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Abstract—In a multicell multiuser MIMO downlink employing
random beamforming as the transmission scheme, the heteroge-
neous large scale channel effects of intercell and intracell interfer-
ence complicate analysis of distributed scheduling based systems.
In this paper, we extend the analysis in [1] and [2] to study the
aforementioned challenging scenario. The cumulative distribution
function (CDF)-based scheduling policy utilized in [1] and[2] is
leveraged to maintain fairness among users and simultaneously
obtain multiuser diversity gain. The closed form expression of
the individual sum rate for each user is derived under the CDF-
based scheduling policy. More importantly, with this distributed
scheduling policy, we conduct asymptotic (in users) analysis to
determine the limiting distribution of the signal-to-interference-
plus-noise ratio, and establish the individual scaling laws for each
user.

I. I NTRODUCTION

With the emerging heterogeneous cellular structure [3] and
the ever shrinking cell size, achieving high capacity with low
design complexity in a multicell multiuser MIMO downlink
has drawn considerable interest in recent years, e.g, see [4]
and the references therein. Distributed scheduling policies are
often favored due to operational scalability and affordable
complexity incurred by the limited capacity of the backhaul.
Under the employed distributed scheduling policy, analysis on
the multicell network builds upon the extensive studies and
insights drawn from the single cell network.

For the single cell network without intercell interference,
capacity boosting scheme relies on the independent varying
channels across users, i.e., the well known multiuser diversity
gain [5]. To further harness this gain with multiple antennas,
the notion of opportunistic beamforming is proposed [6],
which is later extended to the notion of random beamforming
[7] to have same sum capacity growth as nonlinear precoding
schemes [8], [9] with reduced feedback requirement [10].
Multiuser diversity depends heavily on the scheduling policy,
and it is important to guarantee scheduling fairness while
achieving this gain in consideration of the heterogeneous
large scale channel effects. This issue is tackled in [2] (the
closed form sum rate in a homogeneous setup is derived
in [11]), by leveraging the cumulative distribution function
(CDF)-based scheduling policy [12] to satisfy the two desired
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features: multiuser diversity and scheduling fairness. Accord-
ing to the CDF-based scheduling policy [12], each user can
be equivalently viewed as competing with other users with
the same CDF, and thus each user’s rate is independent of
the statistics of other users. This interesting property enables
a “micro” understanding of each user’s rate performance
compared to the conventional “macro” understanding of the
sum rate performance. Due to this property, the notion of
individual sum rate and individual scaling laws are proposed
in [2] to further understand both the exact and the asymptotic
performance of random beamforming in a heterogeneous setup
(and with different selective feedback schemes).

In a multicell network, the heterogeneous channel effects
come naturally from the different experienced intercell in-
terference across users, even for a SISO setup. This issue
is investigated in [1] for a generic single antenna based
heterogeneous multicell OFDMA network, with both exact
rate expression and asymptotic rate approximation derived. In
[13], the rate of convergence and the individual scaling laws
are established for the SISO multicell setup. Both [1] and
[13] employ the CDF-based scheduling to maintain the two
aforementioned scheduling features. In [14], the rate scaling
for a power controlled network is examined with additional
distance-based random variables. Since the time variations
for the large scale and small scale channel effects are vastly
different [15], both [1] and [13] concentrate on the randomness
of the small scale channel effects. In [16], a normalized form
of transformation is applied in a multicell network to achieve
fairness. The main difference of using CDF-based scheduling
[12] is the inherent nonlinear functional transformation to
strictly guarantee user fairness.

In this work, we extend the analysis in [1] and [2] to a
generic multicell multiuser MIMO setup. The random beam-
forming is utilized as the multi-antenna transmission scheme
to reduce feedback need (for part of the literature survey
regarding random beamforming, please refer to [2]). With
spatial multiplexing in each cell, both intercell interference
and intracell interference exist and users would experience
heterogeneous interference. Under the CDF-based scheduling
policy, we firstly derive the individual sum rate for each user
from the exact analysis perspective. We further prove the type
of convergence and the rate of convergence to the limiting
distribution to establish the individual scaling laws.
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II. SYSTEM MODEL

Consider the downlink of a generic multicell multiuser
MIMO network. We assume a narrowband model and the
established analysis in this work can be extended to the wide-
band model such as OFDMA using the techniques developed
in [2]. Full spectrum reuse is assumed, and the process of cell
association is assumed to be performed in advance. Without
loss of generality, one base stationB0 equipped withM
antennas from the base station setB and its associated single
antenna usersK0 = {1, . . . , k, . . . ,K0} with |K0| = K0 are
considered. The random beamforming strategy at base station
B0 employsM random orthonormal vectorsφ(0)

m ∈ C
M×1

for m = 1, . . . ,M , where theφ(0)
i are drawn from an

isotropic distribution independently everyT (denoting the
channel coherence interval for the block fading model) channel
uses [7]. Denotings(0)m (t) as themth transmission symbol at
time t, the transmitted vectors(0)(t) from base stationB0 at
time t, is given as:

s
(0)(t) =

M
∑

m=1

φ(0)
m (t)s(0)m (t), t = 1, . . . , T. (1)

The received signaly(0)k of userk (the time variablet is
dropped for notational convenience) is represented by

y
(0)
k =

M
∑

m=1

√

G
(0)
k h

(0)
k φ(0)

m s(0)m +

Jk
∑

b=1

M
∑

m=1

√

G
(b)
k h

(b)
k φ(b)

m s(b)m

+ v
(0)
k , k ∈ K0, (2)

where the superscript indicates the base station with(0) being
the cell of interest and(b 6= 0) being the interfering cells.Jk
denotes the number of interfering cells for userk, and v(0)k

denotes the additive white noise distributed withCN (0, σ2
k).

s
(0) and s

(b) are the transmitted symbols by the serving
cell and the interfering cellBb with E

[

|s(0)|2
]

= p0 and
E
[

|s(b)|2
]

= pb. h
(0)
k ∈ C1×M andh

(b)
k ∈ C1×M , which are

assumed to be independent across users, denote the small scale
channel gains between the serving cell and userk, and between
the interfering cellBb and userk. G(0)

k andG(b)
k represent the

large scale channel gains between the serving cell and userk,
and between the interfering cellBb and userk respectively.
Based on the aforementioned assumption, denotingZ

(0)
k,m as

the SINR of userk for beamm, it can be expressed as:

Z
(0)
k,m =

G
(0)
k p0|h

(0)
k φ(0)

m |2

M
∑

i6=m

G
(0)
k p0|h

(0)
k φ

(0)
i |2 +

Jk
∑

b=1

G
(b)
k pb

M
∑

i=1

|h
(b)
k φ

(b)
i |2 +Mσ2

k

=
ρ
(0)
k |h

(0)
k φ(0)

m |2

M
∑

i6=m

ρ
(0)
k |h

(0)
k φ

(0)
i |2 +

Jk
∑

b=1

ρ
(b)
k

M
∑

i=1

|h
(b)
k φ

(b)
i |2 + 1

, (3)

whereρ(0)k ,
G

(0)
k

p0

Mσ2
k

, ρ(b)k ,
G

(b)
k

pb

Mσ2
k

.

Now we examine the statistics ofZ(0)
k,m. Note that the time

variations for the large scale and small scale channel effects
are vastly different [1]. The variation of the small scale channel
gainh occurs on the order of milliseconds; whereas the large

scale channel gainG which may consist of path loss, antenna
gain, and shadowing, varies usually on the order of seconds.
Therefore,G is assumed to be known in advance by the
system, through infrequent feedback; and the elements ofh

are modeled as complex Gaussian with zero mean and unit
variance. Since for a given userk, theZ(0)

k,m’s are identically
distributed and correlated, the beam indexm can be dropped
in the expression of the CDF, which is derived in the following
lemma.

Lemma 1. The CDF ofZ(0)
k can be expressed as

F
Z

(0)
k

(x) = 1−

e
− x

ρ
(0)
k

∏Jk

b=1

(

ρ
(0)
k

ρ
(b)
k

)M

(x+ 1)M−1
∏Jk

b=1

(

x+
ρ
(0)
k

ρ
(b)
k

)M
, x ≥ 0.

(4)

Proof: The main technique relies on the use of the
moment-generating function (MGF) [17]. Denoteϑ(0)k ,

ρ
(0)
k |h

(0)
k φ(0)

m |2, and ζ
(0)
k ,

∑M
i6=m ρ

(0)
k |h

(0)
k φ

(0)
i |2 +

∑Jk

b=1 ρ
(b)
k

∑M
i=1 |h

(b)
k φ

(b)
i |2. Then the CDF ofZ(0)

k can be
derived using the following procedure:

F
Z

(0)
k

(x) = P

(

ϑ
(0)
k

ζ
(0)
k + 1

≤ x

)

=

∫ ∞

0

P

(

ϑ
(0)
k ≤ x(ζ

(0)
k + 1)

)

f
ζ
(0)
k

(y)dy

(a)
= 1− e

− x

ρ
(0)
k

∫ ∞

0

e
−

xζ
(0)
k

ρ
(0)
k f

ζ
(0)
k

(y)dy, (5)

where (a) follows from the fact thatP
(

ϑ
(0)
k ≤ x(ζ

(0)
k + 1)

)

corresponds to the CDF of the exponential distribution at
x(ζ

(0)
k + 1). From (5), we note that the expression inside the

integral corresponds to the MGF ofζ(0)k , denoted asΨ
ζ
(0)
k

(τ),

at − x

ρ
(0)
k

. Due to the additive effect reflected inζ(0)k , its MGF

can be obtained below:

Ψ
ζ
(0)
k

(τ) =
1

(1− ρ
(0)
k τ)M−1

Jk
∏

b=1

1

(1− ρ
(b)
k τ)M

. (6)

Combing (5) and (6) yieldsF
Z

(0)
k

expressed in (4).

TheSINR will be fed back1 and used for scheduling, which
is pursued next.

III. CDF-BASED SCHEDULING POLICY

AND INDIVIDUAL SUM RATE

After receiving theSINR(0)
k,m from user k for beamm,

the scheduler is ready to perform scheduling. In order to
guarantee scheduling fairness and obtain multiuser diversity
gain, we employ the CDF-based scheduling policy [12] as

1Full feedback wherein each user feeds back theSINR for M beams is
assumed. The established results in this paper can be extended to different
forms of selective feedback using the techniques developedin [2].
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∏Jk

q 6=b(x+
ρ
(0)
k

ρ
(q)
k

)M(ℓ+1)
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the opportunistic scheduling policy2. According to this policy,
the scheduler will utilizeF

Z
(0)
k

, and performs the following
functional transformation:

Z̃
(0)
k,m = F

Z
(0)
k

(

Z
(0)
k,m

)

. (7)

The transformed random variablẽZ(0)
k,m is uniformly dis-

tributed ranging from0 to 1, and can be regarded as the
virtual receivedSINR of userk for beamm. The transformed
random variablesZ̃(0)

k,m’s are i.i.d. across users for a given
beam, which enables the maximization at the scheduler side
to perform scheduling in a fair manner. Denotingk∗m as the
random variable representing the selected user for beamm,
then:

k∗m = arg max
k∈K0

Z̃
(0)
k,m. (8)

After user k∗m is selected per (8), the scheduler utilizes the
correspondingZ(0)

k∗

m,m for rate matching of the selected user.

Let X(0)
m be theSINR of the selected user for beamm, and

now consider the sum rate for a given base stationB0 defined
as follows:

R(0) = E

[

M
∑

m=1

log
(

1 +X(0)
m

)

]

. (9)

From the aforementioned analysis, the sum rate can be for-
mulated as:

R(0) (a)
≃ MEk∗

m

[∫ 1

0

log

(

1 + F−1

Z
(0)

k∗
m,m

(x)

)

dxK0

]

(b)
=
M

K0

K0
∑

k=1

∫ ∞

0

log(1 + t)d(F
Z

(0)
k

(t))K0 , (10)

where (a) follows from the sufficient small probability that
multiple beams are assigned to the same user;(b) follows
from the change of variablex = F

Z
(0)

k∗
m,m

(t) and the fairness

property of the CDF-based scheduling policy.
The CDF-based scheduling enables a “micro” level under-

standing of each user’s rate performance, from both exact and
asymptotic perspective. The individual sum rate for userk is
defined in [2] as the the individual user rate multiplied by the
number of users in cellB0, namely:

R̂
(0)
k , K0R

(0)
k =M

∫ ∞

0

log(1 + x)d(F
Z

(0)
k

(x))K0 . (11)

2For detailed motivation of the CDF-based scheduling as wellas the
rationale behind the notion of individual sum rate and individual scaling laws,
please refer to [1] and [2].

Now employing the steps described below, the closed form
expression for the individual sum ratêR(0)

k is derived.
Step 1 (PDF Decomposition): This step, utilized similarly in

[1] and [2], is the essential step to decomposed(F
Z

(0)
k

(x))K0

into the following amenable input for Step 2.

d(F
Z

(0)
k

(x))K0 = K0

K0−1
∑

ℓ=0

(

K0 − 1

ℓ

)

(−1)ℓ

ℓ+ 1

× d









1−









e
− x

ρ
(0)
k (

ρ
(0)
k

ρ
(b)
k

)M

(x+ 1)M−1
∏Jk

b=1(x+
ρ
(0)
k

ρ
(b)
k

)M









ℓ+1







.

(12)

Step 2 (Partial Fraction Expansion [18]): This step manip-
ulates part of (12) for further integration.

1

(x+ 1)(M−1)(ℓ+1)
∏Jk

b=1

(

x+
ρ
(0)
k

ρ
(b)
k

)M(ℓ+1)

=

(M−1)(ℓ+1)
∑

j=1

ψ
(0)
k,j

(x+ 1)j
+

Jk
∑

b=1

M(ℓ+1)
∑

j=1

ψ
(b)
k,j

(

x+
ρ
(0)
k

ρ
(b)
k

)j
, (13)

where the expressions forψ(0)
k,j andψ(b)

k,j are given on top of
this page.

Combining the outcomes of the two aforementioned steps,
we can derive the closed form expression forR̂(0)

k in the
following procedure:

R̂
(0)
k =

MK0

ln 2

K0−1
∑

ℓ=0

(

K0 − 1

ℓ

)

(−1)ℓ

ℓ+ 1

×

∫ ∞

0

ln(1 + x)d











1−









e
− x

ρ
(0)
k (

ρ
(0)
k

ρ
(b)
k

)M

(x+ 1)M−1
∏Jk

b=1(x+
ρ
(0)
k

ρ
(b)
k

)M









ℓ+1










=
MK0

ln 2

K0−1
∑

ℓ=0

(

K0 − 1

ℓ

)

(−1)ℓ

ℓ+ 1

Jk
∏

b=1

(

ρ
(0)
k

ρ
(b)
k

)M

×

[

Jk
∑

b=1

M(ℓ+1)
∑

j=1

ψ
(b)
k,jI1

(

ℓ+ 1

ρ
(0)
k

,
ρ
(0)
k

ρ
(b)
k

, j

)

+

(M−1)(ℓ+1)
∑

j=1

ψ
(0)
k,jI2

(

ℓ+ 1

ρ
(0)
k

, 1, j + 1

)]

, (14)



where I1(α, β, γ) ,
∫∞

0
e−αx

(1+x)(β+x)γ dx, and I2(α, β, γ) ,
∫∞

0
e−αx

(β+x)γ dx. The calculation forI1(α, β, γ) andI2(α, β, γ)
has been discussed in [1], and their closed form expressions
can be found in [1, (42)] and [1, (43)].

Up to now, we have performed exact analysis and derived
the closed form results for the individual sum rate for an
arbitrary selected user in a given base station. The derived
results extend the exact analysis in [1] (multicell SISO setup)
and [2] (single cell random beamforming), and can serve as
a theoretical reference for evaluating the system performance
under the CDF-based scheduling policy. In the next section,we
will perform asymptotic analysis to evaluate the rate scaling
laws for R̂(0)

k , which helps in understanding the asymptotic
behavior of an individual user.

IV. I NDIVIDUAL SCALING LAWS

This section is devoted to the asymptotic analysis. Section
IV-A shows the type of convergence ofZ(0)

k . In Section IV-B,
the convergence rate to the limiting distribution is studied to
establish the individual rate scaling laws.

A. Type of Convergence

Firstly, we need to examine the tail behavior of the statistics
of Z(0)

k , which has the form presented in (4). Tools from
extreme value theory [19] are to be utilized. The following
lemma describes the tail behavior ofF

Z
(0)
k

.

Lemma 2. F
Z

(0)
k

belongs to the domain of attraction of the
Gumbel distribution, i.e.,F

Z
(0)
k

∈ D(G3).

Proof: (Sketch) In order to prove thatF
Z

(0)
k

∈ D(G3),

it must be shown thatlim
x→∞

d
dx

[

1−F
Z

(0)
k

(x)

f
Z

(0)
k

(x)

]

= 0 [19]. The

equivalent condition is:lim
x→∞

(

F
Z

(0)
k

(x)−1

)

f ′

Z
(0)
k

(x)

(f
Z

(0)
k

(x))2 = 1. Since

similar methodologies in proving [1, Corollary 1] can be
employed, we omit the detailed proof.

B. Rate of Convergence

Knowing the type of convergence can lead to asymptotic
approximation for the individual sum rate, which is investi-
gated in [1]. Herein, dealing with higher order moments of
the extreme order statistics and the rate of convergence is
of interest. To establish the convergence rate to the limiting
distribution for an individual user, the following definition of
the so called growth function [19] is needed:

g
Z

(0)
k

(x) ,
1− F

Z
(0)
k

(x)

f
Z

(0)
k

(x)
. (15)

One important step in proving the rate of convergence is to
solve for a suitable coefficient sequencewk:K0 by solving the
following equation:

1− F
Z

(0)
k

(wk:K0 ) =
1

K0
. (16)

Due to the complicated form ofF
Z

(0)
k

in (4), we need to find
upper and lower bound forwk:K0 by constructive methods,
namely,wLB

k:K0
≤ wk:K0 ≤ wUB

k:K0
, by deriving upper and lower

bound forF
Z

(0)
k

. Define bmin

k = arg min
0≤b≤Jk

ρ
(b)
k , and bmax

k =

arg max
0≤b≤Jk

ρ
(b)
k . Then, one suitable upper bound and lower

bound forF
Z

(0)
k

, denoted byFUB

Z
(0)
k

andF LB

Z
(0)
k

, are presented

in the following lemma.

Lemma 3.

FUB

Z
(0)
k

(x) = 1−
e
− x

ρ
(0)
k

(

1 +
ρ
(bmin

k
)

k

ρ
(0)
k

x

)(Jk+1)M−1
, x ≥ 0, (17)

F LB

Z
(0)
k

(x) = 1−
e
− x

ρ
(0)
k

(

1 +
ρ
(bmax

k
)

k

ρ
(0)
k

x

)(Jk+1)M−1
, x ≥ 0. (18)

Proof: (Sketch) The upper and lower bound can be
constructed by examining the large scale channel effects of
intercell interference for userk. Herein, we only provide an
intuitive explanation.FUB

Z
(0)
k

can be obtained by assuming that

the intercell and intracell interference has the same largescale

channel effectsρ(b
min

k )
k . The F LB

Z
(0)
k

can be found by using a

similar line of argument.
Employing Lemma 3, the upper and lower bound forwk:K0

can be derived and are provided in the following corollary.
Corollary 1.

w
UB

k:K0
= ρ

(0)
k logK0 − ρ

(0)
k ((Jk + 1)M − 1) log

(

ρ
(bmax

k )

k logK0

)

+O(log log logK0). (19)

w
LB

k:K0
= ρ

(0)
k logK0 − ρ

(0)
k ((Jk + 1)M − 1) log

(

ρ
(bmin

k )

k logK0

)

+O(log log logK0). (20)

Proof: The wUB
k:K0

can be obtained via solving1 −
F LB

Z
(0)
k

(wUB

k:K0
) = 1

K0
. Substituting the expression ofF LB

Z
(0)
k

and

taking thelog operator of both sides yields:

wUB

k:K0

ρ
(0)
k

+((Jk +1)M − 1) log

(

1 +
ρ
(bmax

k )
k

ρ
(0)
k

wUB

k:K0

)

= logK0.

(21)

SincewUB

k:K0
→ ∞ asK0 → ∞,

wUB

k:K0

ρ
(0)
k

dominates (21) and

so we havewUB

k:K0
∼ ρ

(0)
k logK0. Then the sequence ofwUB

k:K0

can be further written aswUB

k:K0
= ρ

(0)
k logK0 + dUBk:K0

, where
dUBk:K0

∈ o(logK0).
The expression fordUBk:K0

can be derived by substituting the
formulation ofwUB

k:K0
into (21), which solvesdUBk:K0

as

d
UB

k:K0
= −ρ

(0)
k ((Jk + 1)M − 1) log

(

ρ
(bmax

k )

k logK0

)

− ρ
(0)
k ((Jk + 1)M − 1) log

(

1 +
ρ
(0)
k + ρ

(bmax
k )

k dUBk:K0

ρ
(0)
k ρ

(bmax

k
)

k logK0

)

. (22)



Therefore,wUB

k:K0
exhibits a scaling performance as ex-

pressed in (19). The corresponding analysis forwLB
k:K0

can
be conducted following the same line of arguments.

Using the results from Corollary 1 and observing the fact

that log ρ(b
max

k )
k or log ρ(b

min

k )
k are inconsequential whenK0 goes

large, we have the following expression forwk:K0 :

wk:K0 = ρ
(0)
k logK0 − ρ

(0)
k ((Jk + 1)M − 1) log logK0

+O(log log logK0). (23)

Once the expression ofwk:K0 is obtained, we can have the
following inequality for the selected user’sSINR for beamm
(denoted byX(0)

m in Section III) by employing [7, Corollary
A.1], as follows:

P
{

ρ
(0)
k logK0 − ρ

(0)
k (Jk + 1)M log logK0 +O(log log logK0)

≤ X(0)
m ≤ ρ

(0)
k logK0 − ρ

(0)
k ((Jk + 1)M − 2) log logK0

+O(log log logK0)
}

≥ 1−O

(

1

logK0

)

. (24)

Now we can state the following theorem for the rate scaling
performance ofR̂(0)

k .

Corollary 2.

lim
K0→∞

R̂
(0)
k

M log logK0
= 1. (25)

Proof: (Sketch)

R̂
(0)
k ≤MP

{

X(0)
m ≤ wk:K0 + ρ

(0)
k log logK0

}

× log
(

1 + wk:K0 + ρ
(0)
k log logK0

)

+MP

{

X(0)
m ≥ wk:K0 + ρ

(0)
k log logK0

}

log(1 + ρ
(0)
k K0)

≤M log
(

1 + wk:K0 + ρ
(0)
k log logK0

)

+O(1). (26)

A lower bound forR̂(0)
k can be obtained similarly. Thus the

individual scaling law forR̂(0)
k exhibits aM log logK0 growth

in the large user regime.
Remark: Corollary 2 informs us that after we bring in

the notion of individual scaling law corresponding to the
individual sum rate for an arbitrary selected user, it exhibits
a M log logK0 growth. This property is desirable from the
perspective of opportunistic scheduling (e.g., greedy schedul-
ing). In addition to this property, with the nonlinear functional
transformation, the CDF-based scheduling policy can guaran-
tee scheduling fairness in terms of long term user fairness (i.e.,
each user is equiprobable to be scheduled irrespective of their
intercell and intracell interference).

V. CONCLUSION

The analytical impact of CDF-based scheduling policy in
two special scenarios (multicell multiuser SISO and single
cell multiuser MIMO) has been investigated in [1] and [2].
This work extends and generalizes our previous works by
addressing the rate performance in a generic multicell mul-
tiuser MIMO downlink, with random beamforming as the
signal transmission scheme. The most challenging part of

this generalization lies in the existence of both intercelland
intracell interference, as well as their accompanying heteroge-
neous large scale channel effects. The CDF-based scheduling
helps us to deal with this challenging scenario, and enablesa
“micro” understanding of the rate performance for any selected
user. The closed form individual sum rate is derived employing
the MGF and the PDF decomposition. With the constructed
bounding technique, we also establish the individual scaling
laws to show that CDF-based scheduling exhibits the same
scaling performance as opportunistic scheduling (but achieves
scheduling fairness additionally).
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