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A low-complexity algorithm for calculation of the LMMSE filter
coefficients for GFDM in a block-fading multipath environment is
derived in this letter. The simplification is based on the block circularity
of the involved matrices. The proposal reduces complexity from cubic
to squared order. The proposed approach can be generalized to other
waveforms with circular pulse shaping.

Notation: Matrices are typeset in bold notation.⊗ denotes the Kronecker
product, IN denotes the N-dimensional identity matrix and FN is the
unitary N-point DFT matrix. 〈x〉N denotes the remainder of x modulo
N . (·)> and (·)H denote matrix transpose and hermitian conjugate,
respectively. diag(. . . ) returns a (block)-diagonal matrix with its
arguments on the diagonal.

Motivation and Problem Description: Recently, several waveforms for
5G networks have been proposed [1]. Among them, waveforms utilizing
circular pulse shaping [2, 3, 4] structure the signal into self-contained
blocks that can be separated by a cyclic prefix (CP) to combat inter-block
interference. Generalized Frequency Division Multiplexing (GFDM), the
first 5G waveform that used circular pulse shaping, provides a flexible
time and frequency grid that can be explored to provide low out of
band radiation and robustness to time- and frequency misalignments [4].
For real-world implementations, low-complexity algorithms are always
of concern. For GFDM, literature provides low-complexity descriptions
for the linear GFDM modulator and demodulator [4] and the design
of zero-forcing and LMMSE filters for additive white Gaussian noise
(AWGN) channels [5]. However, no low-complexity implementation of
the LMMSE demodulator for multipath environments is available. This
letter presents an algorithm with significantly reduced complexity for
calculating the LMMSE filter coefficients for GFDM.

The time domain signal of one GFDM block is given by

x[n] =

K−1∑
k=0

M−1∑
m=0

dk,mgk,m[n] (1)

with gk,m[n] = g[〈n−mK〉N ] exp

(
j2π

kM

N
n

)
, (2)

where N =KM , n= 0, . . . , N − 1, g[n] denotes the prototype transmit
filter and dk,m ∈X is the data symbol to be transmitted on the
kth subcarrier and mth subsymbol taken from the complex-valued
constellation X . Eq. (1) is written in matrix form as ~x=A~d with

A=
[
~g0,0, ~g1,0, . . . , ~gK−1,0, ~g0,1, ~g1,1 . . . ~gK−1,M−1

]
, (3)

where the column vectors are ~gk,m = (gk,m[n])n=0,...,N−1, ~d contains
dk,m in the appropriate order and E[~d] = 0, E[~d~dH] = IN . g[n] is
bandlimited within two subcarriers, i.e. FN~gk,0 only has 2M nonzero
elements centered around the index kM [4]. The signal is transmitted
through a block-fading wireless multipath channel with impulse response
~h. Assuming a CP between blocks that is longer than ~h, the received time
domain signal per block is given by

~y=H~x=HA~d+ ~w, (4)

where H is an N ×N circulant matrix with the zero-padded channel
impulse response ~h as its first column and ~w∼CN (0, σ2

nIN ) is AWGN.
From (4), the LMMSE equalizer for ~d is given by ~dLMMSE =WH~y, where
W are the LMMSE filter coefficients given by

W=HA((HA)H(HA) + σ2
nIN )−1. (5)

Sec II. reviews properties of block circulant (BC) matrices. A low-
complexity solution for computing W in (5) is developed in Sec. III and
its complexity is evaluated in Sec IV. Sec V concludes this letter.

Block-circulant Matrices: Let X be an N ×N BC matrix composed of
M arbitrary submatrices {Xm} of size K ×K each, i.e.

X=


X0 XM−1 XM−2 . . . X1

X1 X0 XM−1

X2 X1 X0

...
. . .

...
XM−1 XM−2 . . . X0

 . (6)

X is block-diagonalized by Z=FM ⊗ IK [6] such that

ZXZH = diag(DX,0,DX,1, . . . ,DX,M−1), (7)

where DX,u is the uth submatrix of size K ×K on the diagonal
of ZXZH. Note that Z performs a discrete ZAK transform
on its argument [5]. Let Xs be the first K colums of X, i.e.
Xs =

(
X>0 X>1 · · · X>M−1

)>. Then [6],

DX =
(
D>X,0 D>X,1 . . .D>X,M−1

)>
=ZXs. (8)

Note the similar behaviour of circulant matrices: Let Y be a circulant
matrix with ~y in the first column, then FNYFH

N = diag(FN~y). Let

Zu = ~ωu ⊗ IK (9)

with ~ωu =
(
1 ωu ω2u · · · ω(M−1)·u) (10)

and ω= exp(−j2π
M

) such that DX,u =ZuXs. Note that, according to
above block diagonalization, the product and sum of two or the inverse
of one BC matrix is again BC.

Reduced complexity Filter Calculation: From definition (3), A is BC
with M blocks with size K ×K and is hence block-diagonalized by Z.
Also, circularity of H implies block circularity. Accordingly, G=HA,
(GHG+ σ2

nIN ) and W are all BC matrices. Hence, W is completely
defined by its diagonalization DW =ZWs. The M blocks of DW are
given by the M equation systems

DW,u = ((DH
G,uDG,u + σ2

nIK)−1DH
G,u)

H (11)

where u= 0, . . . ,M − 1 and DG,u =ZuGs. Now, ZH
uZu =

((~ωu)H~ωu)⊗ IK is a circulant matrix since ((~ωu)H~ωu)i,j = ωu(i−j)

is circulant and accordingly Du :=FNZH
uZuF

H
N is a diagonal matrix.

Due to band-limitation of g[n] only adjacent subcarriers overlap and
(FNGs)HDuFNGs is a tridiagonal matrix with periodic boundary
conditions. Once DW is known, the first K columns of W in the time
domain are given by

Ws =ZHDW, (12)

and remaining columns are given as circular shifts of Ws. In addition,
the ZAK domain DW can be also directly transformed into the
frequency domain to readily employ a low-complexity receiver as in [7].
Furthermore, LMMSE filtering can even be directly performed in the
ZAK domain by

Z~dLMMSE = diag(DW,0,DW,1, . . . ,DW,M−1)
HZ~y (13)

Complexity Analysis: In this section, the arithmetic complexity of the
proposed algorithm is evaluated, considering one complex multiplication
as one O(1) operation and neglecting other operations such as additions.
The product Z~x is equivalent to K DFTs of length M each, and
hence requires KM ldM1 operations, yielding K2M ldM operations
for ZXs.

To compute FNGs =FNHAs we take advantage of the factorization

FNGs =FNHFH
NFNAs (14)

where FNAs is precalculated at the receiver. This is done by DFT for
the first column. Other columns are given by circular shifts since As

contains frequency shifts of ~g. Considering band-limitation of g[n], the
multiplication of FNAs with the diagonal matrix FNHFH

N takes 2MK

operations. The diagonal of FNHFH
N is assumed to be available from

previous channel estimation procedures. The product GH
s F

H
NDuFNGs

requires 3K · 4M operations due to the tridiagonal structure of the result
and band-structure of FNGs.

1 Assuming that the N -point DFT requires N ldN operations.
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Fig. 1 Number of floating point operations for proposed low-complexity
LMMSE calculation.

The tridiagonal system with periodic boundary conditions

(DH
G,uDG,u + σ2

nIK)−1DG,u (15)

is solved using the Thomas algorithm [8] with 2K operations for
factorization and 5K operations for solving for each right hand side,
resulting in 2K + 5K2 operations for the full linear system [9]. Finally,
calculation of ZHDW requires K2M ldM operations.

Hence, the number of complex multiplications Csparse to solve (5) with
the proposed method is given by

Csparse = 2MK︸ ︷︷ ︸
(a)

+M(3K · 4M︸ ︷︷ ︸
(b)

+2K + 5K2︸ ︷︷ ︸
(c)

) +K2M ldM︸ ︷︷ ︸
(d)

(16)

=K2(5M +M ldM) +K(12M2 + 4M) (17)

=O(K2M ldM +KM2) (18)

where (a) corresponds to calculation of FNGs, (b) respects
GH
s F

H
NDuFNGS , (c) describes the solution of the tridiagonal

system and (d) accounts for ZHDW . For comparison, direct application
of a conventional Hermitian positive definite solver to (5) requires
Cdirect =

N3

3
+N · 2N2 operations only for the solution step2, where the

first term corresponds to Cholesky decomposition and the second term
refers to backward and forward substitution for N right-hand sides. An
additional advantage is the reduced memory requirement of the proposed
algorithm, as it suffices to store the MK2 filter coefficients for Ws

instead of M2K2 coefficients for W.
Fig. 1 compares the number of complex multiplications required for

the proposed technique and for conventional solving with Cholesky
decomposition for different values of K and M . The number of required
operations can be reduced by 4 orders of magnitude for 128 subcarriers.

Conclusion: A low-complexity approach for the calculation of LMMSE
filter coefficients for block-fading multipath channels for GFDM has
been presented. The proposal significantly reduces the complexity of
the design from O(K3M3) to O(K2M ldM +KM2) which results
in a complexity reduction of several orders of magnitude for reasonable
system sizes. Since the technique exploits the block-circulant structure
of the modulation matrix, it can be generalized to other multicarrier
waveforms employing circular pulse shaping.
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2 i.e. product of HA etc. is not considered
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