
Device Discovery in Future Service Platforms

through SIP

Yuan Chen

Department of Electronic Engineering

University of Surrey

Guildford, UK

chyu1988@gmail.com

Suparna De, Ralf Kernchen, Klaus Moessner

Center for Communication Systems Research

University of Surrey

Guildford, UK

{S.De, R.Kernchen, K.Moessner}@surrey.ac.uk

Abstract—This paper proposes an extension to Session

Initiation Protocol (SIP) for contextualized service delivery in a

service delivery platform (SDP) that enables device specific

multimedia delivery. SIP separates between session

establishment and description and is thus, amenable to be

extended for advanced implementations which make it an ideal

platform for service creation. Device specific multimedia

delivery needs rich and flexible device descriptions, and our

approach proposes advanced device descriptions through

semantic technologies. The proposed SIP extensions have been

implemented on a SIP Application Server which functions as

SDP in IP Multimedia Subsystem (IMS). The validation of the

proposed extensions is shown through an Android SIP client

application that acts as a device browser and recommender for

different multimedia services to users. An example device user

agent (UA) application has also been implemented on a laptop.

Keywords-device description; Ericsson SDS; Google

Android; IMS; ontology; SIP extension

I. INTRODUCTION

Convergence of multimedia services and IP
communication is becoming a growing trend in the
telecommunication industry. Simultaneously, increasing
device diversity and multiplicity offers opportunities as well
as challenges for service delivery personalization. In such a
scenario, Service Delivery Platforms (SDP) can offer flexible
creation and delivery of multimedia services [1]. A SDP
provides service management across content-based and
session-based services, with network layer abstractions and
agility in service provisioning. The combination of SDP and
IP Multimedia Subsystem (IMS) gives the operators both
wider service choices and easier network management, with
a unified control layer for users connecting to the network
[2]. Personalization techniques need to be integrated into
SDPs for service differentiation. Also, with a large variety of
devices available to users in the current environment,
personalization needs to be enabled for multi-device
scenarios.

The key technology behind IMS is Session Initiation
Protocol (SIP) [3]. SIP is used for establishing, modifying
and terminating multimedia sessions that are based on IP
network. With a wide range of devices supporting SIP, they
may have different capabilities for different multimedia
purposes such as streaming multimedia, file transfer, etc.
Devices in the SIP network are known as user agents (UAs)

and identified by a uniform resource identifier (URI). Hence,
it is necessary for clients to discover the available devices
and their capabilities from a SDP in order to establish
personalized multimedia services to relevant devices.

SIP, as defined in RFC 3261, [3] is a control protocol on
application layer. SIP itself does not provide any services,
being only involved in the signaling portion of a
communication session. Rather, it is used in conjunction
with other IETF protocols to build a complete multimedia
architecture, e.g. SIP can locate a user, and another protocol
such as Real-Time Protocol (RTP) or HTTP can be used to
deliver streaming media to that user. Since the original
purpose of SIP is to control sessions over the Internet, it
doesn’t provide any methods to convey device capabilities.
Hence, an extension of core SIP is necessary. Moreover, in
order to describe the multimedia capability of devices, a
device description approach is needed. The approach should
be extensible and manufacture-independent to ensure unified
interoperability. Moreover, it must be comprehensive to
describe multimedia features about SIP devices, including
supported multimedia services, so that varying multimedia
service context can be matched to different available devices.

This publication proposes a SIP extension that can
convey device capabilities to enable device specific
multimedia delivery. We employ OWL ontology to provide a
semantic framework for device descriptions. The proposed
extensions have been implemented using Ericsson Service
Development Studio (SDS) [4] on a SIP Application Server
(AS) which functions as SDP in IMS. We validate our
approach by developing an Android client that discovers SIP
UAs (also known as device UAs) and their device
descriptions from a SDP by employing the extended SIP
messages so that the device specific multimedia delivery can
then be successfully established.

The rest of the paper is structured as follows: we review
related work on SIP extensions and device descriptions in
section II. Section III discusses the design of the proposed
SIP protocol extension. The device description approach is
discussed in section IV. The system overview,
implementation and demonstration are illustrated in sections
V, VI and VII, respectively. Section VIII concludes this
paper with a discussion of the contributions.

This paper describes work undertaken in the context of the Internet of
Things – Architecture (IoT-A) project (http://www.iot-a.eu/public) contract

number: 257521.

II. RELATED WORK

The core SIP protocol is designed to be used in every SIP
implementation. Every SIP UA or server should understand
the standard declared in RFC3261 [3]. When core SIP is no
longer capable of resolving a specific problem, an extension
of SIP is necessary with new methods, new header fields,
new body types, or new parameters following RFC 4485 [5],
which is defined to ensure that new extensions do not change
the spirit of SIP. To describe device capabilities, RFC 3840
[6] defines a mechanism for SIP UA to convey its
capabilities and characteristics to other UAs and to the
registrar of its domain. The general idea of this specification
is to convert the description information into parameters in
the contact header field. However, a SIP UA implementation
of this specification would require converting all the
description information into the contact header. Instead,
storing all the information about device description in the
body of a SIP message and using a more generic syntax
(XML) can offer a cleaner approach for SIP UAs. Therefore,
we propose to extend the OPTIONS and MESSAGE
methods with a new ‘description’ header for conveying
device capabilities. The use of XML for exchanging
information in a platform independent manner has also been
proposed in [7], where XML was employed for
communication over a proposed new interface in the IMS
Policy and Charging Control (PCC) architecture [8]. The
proposed interface was envisioned to take into account
dynamic subscriber information to guide online charging
policies. Subscriber information in IMS is held in the
Subscription Profile Repository (SPR) [8]. The SPR provides
static data such as allowed usage threshold as well as
dynamic data on counter values and status of valid tariff
options. In addition, for application sessions, the Application
Function (AF) [8] may provide information on media type
and format, bandwidth and flow description and status. A
well-structured, machine-processible knowledge of device
capabilities available to a user can supplement the SPR and
AF information and enable contextualized delivery.

Other efforts for personalization using SIP extensions
include that by Kuhnen et al. [1] who describe a method to
manage user preferences and device capability profiles for a
personalized multi-device environment. They use the IMS
infrastructure and SIP PUBLISH messages for transmitting
static and dynamic device capabilities described using the
User Agent Profile (UAProf) [9] vocabulary. After
registration, the device sends a PUBLISH message which
contains a UAProf device description and the changed
dynamic capabilities to a Personalized Communication
Controller in IMS. By applying the personalization in the
core network, changes in preferences or device capabilities
can immediately affect running sessions, without having to
renegotiate with the other involved parties. Based on the SIP
event notification framework, an event package extension
called information category is proposed in [10] to enable
multimedia information sharing in IMS. The end user can
use the SIP SUBSCRIBE method to subscribe to a specific
information category, get information from the application
server via NOTIFY, and post information with PUBLISH.
The service also provides a method to support audio, video

and large text sharing between end users. The UA can upload
media through the PUBLISH method, with the media URI.
Thereafter, the server can publish the information with
NOTIFY. However, it uses Session Description Protocol
(SDP) negotiation to establish multimedia sessions, which is
not easy to be extended and has strict parsing rules. It does
not provide any method for device description and
multimedia content matching on SDP.

Several standardized vocabularies and techniques for
device capability description have been designed, including
Composite Capabilities/Preferences Profile (CC/PP) [11],
UAProf and Universal Plug and Play (UPnP) [12].
However, as noted in [13], none of these approaches can be
used as a mainstream solution to describe multimedia
devices. Specifically, CC/PP defines profiles, profile
components and attributes, but the actual vocabulary of
which device features can be described is left open. Also, the
CC/PP template is not intuitive for building comprehensive
descriptions. UAProf extends CC/PP with device capability
names and allowed values, but is tailored to Wireless
Application Profile (WAP) devices and does not scale well
to more complex devices. The UPnP XML-based description
template provides an interesting concept of device
composition, with each being capable of being discovered
and used independent of the container device. However, with
the service-based focus of the description template, hardware
specification is not intuitively included. Moreover, both
CC/PP and UAProf are vocabularies, while UPnP discovery
is targeted more towards a LAN scope. These existing
description methods are reused and extended in this paper,
with an emphasis on multimedia capabilities to extend SIP
discovery to cope with device specific characteristics.

III. SIP PROTOCOL EXTENSION DESIGN

We extend the SIP methods and headers for device and
multimedia content discovery. The SIP OPTIONS method is
used to query a server about its capabilities. This has been
extended to query the capabilities of registered UAs on the
server. The SIP MESSAGE request is defined to carry the
sender’s message in its body. Normally, it is used to deliver
instant messages. This method is extended to carry the
device and media descriptions. Besides these extensions of
the SIP methods, the SIP headers are also extended to
distinguish between the normal SIP methods and extended
ones. The newly added ‘description’ header is used for the
following three purposes:

A. Complete Device Description Upload

The server gets to know the capabilities of registered
devices via the device description uploading process (Fig. 1).

After the standard SIP registration, a device UA uploads
its full device description information to the SDP server. The
information is carried inside a MESSAGE request with the
proposed ‘description’ header with value equal to the UA’s
URI. Thus, for a device UA with SIP URI
sip:example@mydomain.com, the description header is
‘description:sip:example@mydomain.com’. URIs help the
server to differentiate between different registered SIP UAs.

Figure 1. SIP extension: Device UA registration with its device description

B. Request/Response for List of Registered Device UAs

This extension allows a user to see a short summarized
list of available devices on the client GUI (device browser).
The device list, which is customized to show devices
available in the requesting client UA’s location, shows the
registered devices with their SIP URI, model name and a
sub-text containing device type and media capabilities. The
list of available devices is presented as a vertically scrolling
list of clickable items. This available device list request and
response is achieved through the proposed header
‘description:list’ (Fig. 2). The extended OPTIONS method
with the ‘description: list’ header is sent by the client to
request the list of registered devices. After sending a ‘200
OK’ confirmation response, the server sends the device list
via a MESSAGE method which also has header
‘description:list’, which is followed by a client confirmation
message.

Figure 2. SIP extension: list information retrieval

Thereafter, if the user is interested in a device’s

complete description, he can click on the corresponding

item, which results in a request being sent to the server to

retrieve the complete device description and display it in

another GUI view. For this, an OPTIONS request is sent to

the server with the corresponding device URI indicated in

the description header (in this case, the description of UA

sip:example@mydomain.com) (Fig. 3). Then the server

sends back the complete description of this UA’s device.

The extended OPTIONS and MESSAGE methods are

also used to retrieve the list of available media resources,

described by name, short description and category. Clicking

on a media item triggers the recommender function, which

matches the media description to available device context

and shows a pop-up list of devices recommendations, to

which the media item can be streamed to.

Figure 3. SIP extension: complete device description retrieval

C. Multimedia Streaming Notification

Once the user has chosen a device from the
recommended list of suitable devices for playing a particular
media item, multimedia streaming is achieved by sending a
MESSAGE request with header ‘description:stream’ from
the client to the server. This message contains the media item
as well as destination device UA information.

IV. ONTOLOGY DESIGN FOR DEVICE DESCRIPTION

We propose to use the Web Ontology Language-
Description Logics (OWL-DL) for describing device
multimedia capabilities. Ontology is a vocabulary that
defines common concepts in a particular domain and the
relationships among those concepts [14]. With
heterogeneous devices of widely varying capabilities existing
in the target communication environment, the ontology
formalism allows a structured representation to information
from diverse sources. Moreover, it promotes separation of
domain knowledge (device description knowledge) from
operational knowledge (software implementation) and the
possibility to analyze domain knowledge once a declarative
specification of the terms is available [14]. Each device UA
hosts its own description ontology instance. After
registration, it is uploaded to the server. The server can also
obtain the capabilities from a web server if the device does
not upload its capabilities but indicates the URI of its
description.

The proposed domain ontology consists of the following
three main classes: the ‘DeviceUA’ class has several data
type properties to describe the model information of SIP
device instances such as model name, manufacturer, device
type, short description, etc. Besides, it also has two object
properties to the ‘DeviceList’ and ‘ServiceList’ classes. The
‘DeviceList’ class has two sub-classes for describing
hardware and software information of SIP devices. The
hardware information is further described by subclasses
including ‘ConnectionTypes’ (Wi-Fi, Ethernet and
Bluetooth), ‘CPU’, ‘Memory’ and ‘UserInterfaces’ (audio
I/O, camera, keyboard, pointing_device and Screen). Each of
the classes has corresponding datatype properties to capture
the related characteristics. For example, class ‘Screen’ has
properties to describe its bits per pixel (BPP), resolution,
color and dimension. The ‘ServiceList’ class describes the
services supported on a device including file transfer, instant
message, audio and video service. A partial view of the
ontology is shown in Fig. 4.

Server

[2] 200 OK

[3] MESSAGE

description: sip:example@mydomain.com

Device

UA

[1] REGISTER

[4] 200 OK

Client Server

[1] OPTIONS description: list

[2] 200 OK

[4] 200 OK

[3] MESSAGE description: list

Client Server

[1] OPTIONS

description: sip:example@mydomain.com

[2] 200 OK

[4] 200 OK

[3] MESSAGE

description: sip:example@mydomain.com

Figure 4. Device ontology

V. SYSTEM OVERVIEW

The proposed SIP extensions and device description

approach have been realized as a SIP server side application.

The implemented system consists of three components:

client UAs, SIP server side application and device UAs. The

server side application is developed on Ericsson SDS [4]

which simulates several different components of IMS such

as Call Session Control Function (CSCF), DNS, Home

Subscriber Server (HSS), SIP Registrar and integrates a

SAILfin SIP container. It enables rapid design and test of

IMS applications through high level APIs.

The client UA allows a user to configure the SIP related

parameters, register or de-register with the server. It

discovers the registered device UAs and media resources

from the server. It then displays the general device and

media information into different list views and presents the

complete device description into web views. It also presents

recommendations of relevant device options to the user for

playing the different discovered streaming media resources,

and sends the streaming preference notification to the server.

The IMS server-side application enables the logic of

extended SIP signaling with client UAs and device UAs. It

accepts register/de-register messages from the client and

device UAs. It receives, creates and processes the device

description ontology files from device UAs, creates HTML-

based complete device description for these UAs. It also

stores local multimedia resources. Based on an evaluation of

the device capabilities, it can generate possible device

recommendations of streaming these resources. When it

receives a streaming preference notification from the client,

it establishes a multimedia streaming session by SIP and

opens a HTTP port to stream the multimedia file to the

selected device UA. The Device UA refers to the SIP user

agent of a device which can be used to demonstrate

multimedia playback. It can register or de-register with the

server, upload its ontology file to the server and play

multimedia resources depending on its capabilities as

described by its ontology instance.

VI. IMPLEMENTATION

The server-side application is developed using JSR 289

SIP servlet API [15]. It can be divided into three main

modules (as shown in Fig. 5): SIP servlet, ontology

handling module and media handling module.

Figure 5. SIP Server-side application architecture

The SIP servlet is responsible for receiving SIP messages

from client or device UA via CSCF and sending the

response back. It also controls the other two modules. The

ontology handling module is responsible for parsing the

ABox files uploaded by device UAs. The parsed

information is passed on to the SIP servlet to generate the

discovered device list and to create a HTML representation

of each ABox. The discovered device capabilities are also

employed by the Recommender engine for reasoning about

devices that are capable of streaming specific multimedia

files from the multimedia repository. The Media handling

module receives the command from SIP servlet to start or

stop multimedia streaming by opening a local HTTP port

using VLCJ API [16]. Since so far, there’s no automatic

multimedia resource context retrieval function available,

this module implements a context extractor to provide basic

media information such as name, location, description and

category. The service provider can specify local media

resources manually according to this structure.

The SIP client has been implemented as an Android

application running on a Samsung Galaxy tab. The device

UA runs on a laptop. Both of these applications use JAIN

SIP API [17] for the SIP stack layer. Their respective main

UIs are shown in Fig. 5. The Android client can be divided

into two layers: SIP communication stack layer - this layer

is located between the transport and application layers. It

retrieves SIP related parameters (nick name, SIP user name,

domain name and port number) from the UI layer and

creates the SIP stack. It listens on the SIP stack, sends and

receives SIP messages and handles the SIP timers.

UI layer (Android activities): the main activity TabUI

hosts two tabs for the ClientUI and MediaUI, respectively.

Ontology Handling module

ABox

TBox

Import

Generate

SIP servlet

Generate

Request device
description

Response

Media Handling module

Context
extractor

Stream handling

Media
description

Outgoing SIP
messages

Incoming SIP
messages

Recommender
engine

Open port for
streaming

Start/Stop

Stream

The ClientUI implements the device browser which displays

a list view of discovered devices. It listens on the SIP stack,

retrieves and processes SIP messages. Then, it updates its

list or starts the DeviceDescription activity which displays a

web view to render the received string into a web page when

the complete device description is received. The MediaUI

activity tab displays a list view for discovered media

resources. When one of the media items is selected,

MediaUI shows a dialog for the device recommendations

for multimedia streaming. When the user chooses one of the

options, the MediaUI sends a ‘stream’ message to the server

with the selected device and media URI.

The device UA application has the same layered structure

as the client. Besides, it implements a VLCJ media player to

play video on receipt of an INVITE SIP message from the

server.

VII. DEMONSTRATION

In the demonstration scenario, the device UA registers

and uploads its instance ontology when the user presses the

‘Register’ and ‘Send OWL’ keys on the UI, respectively

(Fig. 6). The server stores and processes the received

instance ontology and generates a human readable HTML

file for this ontology in preparation for full device

description request from client. If the client is registered, it

sends the discovered device list information to the client.

The Android client application processes the list message

and displays it into an Android list view (Fig. 6). Clicking

on a list item displays a HTML web page with the detailed

device description. To play a multimedia resource, clicking

the corresponding item displays the relevant device

recommendations in a dialog. After the user makes a choice,

the chosen video is streamed to the designated device UA.

Figure 6. Main UIs of Android Client and Device UA

VIII. CONCLUSIONS

In this paper, we defined a SIP extension to enable device

and multimedia resource discovery. This paper has also

presented an ontology approach for describing a SIP device

UA. Though the demonstration has focused on showcasing

the SDP aspects and not on the IMS functionalities, the

proposed ontology-based device description mechanism can

enhance the IMS admission control framework for

multimedia sessions by supplementing the SPR and AF

information to provide personalized multimedia streaming.

REFERENCES

[1] M. Q. Kuhnen, D. Kraft, A. Schulke, J. Bauknecht, J. Haussler, and

M. Lischka, "Personalization-based Optimization of Real-time

Service Delivery in a Multi-Device Environment," in IEEE Wireless

Communications and Networking Conference (WCNC), 2009.

[2] Z. Technologies. (2008), IMS and SDP: The Key Enablers of

Business Re-engineering. Available:http://wwwen.zte.com.cn/endata/

magazine/ztetechnologies/2008year/no4/articles/200804/t2008042416

2019.html

[3] J. Rosenberg et al., "SIP: Session Initiation Protocol," RFC3261,

2002.

[4] Ericsson, "Service Development Studio (SDS) 4.1 Developer’s

Guide," 2009.

[5] H. Schulzrinne and J. Rosenberg, "Guidelines for Authors of

Extensions to the Session Initiation Protocol (SIP)," RFC4485, 2006.

[6] J. Rosenberg, H. Schulzrinne, and P. Kyzivat, "Indicating User Agent

Capabilities in the Session Initiation Protocol (SIP)," RFC3840, 2004.

[7] M. Cheboldaeff, "Interaction between an Online Charging System

and a Policy Server," in The Tenth International Conference on

Networks (ICN), 2011, pp. 47-51.

[8] 3GPP, "Policy and charging control architecture (TS 23.203) Rel.

10," 2010.

[9] Open Mobile Alliance (OMA). (2003), User Agent Profile. Available:

http://www.openmobilealliance.org

[10] W. Xiao, "Categorized Multimedia Information Sharing Service in

IMS," in Australasian Telecommunication Networks and Applications

Conference, Adelaide, SA, Australia, 2008, pp. 103-105.

[11] W3C, "Composite Capability/Preference Profiles (CC/PP): Structure

and Vocabularies," W3C Working Draft, 2002.

[12] UPnP Forum. (2000), UPnP Device Architecture. Available:

http://www.upnp.org/download/UPnPDA10_20000613.htm

[13] R. Kernchen, M. Boussard, R. Haensel, and K. Moessner, "Device

description for mobile multimodal interfaces," in Proc. 15th IST

Mobile & Wireless Communication Summit, 2006.

[14] N. F. Noy and D. L. McGuinness, (2001), "Ontology Development

101: A Guide to Creating Your First Ontology." Stanford Knowledge

Systems Laboratory Technical Report. Available:

http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-

mcguinness.pdf

[15] JSR 289: SIP Servlet v1.1. Available:

http://www.jcp.org/en/jsr/detail?id=289

[16] VLCJ Wiki: Streaming. Available:

http://code.google.com/p/vlcj/wiki/Streaming

[17] JSR 32: JAIN SIP API Specification. Available:
http://jcp.org/en/jsr/detail?id=32

