and pSSK,

can replace p in the BSC in (2). In particular, the capacity of
the spatial component of SM in the case of NT = 2 can be
expressed as

CSM = 1 − H(pSM), (3)

while the capacity of the SSK when NT = 2 can be expressed
as

CSSK = 1 − H(pSSK). (4)

More generally, let us consider the transmission matrix

where the wth row and the zth column denote the condi-

tional probability p(z|w) such that z is received when w is
sent. Then, if the rows of the channel transition matrix are

permutations of each other and the columns are permutations

of each other, the channel is called symmetric and its capacity

is given as

CSYM = log2 |Z| − H(row of transition matrix). (5)



where the cardinality of the output set Z is denoted as |Z|.
The entropy H(W ) of a discrete random variable W with

alphabetW is defined as H(W ) = −∑

w∈W
p(w) log2(p(w))

where the probability mass function p(w) = Pr{W = w}. The
symmetric channel can be used to evaluate the capacity of the

spatial component of SM by using the fact that |Z| = NT,

assuming that the channels from different transmit antennas are

identically distributed and noting that the row of the transition

matrix has one entry. This entry denotes the probability of

correctly detecting the transmit antenna, equal to 1−pSM and

all other equal to pSM/(NT − 1), given that the confusion
between any two antennas is assumed to be equally likely.

Similarly, the SSK capacity can be computed by having one

entry of the row of the transition matrix equal to 1−pSSK and

the rest equal to pSSK/(NT − 1) by assuming again that the
confusion between any two antennas is equally likely.

V. WIRELESS SECRECY MODEL

A. Model

In order to study secrecy capacity, we consider a situation

where a user Alice transmits a message to the legitimate

receiver Bob on the legitimate channel (L). The third party
Eve, who is able to eavesdrop Alice’s signals, is also present

and its channel is denoted by subscript (E), as shown in
Fig. 1. The message is communicated via x over a quasi-static

Rayleigh fading channel on the legitimate channel

yL =
√

γLHLx + nL (6)

where yL denotes received signal at the intended receiver, γL

denotes SNR at the legitimate receiver,HL denotes the fading

coefficients and nL denotes circularly symmetric complex

Gaussian noise. Knowledge of the channelHL can be acquired

by transmitting the known training sequence. Eve receives the

signal as

yE =
√

γEHEx + nE (7)

where yE denotes the received signal at the eavesdropper, γE

denotes SNR at the eavesdropper, HE denotes the indepen-

dently faded coefficients and nE denotes circularly symmetric

complex Gaussian noise. It is assumed that Eve knows its

quasi-static channel since it will be used repeatedly.

VI. SECRECY CAPACITY

In this section, secrecy capacity of SSK and the spatial com-

ponent of SM are characterised in a semi-analytical fashion.

First, we state the secrecy capacity of the BSC. This result is

then applied to SSK and SM by using the antenna detection

error probabilities, which are obtained via simulation, in the

expressions for the secrecy capacity of the BSC.

A. Secrecy Capacity of BSC

The secrecy capacity can be described as the maximum rate

at which Alice can send information on the legitimate channel

to Bob such that the rate at which eavesdropper Eve receives

this information is arbitrarily small. Secrecy capacity therefore

quantifies the number of bits which can be sent from Alice to

Bob in secret. Let us consider BSC between Alice and Bob
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Fig. 1. Secrecy model showing legitimate user Alice with two transmit
antennas and legitimate receiver Bob and eavesdropper Eve with one receiving
antenna.

with the crossover probability(i.e. error probability) pL and the

BSC between Alice and Eve with the crossover probability pE .

It is assumed that the two BSCs are independent. Without loss

of generality, it can be assumed that pL ≤ 1/2 and pE ≤ 1/2.
We can now express the secrecy capacity of BSC as follows

[5, 16]

Cs(pL, pE) =

{

H(pE) − H(pL) if pE > pL,

0 otherwise
(8)

In other words, non-zero secrecy capacity is only possible if

the crossover probability on the channel between Alice and

Eve is higher than the crossover probability on the channel

between Alice and Bob. We note that the secrecy capacity can

also be expressed as the difference of two BSC capacities, see

(8), with crossover probabilities equal to pL and pE . Existence

of the feedback channel changes the secrecy capacity result

significantly, as shown in [17], but this is outside of the scope

of this paper.

B. Secrecy Capacities of SSK and Spatial Component of SM

Let pL,SM and pE,SM denote error probabilities of antenna

detection at the legitimate receiver and eavesdropper in the SM

context. Based on (8), in the case of two transmit antennas,

the secrecy capacity of the spatial component of SM can be

written as

Cs,SM(pL,SM, pE,SM)=H(pE,SM) − H(pL,SM) (9)

if pE,SM > pL,SM. Otherwise, secrecy capacity of the spatial

component of SM is equal to 0. The secrecy capacity of SSK
can be expressed as

Cs,SSK(pL,SSK, pE,SSK)=H(pE,SSK) − H(pL,SSK) (10)

if pE,SSK > pL,SSK. Otherwise, the SSK secrecy capacity is

equal to 0.

VII. SIMULATION RESULTS

In this section, we quantify secrecy capacities of the spatial

component of SM and SSK by employing the semi-analytical

approach. Simulations of communication with optimal SM



and SSK detectors are performed in order to obtain their

respective error probabilities of antenna detection, pSM and

pSSK for different values of SNR since union bound values

for error probability are precise only for high SNR. The

SNR value is varied at the legitimate receiver to obtain a

range of error probabilities of antenna detection pL,SM and

pL,SSK while the eavesdropper’s SNR is kept fixed to provide

corresponding pE,SM and pE,SSK. The secrecy capacity of the

spatial component of SM is computed by using (9) and the

secrecy capacity of SSK by using (10). The results are plotted

to show secrecy capacity versus SNR on the legitimate channel

while SNR at the eavesdropper is kept at some fixed value for

a particular scenario.

We first start by plotting error probabilities of antenna

detection in SSK and SM for a varying size of the signal

constellation M for a system with NT=2 and NR=1 in
Fig. 2. ForM = 2, binary phase shift keying (BPSK) is used,
while for the other values of M quadrature amplitude (QAM)

modulation is employed. We first note that the SSK theoretical
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Fig. 2. Comparison of error probabilities of antenna detection in SSK and
SM with underlying signal constellations of different sizes.

result in (1) agrees with the simulation. As expected, SSK

has the best error performance since the receiver only has

to detect the antenna index as opposed to SM where both

the antenna index and the underlying signal constellation

symbol have to be detected. Furthermore, as the size of

the constellation increases, the error performance predictably

worsens since the constellation points move closer to each

other. We also note that, for larger SNR values, the slopes

of the error curves are the same: they are equal to −1 since
a tenfold decrease of error corresponds to an SNR increase

of 10 dB when NR=1. The gap between the error curves is
due to the difference in the underlying constellation sizes: as

constellations grow, the necessary SNR to achieve the same

error probability also grows. Based on the fact that SSK has

superior error performance over the spatial component of SM

for all constellation sizes, i.e. pSSK<pSM at a given SNR, one

might suspect that SSK would have better secrecy capacity

than SM. We show next, however, that this is not necessarily

the case.

We start the characterisation of the secrecy capacity by

considering the case of NT=2 and NR=1 with SNR at the

eavesdropper being fixed at 0 dB, while the SNR at the
legitimate link varies, as shown in Fig. 3. SM secrecy capacity
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Fig. 3. Comparison of secrecy capacities with different underlying signal
constellations with varying legitimate SNR and Eve’s SNR equal to 0 dB.

decreases, except for high SNRs, as the constellation size

increases. While SSK provides larger secrecy capacity than

the SM variants at lower SNRs, SM secrecy capacities for all

M overtake SSK secrecy capacity for sufficiently high SNRs.

This, somewhat counterintuitive, result can be understood by

considering the secrecy capacity as the SNR on the legitimate

link increases to infinity. It is easily seen that pL tends to

zero as SNR on the legitimate link goes to infinity. Since the

BSC secrecy capacity is expressed as the difference of two

binary entropies evaluated at pE and pL, as in (8), we have that

Cs(0, pE)=H(pE) in the limit. In the case of SSK, secrecy
capacity is asymptotically given by

Cs,SSK(0, pE,SSK)=H(pE,SSK), (11)

while in the case of SM, it is

Cs,SM(0, pE,SM)=H(pE,SM). (12)

Since, as discussed earlier, pE,SM>pE,SSK, it follows that

H(pE,SM)>H(pE,SSK) because the binary entropy is an
increasing function for crossover probabilities less than a

half. Therefore, it becomes clear that, as the SNR on the

legitimate channel tends to infinity, secrecy capacity of the

spatial component of SM becomes larger than the SSK secrecy

capacity. Paradoxically, the main reason for SM outperforming

SSK in terms of secrecy capacity is that SM underperforms

in terms of the error probability of antenna detection. This

phenomenon also explains why, for a large SNR, SM performs

better for large M than for small M .

We next study the changes in secrecy capacity when Eve’s

SNR is equal to 12 dB. Fig. 4 shows that secrecy capacities
are lower than the counterparts in Fig. 3. Naturally, the secrecy

capacity is equal to zero when the legitimate receiver’s SNR

is below 12 dB. At higher SNRs, it can be seen that SM with
the highest M , M=16, outperforms other schemes. This is
due to the asymptotic behaviour of the secrecy capacity when

SNR tends to infinity, as discussed earlier in the section.

Finally, we observe the changes in the secrecy capacity

when Eve’s SNR is equal to 21 dB. Fig. 5 shows that the
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Fig. 5. Comparison of secrecy capacities with different underlying signal
constellations with varying legitimate SNR and Eve’s SNR equal to 21 dB.

secrecy capacities are even lower than the corresponding

values in Fig. 3 and 4. This is to be expected since the gap

between Bob’s and Eve’s SNRs is smaller and, consequently,

the difference between their capacities is also smaller. At high

SNRs, the advantage of largerM becomes even more apparent

in this case compared to the previous two cases shown in Fig. 3

and 4.

VIII. SUMMARY AND CONCLUSIONS

We have explored secrecy capacity of the spatial component

of SM and SSK systems. We have shown that the effect of

constellation size depends on the values of the legitimate and

eavesdropper’s SNRs. For low eavesdropper’s SNR, smaller

constellations perform better than larger ones for most of the

SNR range, while for the high eavesdropper’s SNR, larger

constellations provide larger secrecy capacities. As the gap

between the eavesdropper’s and legitimate receiver’s SNRs is

reduced, the secrecy capacity is significantly reduced for SM

and SSK. Furthermore, while SSK secrecy capacity may be

expected to perform better due to the lack of conventional

modulation and its smaller error of antenna detection, it

actually performs worse than the secrecy capacity of the spatial

component of SM at high SNR precisely due to the smaller

error probability. Future work will seek to tighten probability

of error obtained via union bound so that it can be used

for fully analytical computation of SM and SSK capacity.

Furthermore, effects of varying the number of transmit and

receive antennas on secrecy capacity will be explored.
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Modulation,” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2228 –
2241, July 2008.

[2] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Spatial Modulation:
Optimal Detection and Performance Analysis,” IEEE Commun. Lett.,
vol. 12, no. 8, pp. 545–547, 2008.

[3] J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, “Space Shift
Keying Modulation for MIMO Channels,” IEEE Transaction on Wireless
Communications, vol. 8, no. 7, pp. 3692–3703, Jul. 2009.

[4] A. Wyner, “The Wire-tap Channel,” Bell. Syst. Tech. J., vol. 54, pp.
1355–1387, 1975.

[5] I. Csiszár and J. Körner, “Broadcast channels with confidential mes-
sages,” IEEE Trans. Inf. Theory, vol. 24, no. 3, pp. 339–348, 1978.

[6] A. Khisti and G. W. Wornell, “Secure Transmission With Multiple
Antennas I: The MISOME Wiretap Channel,” IEEE Trans. Inf. Theory,
vol. 56, no. 7, pp. 3088–3104.

[7] F. Oggier and B. Hassibi, “The Secrecy Capacity of the MIMO Wiretap
Channel,” in IEEE International Symposium on Information Theory,
Toronto, ON, 2008, pp. 524–528.

[8] Z. Li, W. Trappe, and R. Yates, “Secret Communication Via Multi-
Antenna Transmission,” in 41st Annual Conference on Information
Sciences and Systems, CISS ’07., Baltimore, MD, 2007, pp. 905–910.

[9] J. Barros and M. R. D. Rodrigues, “Secrecy Capacity of Wireless
Channels,” in IEEE International Symposium on Information Theory,
Seattle, WA, 2006, pp. 356–360.

[10] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Generalized space
shift keying modulation for MIMO channels,” in Proc. IEEE 19th
International Symposium on Personal, Indoor and Mobile Radio Com-

munications PIMRC 2008, Cannes, France, 15–18 September 2008, pp.
1–5.

[11] A. Younis, N. Serafimovski, R. Mesleh, and H. Haas, “Generalized
Spatial Modulation,” in Asilomar Conference on Signals, Systems, and
Computers, Pacific Grove, CA, USA, 2010.

[12] M. Di Renzo and H. Haas, “Performance analysis of spatial modula-
tion,” in 5th International ICST Conference on Communications and
Networking in China, August 2010.

[13] ——, “Performance Analysis of Spatial Modulation,” in IEEE In-
ternational Conference on Communication and Networking in China

(CHINACOM), Beijing, China, Aug. 2010, pp. 1–7, (invited paper).
[14] ——, “Performance Comparison of Different Spatial Modulation

Schemes in Correlated Fading Channels,” in Proc. of International
Conference on Communications, May 2010.

[15] T. M. Cover and J. A. Thomas, Elements of Information Theory, 1st ed.,
ser. Wiley Series in Telecommunications, D. L. Schilling, Ed. John
Wiley & Sons, Sep. 1991.

[16] U. M. Maurer, “Secret Key Agreement by Public Discussion from Com-
mon Information,” IEEE Transactions on Information Theory, vol. 39,
no. 3, pp. 733–742, May 1993.

[17] L. Lai, H. Elgamal, and V. Poor, “The Wiretap Channel With Feed-
back: Encryption Over the Channel,” IEEE Transactions on Information
Theory, vol. 54, pp. 5059–5067, 2008.


