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Abstract—Accurate channel impulse response (CIR) is
required for coherent detection and it can also help improve
communication quality of service in next-generation wireless
communication systems. One of the advanced systems is multi-
input multi-output orthogonal freguency-division multiplexing
(MIMO-OFDM) amplify and forward two-way relay networks
(AF-TWRN). Linear channel estimation methods, e.g., least
square (LS), have been proposed to estimate the CIR. However,
these methods never take advantage of channel sparsity and then
cause performance loss. In this paper, we propose a sparse
channel estimation method to exploit the sparse structure
information in the CIR at each end user. Sparse channel
estimation problem is formulated as compressed sensing (CS)
using sparse decomposition theory and the estimation process is
implemented by LASSO algorithm. Computer simulation results
are given to confirm the superiority of proposed method over the
L S-based channel estimation method.

Keywords—sparse Channel Estimation; MIMO-OFDM; AF-
TWRN; compressed sensing (CS)

1. INTRODUCTION

It is well known that wireless communication technologies
are developing rapidly due to that the huge market is promoted
by the skyrocketing number of wireless users is in last decades
[1][1]. Until now, there have three promising techniques for
broadband wireless communications. The first technique is
multiple antenna transmission over multi-input multi-output
(MIMO) that is becoming one of the prevail techniques for
enhancing system capacity and combating multipath channel
fading. The second technique is orthogonal frequency division
multiplexing (OFDM) modulation which provides high
spectral efficient and robustness mitigates frequency-selective
channel fading [1]. The third technique is two-way relay
network (TWRN) that implements information exchange in
two time slots. When comparing with four-time slots
traditional TWRN (see Fig. 1(a)) and three time slots physical-
layer TWRN (see Fig. 1(b)) which achieve information
exchange, two time slots TWRN (see Fig. 3(c)) can enhances
system capacity 66.7% and 100%, respectively. In addition,
TWRN can also improve transmission range with limited
transmitted power [2]. To take advantage of three techniques
fully, combine them into an advanced wireless communication
system is one of promising candidate techniques. However, one
of the key challenges is how to obtain accurate channel state
information (CSI) which is applied for self-interference
removal and coherent detection at each terminal.
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Fig. 1. Information exchange using different time slots in MIMO-OFDM
AF-TWRN.

In this paper, channel estimation problem will be studied
in a cyclic prefix (CP) based MIMO-OFDM TWRN. Here,
decode-and-forward (DF) based TWRN system should be
done channel estimation at both terminals and relay station for
coherent detection. Channel estimation and signal modulation
will increase high computation burden on the relay. In addition,
channel estimation techniques in DF MIMO-OFDM-TWRN
can be borrowed from point-to-point MIMO-OFDM systems
[3-7]. Unlike the DF model, the obvious advantage of AF one
can alleviate the computational burden on the relay, i.e., the



relay amplifies and forwards the signals received from both
terminals. Due to the signaling rule, hence, only the cascaded
channels are necessary for self-interference removal and
coherent detection at each terminal. Except that the advantage
of low computational burden at the relay, estimate cascaded
channels at each terminal can mitigate the quantization error
and also can avoid individual channels further distortion from
noise [8].

Traditional linear channel estimation methods, e.g, LS [9],
have been proposed for MIMO-OFDM AF-TWRN . However,
these methods cannot take the advantage of inherent channel
sparsity and hence cause performance loss. In this paper, we
propose sparse channel approach to exploit such channel
sparsity. Sparse channel estimation problem in MIMO-OFDM
AF-TWRN is formulated as CS problem. At each terminal,
equivalent training signal is constructed to probe equivalent
channel vector using least absolute shrinkage and selection
operator (LASSO) [10]. The performance of propose method
will be evaluated by computer simulations.

The remainder of this paper is organized as follows. A
MIMO-OFDM AF-TWRN system model is described and
problem formulation is given in Section II. In section III, the
sparse channel estimation method is proposed and lower
bound of estimation performance is derived. Computer
simulation results are given in Section IV in order to evaluate
and compare performances of LS-based channel estimation
method. Finally, we conclude the paper in Section V.

II. SYSTEM MODEL AND PROBLEM FORMUALTION

As shown in Fig. 1(c), we consider a MIMO-OFDM AF-
TWRN in which two-time slots information exchange between
terminal T; and terminal T, with the help of relay R. Both the
two terminals and the relay have N, and N, antennas (N, =
N, ), respectively. Assume that L -length channel vectors
between the n,-th antenna of terminals T;, i = 1,2 and n,.-th
antenna of relay R are denoted by
hy,n, = [hntnr(o): hntnr(l)' s Py, (L = D]"  and Inn, =
[9nn, (0), Gnpn, (1), oo Gnpn, (L — D]™ ,  respectively. Each
channel vector is supported only by K nonzero taps and
K « L. Suppose that each the nonzero tap is modeled as a
complex Gaussian random variable with zero mean and
variance o3, , and o, 1=0,..,L . In addition, h,,, and
Gnn, are assumed invariant in the two time slots information
exchange. At time t, suppose that OFDM signal vectors are
transmitted from n; -th antenna of T;, i = 1,2, are §,, =
[54,00),8,,(1), ...,5,,(N — D]" and X,,, = [%,,,(0), %, (1), ...,
Xp, (N — D], respectively, where N is the number of
subcarriers and n, = 1,2,..,N, . At the same time, two
transmitted power is assumed E[§,’ft§nt] =NP; and
E[X} X,,,] = NP, respectively.

(a) MAC phase.

(b)BC phase.

Fig. 2. Information exchanges under TWNR.
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Fig. 3. Example of two individual channels and their cascaded ones.

A. MAC phase

In the multi-access (MAC) phase as shown in Fig. 2(a),
inverse discrete Fourier transform (IDFT) is computed for
frequency-domain signal vectors S, andX,, . The resultant
vectors,s,, = Fs, and x,,, = F/X,,,, are then cyclic prefix
(CP) padded with length Lcp = (L — 1) to avoid inter-block
interference (IBI). Here, F is a N X N discrete Fourier
transform (DFT) matrix where entries f,,, = 1/N e /mm/N
m,n = 0,1, ..., N. After removed the CP, the received signal
vector at the n,-th antenna of R for t = 1,2, ..., T is written as

N; N
rnr = Zntt Hntnrsnt + Zni Gntnrxnt + znr: (1)

for n, =1,2,...,N,, where H,,_ and G, are circultant
matrices with the first columns of [hy,,, ,0;xw-1)]", and
[87,n,» O1x(v-r)]" , respectively. The additive noise vector
Z,, satisfies CN(0pyyq, 021y). If we collect all received signal
vectors r, n, = 1,2,..., N, atR to form a N, N-length vector
r=[r{,..,r, ..y ], then the received model in the MAC
phase at relay is written as

r =Hs+ Gx + z, 2
where
[ Hyy Hy, Hy,1
Ho l:-l12 H:22 HNt? € CVVXNeN (3
Hiy, Hay, Hy,w, ]
[ G1g Gy G,
G = (%12 .Gzz GNf.z € CNPVXNEN ()
(Giy,  Gon, Gy, N,
s=[s],...,sh, ...sq,]" € (VN2 (5)
X = [X], ., XDy, o, Xy, |7 € (VN (6)
z=[z],..,z} ..,z " € CNrVx2, (7



According to Eq. (2), the received signal vector 1, is
amplified by a positive coefficients § which is given by

B = .
N¢ Z{gol(ofl’lP1+cz‘lP2)+No’

where P, is relay’s amplify power which is given by
E[ff F, ] = NP..
B. BC phase

Because of system symmetrical in TWRN, without loss of
generality, we consider the broadcasting (BC) phase at T;, as
shown in Fig.2(b). Lety,, denote the received signal vectors
at the n;-th antenna at time (t + T). If we collect N, received
vectors y,, as ¥ = [y{,¥3,..,Yx,]" , then received signal
model can be written as

®)

y = fHHs + fHGx + Hz + v, )
where
Hy, H;, Hyy,
= l.'121 H.zz H2N:r € CVeNXNN (1)
Hy,: Hy, Hy,n,
v=[v],v], .., v €NVt (1n)
where v, is a noise vector at n,-th antenna of Ty, satisfying

Vy, € CN(Opxq,021y) . According to matrix theory [11],

circulant matrices Hy,,, and G5, , 1, =1,2,..,N,, n, =
1,2,...,N;, can be decomposed as
Hpn, = FHAntanv (12)
Gp,n, = F'U,,, F, (13)

respectively, where ()7 denotes matrix Hermitian transition
operation and above diagonal matrices are given by

Ay, = diag{Hn,n, (0), ..., Hypn, (1), oo, Hypn (N — 1)}, (14)
GntnT(N - 1)}’ (15)

Upn, = diag{Gan(O), S Gntnr(n): ey
respectively. Based on the above analysis, it is easy found that

the n-th diagonal entries Hy,, (n) in Eq. (14) and G, 5, (n) in
Eq. (15) are obtained by
Hpyn, (1) = 220 R, (n)e ~72m/N, (16)
Gntnr(n) = l=_0 gntnr(n)e—jZHnl/N’ (17)
respectively.  Therefore, the product of SHy,, H il

and BGy,n H il with respect to n.,n;=1,2,..,N, and
n, = 1,2, ..., N, can also be written as

ﬁHntnangn FHﬁAntnr ntan (18)

ﬂﬁntanntnr = FHBAntanntan! (19)

respectively. Hence, both fHy,n H,r, and fHy 5, Gy, are

circulant matrices where their first columns are given by
[.B(hntnr * hngnr)T 01><(N—2L+1)]T and [ﬁ(hntnr * gntnr)T

01><(N—2L+1)]Ts respectively, where ‘*’ denotes convolution
operator between two channel vectors. Based on this
observation, when the n,-th row partitions of SH multiplies

with the n,-th column partitions of H, n;, n; = 1,2, ..., N, we
can obtain an equivalent (2L-1)-length cascaded channel
vector Dtn, 2 [Gngng (00 o Tt (D, o G, (2L — )"
which is given by

Anin, = 2B an_1 neny ¥ hn{nr : (20)

Because of the symmetry of two MIMO channel matrices, we
can easy find their symmetry relationship, that is, Anln, =
Q. - Hence, the product BHH is equivalent to provide
(N2+Np)/2 independent (2L — 1) -length composite
channel vectors Un/n, with n,n; =1,2,...,N; . Note that
(N2 + N.)/2 < N2 if N, > 1. By virtual of the duplication
matrix property [12] on sparse channel estimation, it can
reduce some amount of complexity which relates to the
number of antenna N;, especially in the case of a relatively
large scale communication system. That is to say, the
computational complexity is reduce to O((N? + N,)/2) rather
than O(N?), where O(*) denotes the calculation metric of
complexity. Due to independent between the two MIMO
channel matrices H and G, hence, BHG is equivalent to
generate N? independent (2L-1)-length cascaded channel
vectors ;A [pntng(O), vy pntng(l), (2L —

pnfnt 4 pntnt
2)]"with respect to n,,n; = 1,2, ..., N, where

Prnt 2 B0 <1 My, * g, - 1)

If we define F =1y, @ F € CVeV*NrN " where ‘@’ denotes
Kronecker product and Iy, denotes an N; X N, identity matrix,
the received signal y in Eq. (9) is transformed to frequency-
domain using DFT matrix F, then, we have

7 = FRHHF"s + FRAGF X + 7, 22)

where v = FBHz + Fv denotes composite noise vector at the
T,. According to Eq. (18) and (19), FBHHF” and FRHGF"
can be given in Eq. (23) and (24), respectively. If we define
both S; = diag(s;) and X; = diag(X;) as N X N diagonal
matrices, and collect all cascaded channel vectors as q £
[ai1, - ,qyz]"and p = [p}, ..
p{Nt, ...,pgtz]T, then two equivalent training signal matrices

T T T T
yAing D225 -+ 2ngs -+ y PNg1s -0

can be written in Eq. (25) and (26) respectively, where F,; _;
is partial DFT matrix by extracting the first (2L —1) -columns
of F.

Then the received signal model in Eq. (22) can be
reformulated as

y=Sq+Xp+v=Db+V, 1)

where D = [S,X] denotes an equivalent training matrix combined
two training signal matrices Sof N;N X (2L — 1)N,(N; + 1)/2
sizes and X of N;N X (2L — 1)NZsizes; and b = [q7, p”]” denotes
overall channel vector including q and p. At the receive side of Ty,
channel estimator q is used to remove self-data interference and
channel estimator p is applied to extract other users’ data information



Zn =1 ﬁAln-,Alnr
FﬁﬁHFH = an—l ﬁAanAmr
an=1 BANtn‘rAlnr
an—l :BAlnrulnr

FRAGF = [ Zn = Fhzn, Ui,

N;
Zn:=1 ﬂANtnrulnr

SiFo1 S:Fa S;F 4
Onxze-1) SiFar—1 S:F21
S= . 0 .
Nx(2L-1)
0N><(2L—1) 0N><(2L—1) SlFZL—l
[ XiFoio1 Onx@r-1  Owx@r-1  Ownxcar-1) -
X = Onxzi-1)  XiFar-1 Onxr-1) :
: OnxzL-1) Onxzi-1) ¢
Onx(2L-1) Onxi-1) XiFzp-1 -

at T;.

According to the formulated system model in Eq. (27), it is easy
found that main object of this paper is to estimate the overall channel
vector b using the composite training signal matrix D. With respect to
Eq. (27), LS based channel estimator b; 5 can be computed by

b, = (D¥D) D"y = b + (D¥D)~Dv. (28)
Since the noise variance of V is given by
BV} = No(B2N, X150y + 1), (29)

then the average MSE of LS channel estimator b;s can be
given by

MSE{b;;} = No(B2N, it o7, + 1)Trace{(D"D)71}. (2)

It is well known that the training matrix D has
N; (3N; + 1)(2L — 1)/2 columns that are normalized in a
way such that ||D||2 = N, (3N, + 1)(2L — 1)/2, where ||||r
denotes the Frobenius norm. Optimal training design for LS-
based channel estimation method is the one that subjects to
DD = Iy, (3n,+1)(21-1)/2- Hence, we can obtain

Trace(D¥D) = ||D||2 = N, 3N, + V(2L - 1)/2, (3)

where Trace(A) is defined to be the sum of the elements on
the main diagonal of matrix A. According to arithmetic—
harmonic means inequality, lower bound for the LS channel
estimation error can be derived as

MSE{bls}
No(ﬁzN Yizd of1 + 1)(N BN, + D)(2L — 1)/2)?
Trace{D"D}
_ No(B?N, X5 oy + D)WV BN, + D (2L — 1)/2)°?
N, (3N, + 1)(2L — 1)/2

Zn =1 ﬁAlnrAan
an_l .BAanAZnT

Zn:=1 ,BANtnrAZnT

Zn =1 .BAlanan
Zn =1 ﬁAZnTUZnT

N,
Zn:=1 ﬁANtnTUZnT

Zn =1 ﬁAln-,ANtnT
an_l ﬁAZTerNtTlr

€ CNL-NXNL-N’ (23)
anzl EANL-T[TAN[T[T
an—l ﬁAlnTUNtnr
Ny
Zn =1 ﬁAanUNtnr € CNL'NXNL’N, (24)
Zn =1 ﬁANtnrAUNtnr
Sv.For-1 Onx@i-1)  Onxei-1)  Onxar—1)
Snve-1Far-1 SwFar-1 Onxear-1) : (25)
: ; Onx2-n |’
S:Fp11 Snve-1For-1 Sy Farq
Xy Far-1 Onx@r-1)  Ownx(ar-1) Onx(zL-1) 1
Ovxizr-1)  XnFar-1 : : 26)
Onx(20-1) Onxze-1) [
Onx(zr-1) Onx2i-1) Xy, Far-1
= No(B°N, Zig oy +1) BN+ DL -1)/2. (32)

From the derivation in Eq. (32), the lower bound of LS can be
written as MSE{b,s}~0(Ny, X{=g 07, B, Ny, N, L). Generally,
linear channel estimation methods, e.g., LS, emphasize on
optimal training designing to improve estimation performance
while neglect the inherent sparsity of channel.

III.  SPARSE CHANNEL ESTIMATION

According to the CS [13], [14], accurate sparse channel
estimation requires that training signal matrix D be satisfied
restricted isometry property (RIP) [15] in high probability.
Hence, according to the system model in Eq. (27), optimal
sparse channel estimator b,,,; can be given by

bope = argming {2 Db — Fl13 + Allbll, . (33)

where ||b||, denotes Euclidean norm which is given by
[Ibll2 = X;lb;1? ; |Ibll, denote zero-norm operator which
counts their nonzero taps and A is regularization parameter
which trades off the estimation error and sparseness of the
channel. Assume the positions set of all channel taps of b is
Q and its nonzero taps set is I'. The number of nonzero taps of
b is T, then the lower bound of sparse channel estimator can
be derived as

L-1
MSE{b,,.} = No (ﬁer E of, + 1) Trace{(D¥D;)~1}
1=0

No(B2Ny Xi23 of 1 +1)T
Trace{DHDr}

= No(B?N, ¥izg o, + 1)T,

(34

Where Trace{D¥D;} = I, denotes the optimal signal training
for sparse channel estimation. Comparing Eq. (34) to Eq. (32),



we can found that the lower bound of optimal channel
estimator depends on T rather than overall channel length
N.(3N, + 1)(2L — 1)/2 of b. If we can estimate positions of
nonzero taps of b, then sparse channel estimation performance
could be improved. Since solving the optimal sparse channel
estimation in Eq. (33) is NP hard problem [14]. Hence, it is
necessary to develop alternative suboptimal sparse channel
estimation method.

In this paper, we propose a sparse channel estimation
method for MIMO-OFDM AF-TWRN and it is implemented
by LASSO algorithm [10]. Given a equivalent training matrix
D and a received signal vector y, LASSO based sparse
channel estimator b can be obtained

b, = argminy {5 IDb — 112 + 21bll,}, (35)

where ||b|l; denotes L, -norm which is given by ||b||; =
Y.ilb;|. In a practical system, accurate number of nonzero
channel taps is unknown. Hence, to obtain accurate sparse
channel estimation, effective training signal design is required.
In accordance with the CS [13], [14], two kinds of training
design methods, i.e., random Gaussian and random binary, are
considered for computer simulation to evaluate our proposed
method.

IV. COMPUTER SIMULATION

In this section, we present the simulation results to evaluate
sparse channel estimation method in MIMO-OFDM AF-
TWRN. Here we compare the performance of the proposed
estimator with LS-based channel estimator and adopt 100
independent Monte-Carlo runs for average. The number
(N¢, N,) of transmitter/relay pairs are considered three cases:
(2,2), (2,4) and (4,2). All of the channel vectors have same
length L =16 and K =1,2,3,4,5,6, and its positions of
nonzero channel taps are randomly generated. Training signal
length of each antenna is set as N = 32 to ensure N > 2L — 1.
Transmit power is set as P = P, = P and relay power is
allocated as P, = 2P. The signal to noise ratio (SNR) is
defined as 10log(P./o2)at relay and 10log(P;/0?2), i = 1,2 at
transmitter, respectively.

Random Gaussian training is considered in Figs. 4 and 5,
and random binary training is considered in Figs. 6 and 7.
From the four figures, we can find that the proposed sparse
channel estimator is better than LS one. In addition, the four
figures show that LS channel estimator depends on channel
length while LASSO one relies on nonzero number K of
channel. Note that the lower bound is given by ideal LS
channel estimator which is known nonzero taps position of
channel. In four experiments, the proposed sparse method
works well on different number of nonzero taps of channel.
However, for sparser channel estimation, more sparsity can be
exploited. In other words, much better performance can be
improved. Take the K = 1 for example, the proposed sparse
channel estimator approach to lower bound. On the contrary,
channel is approximate parse, e.g., K = 6, the performance
advantage of the proposed method is no longer obvious. When
the K = L = 16, then the proposed sparse channel estimator

reduce to LS one. Because single channel vector between each
pair of antennas is not exact sparse, it will incur much number
of nonzero taps in their cascaded channel. Hence, the proposed
method can works well in very sparse channel.

V. CONCLUSION

In this paper, we proposed a sparse channel estimation
method which can exploit the extra knowledge of sparse
structure as for prior information and hence it can increase
spectral efficient or enhance estimation performance when
compared with traditional methods. Computer simulation
results were showed the performance advantages of our
proposed method than LS using MSE standard
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