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Robust Transceiver Design for MISO Interference
Channel with Energy Harvesting

Ming-Min Zhao, Yunlong Cai, Qingjiang Shi, Benoit Champagne, and Min-Jian Zhao

Abstract—In this paper, we consider multiuser multiple-input
single-output (MISO) interference channel where the received
signal is divided into two parts for information decoding and
energy harvesting (EH), respectively. The transmit beamforming
vectors and receive power splitting (PS) ratios are jointly designed
in order to minimize the total transmission power subject
to both signal-to-interference-plus-noise ratio (SINR) and EH
constraints. Most joint beamforming and power splitting (JBPS)
designs assume that perfect channel state information (CSI) is
available; however CSI errors are inevitable in practice. To over-
come this limitation, we study the robust JBPS design problem
assuming a norm-bounded error (NBE) model for the CSI. Three
different solution approaches are proposed for the robust JBPS
problem, each one leading to a different computational algorithm.
Firstly, an efficient semidefinite relaxation (SDR)-based approach
is presented to solve the highly non-convex JBPS problem, where
the latter can be formulated as a semidefinite programming (SDP)
problem. A rank-one recovery method is provided to recover
a robust feasible solution to the original problem. Secondly,
based on second order cone programming (SOCP) relaxation, we
propose a low complexity approach with the aid of a closed-form
robust solution recovery method. Thirdly, a new iterative method
is also provided which can achieve near-optimal performance
when the SDR-based algorithm results in a higher-rank solution.
We prove that this iterative algorithm monotonically converges
to a Karush-Kuhn-Tucker (KKT) solution of the robust JBPS
problem. Finally, simulation results are presented to validate the
robustness and efficiency of the proposed algorithms.

Index Terms—MISO interference channel, beamforming,
power splitting, semidefinite programming, second-order cone
programming, concave-convex procedure.

I. INTRODUCTION

Recently, energy harvesting (EH) from the environment has
attracted considerable interest since it offers a promising solu-
tion to provide cost-effective and perpetual power supplies for
wireless networks [1]–[18]. The unified study of simultaneous
wireless information and power transfer (SWIPT) has therefore
drawn significant attention lately, as it opens new challenges
and possibilities in the analysis and design of transmission
schemes and protocols.
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The fundamental concept of SWIPT was first proposed in
[1], which characterizes the rate-energy (R-E) tradeoff in a
discrete memoryless channel. The study of R-E tradeoff was
later extended to frequency selective channels [2], multiple
access and multi-hop channels [3], and two-way channels
[4]. However, the above works all assume that the receiver
can decode information and harvest energy from the same
signal, which is impossible with existing technology. In [5],
the authors proposed a practical receiver structure for the first
time, and considered the R-E region and optimal transmission
scheme of a MIMO broadcasting channel. Two practical signal
separation schemes, namely time switching (TS) and power
splitting (PS) were also considered. For the TS scheme, the
transmitter divides the transmission block into two orthogonal
time slots, one for transferring power and the other for
transmitting data. For the PS scheme, the received signal is
split with an adjustable PS ratio, where the stream with power
ratio 0 ≤ ρ ≤ 1 is used for information decoding (ID) and the
other stream with power ratio 1− ρ is used for EH.

The works in [6] and [7] considered beamforming de-
signs with separate information/energy receivers. Specially,
[6] studied the robust beamforming problem for the multi-
antenna wireless broadcasting system with SWIPT, under the
assumption of imperfect channel state information (CSI) at
the transmitter. In [7] the authors investigated the optimal
beamforming strategy to maximize the weighted sum-power
transferred to all EH receivers subject to given minimum
signal-to-interference-plus-noise ratio (SINR) constraints at
different ID receivers. The work in [8] derived the optimal
power splitting rule at the receiver to achieve various trade-
offs between the maximum ergodic capacity for information
transfer and the maximum average EH for power transfer. In
[9], various practical receiver architectures for SWIPT were
investigated, where a new integrated information and energy
receiver design was proposed. The use of SWIPT for relay
systems was considered in [10]–[12].

The work [13] considers a multiuser MISO downlink
system with SWIPT, where the total transmission power at
the base station (BS) is minimized subject to given SINR
and EH constraints. An optimal solution is proposed based
on semidefinite relaxation (SDR) along with low-complexity
suboptimal designs. Some recent studies have focused on
SWIPT in the context of multi-antenna interference channels
[14]–[17]. The work [14] investigates optimal transmission
strategies and mode scheduling methods for a two-user MIMO
interference channel with EH, while [15] extends this study
to the K-user MIMO interference channel. A number of
recent studies focus on the PS approach and consider the joint
beamforming and power splitting (JBPS) design problem in
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MISO interference channel, where the downlink receivers are
characterized by both SINR and EH constraints. Compared
with the conventional beamforming design, JBPS design is
much more challenging due to the coupling between the
beamforming vectors and PS ratios. Hence, the corresponding
research area has become quite active and several algorithms
have been recently proposed to address this problem. In [16]
and [17], the JBPS design is studied for a K-user MISO inter-
ference channel with the same design criterion as that in [13].
Specially, the work [16] uses SDR to tackle the non-convex
JBPS problem and prove that the SDR is tight when K = 2
or 3. Also, various suboptimal but low complexity solutions
based on fixed beamforming schemes and a hybrid scheme
are provided. In [17], the JBPS problem is reformulated as a
SOCP problem based on an alternative method named SOCP
relaxation and two sufficient conditions are given under which
the relaxation is tight. Also, a primal-decomposition based
distributed algorithm is proposed for the JBPS problem.

In these existing works on JBPS, the CSI is assumed to
be perfectly known. In practice however, the CSI is prone to
errors owing to various factors, which may limit the system
performance drastically. Hence, it is of interest to develop
JBPS designs that are robust to CSI errors. In this paper,
assuming norm-bounded CSI error (NBE) models for the CSI,
we propose three new computational algorithms for solving the
robust JBPS design problem in a K-user MISO interference
channel with multi-antenna transmit beamformers and single-
antenna PS receivers. In the first approach, we show that the
robust JBPS problem can be relaxed as a SDP problem based
on SDR. A rank-one recovery method is provided to recover
a robust feasible solution to the original problem if a high-
rank solution is returned. In the second approach, we propose
to formulate the original problem as a SOCP problem based
on SOCP relaxation and the Cauchy-Schwarz inequality for
the purpose of complexity reduction. Since the solution to the
SOCP problem is not necessarily robust, a closed-form robust
solution recovery method is provided. Finally, as our third
approach, we propose a new iteration algorithm based on the
concave-convex procedure (CCCP) which can provide near-
optimal performance when higher-rank solutions are returned
by the SDR-based algorithm. The convergence of this iterative
algorithm is studied in detail and we prove that any limit point
of the iterative algorithm is a Karush-Kuhn-Tucker (KKT)
solution to the robust JBPS problem. Finally, simulation results
are presented to validate the robustness and efficiency of the
proposed algorithms. In particular, we show that the proposed
robust algorithms can provide near-optimal performance.

The reminder of this paper is organized as follows. We
present the system model of the K-user MISO interference
channel, the channel error model and the robust JBPS problem
in Section II. In Section III, the robust JBPS design approaches
based on SDR and SOCP relaxation are developed along
with their rank-one recovery methods and final computational
algorithms. In Section IV, we develop the CCCP-based iter-
ative design algorithm for the JBPS problem and discuss its
convergence and initialization. A detailed complexity analysis
of the proposed algorithms is provided in Section V. Finally, in
Section VI computer simulations are used to compare the ro-

bust performance of the proposed JBPS designs. Conclusions
are drawn in Section VII.

Notations: Scalars, vectors and matrices are respectively
denoted by lower case, boldface lower case and boldface upper
case letters. For a square matrix A, Tr(A), rank(A), AT ,
conj(A), AH , A−1 and A† denote its trace, rank, transpose,
conjugate, conjugate transpose, inverse and pseudo-inverse,
respectively, while A � 0 means that A is a positive semidef-
inite matrix. The operator diag{S1, . . . ,SM} denotes a block-
diagonal square matrix with S1, . . . ,SM denoting the diagonal
square matrices. The operator vec(·) stacks the elements of a
matrix in one long column vector, invp(x) denotes the inverse
of the positive portion, i.e. 1

max(x,0) . ‖·‖ denotes the Euclidean
norm of a complex vector and | · | denotes the absolute value
of a complex scalar. Finally, Cm×n (Rm×n) denotes the space
of m× n complex (real) matrices, and R+ (R−) denotes the
space of positive (negative) real numbers.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Proposed System Model
We consider the K-user MISO interference channel where

each transmitter, indexed by k ∈ K , {1, . . . ,K}, is equipped
with Nk antennas and each receiver is equipped with a single
antenna. The K transmitters are assumed to operate over a
common frequency band and each communicates with its
corresponding receiver using transmit beamforming. Different
from conventional interference channels, we here consider
PS-based receivers. The received signal at each receiver is
split into two separate signal streams with different power
levels, one sent to the EH receiver and the other to the ID
receiver [5]. The system model is illustrated in Fig. 1. We
assume that transmitter k sends its signal sk to its intended
receiver through beamforming vector fk ∈ CNk×1, and that
the sk are statistically independent with zero mean and
E{|sk|2} = 1 for all k ∈ K. Under these conditions, the
available baseband signal at receiver k before PS is ideally
given by

rk = hHkkfksk︸ ︷︷ ︸
desired signal

+

K∑
j=1,j 6=k

hHkjfjsj︸ ︷︷ ︸
interference

+nk, (1)

where hkj ∈ CNk×1 denotes the channel vector between
transmitter j and receiver k, and nk ∈ C is the additive white
Gaussian noise (AWGN) introduced by the receive antenna,
which is assumed to have zero mean and variance σ2

k.
Each receiver splits its received signal to the information

decoder and the energy harvester by means of a power splitter.
Let ρk (0 ≤ ρk ≤ 1) denote the power splitting (PS) ratio for
receiver k, which means that a portion ρk of the signal power
is used for signal detection while the remaining portion 1−ρk
is diverted to an energy harvester. Thus, the available signal
for ID at receiver k can be expressed as

rID
k =

√
ρk

hHkkfksk +

K∑
j=1,j 6=k

hHkjfjsj + nk

+ vk, (2)

where vk is the additional AWGN circuit noise with zero
mean and variance ω2

k due to phase offset and non-linearities
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during baseband conversion [5]. We assume that each receiver
employs single-user detection by treating the cochannel
interference as noise. Then, the SINR at receiver k is given
by

Γk =
ρk|hHkkfk|

2

ρk

(
K∑

j=1,j 6=k
|hHkjfj |

2
+ σ2

k

)
+ ω2

k

. (3)

Besides, the total harvested energy that can be stored by
receiver k is equal to

P EH
k = ξk (1− ρk)

 K∑
j=1

|hHkjfj |
2

+ σ2
k

 , (4)

where ξk ∈ (0, 1] denotes the energy conversion efficiency of
the kth EH unit, which means that a portion ξk of the received
RF signal is used for EH.

Transmitter 1

Transmitter k

Transmitter K

... ...

Receiver 1

Receiver K

kn

Power
Splitter

EH 
receiver

ID 
receiver

kv
1 k

k

...

...

...
...

...

Fig. 1. The K-user MISO interference channel. Each receiver splits the
received energy in two parts for ID and EH, respectively.

B. Channel Error Model

Because of many factors such as channel estimation
errors, quantization errors, and feedback errors/delay, it is
not possible in practice to obtain perfect CSI at both the
transmitters and receivers. Let ĥkj ∈ CNk×1 denotes the
estimated channel vector between transmitter j and receiver
k. Then, the actual CSI can be expressed as

hkj = ĥkj + ekj , j, k ∈ K, (5)

where ekj denotes the CSI error vector. To model the CSI
errors, the well-known norm-bounded error (NBE) model
[19] is adopted, where we assume that the channel estimation
error ekj is bounded in its Euclidean norm, that is

‖ekj‖ ≤ ηkj , j, k ∈ K, (6)

where ηkj is a known positive constant. Equivalently, hkj
belongs to the uncertainty set <kj defined as

<kj = {h|h = ĥkj + ekj , ‖ekj‖ ≤ ηkj}. (7)

The shape and size of <kj model the kind of uncertainty in
the estimated CSI, which is linked to the physical phenomenon
producing the CSI errors. It should be emphasized that the
actual errors {ekj} are assumed to be unknown while the
corresponding upper bounds {ηkj} can be obtained using the
preliminary knowledge of the type of imperfection and/or
coarse knowledge of the channel type and its main charac-
teristics [20]. This model is particularly suitable for systems
where CSI is corrupted by quantization [21].

C. Optimization Problem

We assume that the ID and EH units of each receiver are
characterized by certain quality of service (QoS) and EH
constraints. The QoS constraints require that the SINR of
receiver k should be no smaller than a given positive target
γk. In the meantime, the EH constraints call for the harvested
energy of receiver k to be no smaller than a positive threshold
ψk. In this work, we focus on robust JBPS design under such
constraints. Specifically, minimization of the total transmission
power subject to the above two types of constraints, in the
presence of imperfect CSI with NBE model, can be formulated
as the following constrained optimization problem:

min
{fk, ρk}

K∑
k=1

‖fk‖2

s.t.

ρk|hH
kkfk|

2

ρk

(
K∑

j=1,j 6=k

|hH
kjfj |

2+σ2
k

)
+ω2

k

≥ γk,

ξk (1− ρk)

(
K∑
j=1

|hHkjfj |
2

+ σ2
k

)
≥ ψk,

0 ≤ ρk ≤ 1, ‖ekj‖2 ≤ η2
kj , ∀j, k ∈ K.

(8)

Different from [16], [17], where it is assumed that the
perfect knowledge of CSI is available, the goal of our work is
to investigate the robust JBPS design, i.e. to guarantee that
the SINR targets γk and EH requirement ψk are satisfied
for all possible CSI errors. As compared to the non-robust
design in [16], [17], the above robust JBPS design can provide
guaranteed QoS and harvested energy for each receiver for
all possible channel realizations in the bounded uncertainty
regions <kj in (7). Solving the robust design problem (8),
however, is more challenging because there is an infinite
number of constraints (due to the NBE model) and each of
the SINR (EH) constraint is not convex. Both these properties
make the problem (8) very difficult to address.

Similar to Lemma 3.1 & Lemma 3.2 in [13], it can be shown
that the feasibility of (8) is independent of the EH constraints
and PS ratios. That is, problem (8) is feasible as long as the
following problem is feasible.

find {fk}

s.t.

|hH
kkfk|

2

K∑
j=1,j 6=k

|hH
kjfj |

2+σ2
k+ω2

k

≥ γk,

‖ekj‖2 ≤ η2
kj , ∀j, k ∈ K.

(9)

This property provides an easier way to check the feasibility
of (8). In the rest of this paper, we assume (9) is feasible.

III. PROPOSED ROBUST DESIGN BASED ON RELAXATION

In this section, we propose two efficient approaches to
solve the robust JBPS design problem (8). In the first design
approach, the celebrated SDR technique is applied to convert
the semi-infinite constraints into linear matrix inequalities
by means of the S-Procedure [22], [23]. In general, the
relaxed problem is not guaranteed to have a rank-one solution
[16], [24], [25], we thus provide a good heuristic solution
to recover a feasible solution to (8). In the second design
approach, we formulate problem (8) into a SOCP problem
based on SOCP relaxation. The resulting SOCP problem has
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very low computational complexity and shows great potential
for applications with large antenna arrays and large number
of transmit-receive pairs.

A. SDP with Rank Relaxation

According to [26], we introduce a new optimization
variable Fk

∆
= fkf

H
k , ∀k ∈ K and rewrite problem (8) as

follows

min
{Fk, ρk}

K∑
k=1

Tr(Fk)

s.t. 1
γk
hHkkFkhkk −

K∑
j 6=k

hHkjFjhkj ≥ σ2
k +

ω2
k

ρk
,

K∑
j=1

hHkjFjhkj ≥
ψk

ξk(1−ρk) − σ
2
k,

0 ≤ ρk ≤ 1, Fk � 0, rank(Fk) = 1,
‖ekj‖2 ≤ η2

kj , ∀j, k ∈ K.

(10)

This problem can be relaxed as a convex problem by dropping
the non-convex rank-one constraint rank(Fk) = 1, since the
objective function and the constraints are linear in Fk and
1
ρk
, 1

1−ρk are both convex function of ρk. It is worth noting
that the relaxation is not optimum and postprocessing of the
relaxed problem will be discussed in detail in Subsection III-B.
However, this problem is still computationally intractable
because it involves an infinite number of constraints. By
applying the S-Procedure, the infinitely many constraints can
be reformulated into finite convex constraints.

We first observe that each term in the SINR and EH con-
straints containing Fk in problem (10) involves independent
CSI errors. Hence, we introduce two auxiliary variables

pkj = max
∀eH

kjekj≤η
2
kj

hHkjFjhkj , k ∈ K, j 6= k, (11)

qkj = min
∀eH

kjekj≤η
2
kj

hHkjFjhkj , k ∈ K, j 6= k, (12)

where pkj is the maximum (worst-case) cochannel interference
power from transmitter j to receiver k and qkj denotes the
minimum (worst-case) power available for EH from the
transmitter j to receiver k. Then, with the help of these
two variables, the SINR constraints in problem (10) can be
equivalently rewritten as

1

γk
(ĥHkk + eHkk)Fk(ĥkk + ekk)

≥
K∑

j=1,j 6=k

pkj + σ2
k +

ω2
k

ρk
, ‖ekk‖2 ≤ η2

kk,∀k ∈ K,
(13)

(ĥHkj + eHkj)Fj(ĥkj + ekj) ≤ pkj ,
‖ekj‖2 ≤ η2

kj , ∀k ∈ K, j 6= k.
(14)

Similarly, the EH constraints in problem (10) can be ex-
pressed as

(ĥHkk + eHkk)Fk(ĥkk + ekk) +

K∑
j=1,j 6=k

qkj

≥ ψk
ξk(1− ρk)

− σ2
k, ‖ekk‖2 ≤ η2

kk, ∀k ∈ K,

(15)

(ĥHkj + eHkj)Fj(ĥkj + ekj) ≥ qkj ,
‖ekj‖2 ≤ η2

kj , ∀k ∈ K, j 6= k.
(16)

By applying the S-Procedure, the constraints in (13) and
(14) can be reformulated to finite convex constraints, which
are equivalent to (18) and (19), shown at the top of the
next page, where αk = 1

ρk
, and λkj , ∀j, k ∈ K are slack

variables. Similarly, we can recast (15) and (16) as (20) and
(21) with βk = 1

1−ρk , and slack variables µkj , ∀j, k ∈ K.
Then, problem (10) can be expressed as

min
{Fk, αk, βk, λkj , µkj ,}, {pkj , qkj}j 6=k

K∑
k=1

Tr(Fk)

s.t.

(18), (19), (20) and (21),
αk ≥ 1, βk ≥ 1, invp(αk) + invp(βk) ≤ 1,
pkj ≥ 0, qkj ≥ 0, j 6= k,
Fk � 0, λkj ≥ 0, µkj ≥ 0, ∀j, k ∈ K,

(17)

where constraints (18)-(21) appear at the top of the next
page. In (17), the set of constraints involving invp(·) must be
satisfied with equality at optimality; otherwise the objective
value can be further decreased by decreasing αk′s. The above
problem is a convex SDP problem which can be solved by an
off-the-shelf solver [27], [28].

B. Proposed Rank-one Recovery Method

The matrices Fk obtained by solving the relaxed problem
(17) are not guaranteed to be of rank one in general, and
hence, the solution provides a lower bound to the original
problem (8). If Fk happens to be of rank one, then the
principal eigenvector f∗k of Fk, such that Fk = f∗k f

∗H
k will

be the optimal solution to problem (8).1 Otherwise, one has
to resort to other techniques to obtain a suboptimal rank-one
solution from Fk. In this work, inspired by [16], we provide
a simple heuristic, yet effective approach to overcome this
difficulty when when higher-rank solutions are returned by
solving problem (17).2

Before we proceed to introduce the rank-one recovery
method, we first calculate the worst-case channels for given
beamforming vectors and PS ratios. Assuming that {f∗k}
(the principal eigenvectors of {Fk}) and {ρ∗k} have been
determined in the previous subsection, then the worst-case
CSI errors which minimize the SINR of user k, are the
solutions to the following problems

min
{ekk}

|(ĥHkk + eHkk)f∗k | s.t. ‖ekk‖2 ≤ η2
kk, (22)

max
{ekj}

|(ĥHkj + eHkj)f
∗
j | s.t. ‖ekj‖2 ≤ η2

kj , j 6= k. (23)

To solve the constrained optimization problem (22), we resort
to the following inequality for any complex number x and y

||x| − |y|| ≤ |x+ y| ≤ ||x|+ |y|| . (24)
According to (24), we have the following inequality

|hHkkfk| = |ĥHkkfk + eHkkfk|
≥ ||ĥHkkfk| − |eHkkfk|| ≥ ||ĥHkkfk| − ηkk‖fk‖|,

(25)

1‖f∗k ‖ =
√
fk , and fk is the largest eigenvalue of Fk .

2We can also use randomization techniques [26] to recover a rank one
solution.
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Uk(Fk, {pkj}j 6=k, λkk, αk)
∆
=

 1
γk
Fk + λkkI

1
γk
Fkĥkk

1
γk
ĥHkkFk

1
γk
ĥHkkFkĥkk −

K∑
j=1,j 6=k

pkj − σ2
k − ω2

kαk − λkkη2
kk

 � 0 (18)

Vkj(Fj , pkj , λkj)
∆
=

[
−Fj + λkjI −Fjĥkj
−ĥHkjFj pkj − ĥHkjFjĥkj − λkjη2

kj

]
� 0, j 6= k (19)

Xk(Fk, {qkj}j 6=k, µkk, βk)
∆
=

 Fk + µkkI Fkĥkk

ĥHkkFk ĥHkkFkĥkk +
K∑

j=1,j 6=k
qkj − ψk

ξk
βk + σ2

k − µkkη2
kk

 � 0 (20)

Ykj(Fj , qkj , µkj)
∆
=

[
Fj + µkjI Fjĥkj
ĥHkjFj ĥHkjFjĥkj − qkj − µkjη2

kj

]
� 0, j 6= k (21)

where the second inequality follows from the boundedness of
CSI errors and the Cauchy-Schwartz inequality. It is worth
noting that we have used a mild assumption in (25) that
|ĥHkkfk| ≥ |eHkkfk|, which holds true in most cases since the
CSI error is often much smaller than the channel coefficients
and hkk cannot be orthogonal to fk. We observe that the
first inequality in (25) holds with equality if and only if
eHkkf

∗
k = αĥHkkf

∗
k , α ∈ R−. Also the second inequality in (25)

holds with equality if and only if ekk = βf∗k , β ∈ C. Thus
the optimal solution ekk of (22) can be obtained as

α =
−ηkkf∗Hk f∗k

‖f∗k‖|ĥHkkf∗k |
, β = conj

(
−ηkkĥHkkf∗k
‖f∗k‖|ĥHkkf∗k |

)
, (26)

ekk = βf∗k . (27)

Proceeding in the same manner, the optimal solution ekj of
(23) can be obtained as

α =
ηkjf

∗
j
Hf∗j

‖f∗j ‖|ĥHkjf∗j |
, β = conj

(
ηkjĥ

H
kjf
∗
j

‖f∗j ‖|ĥHkjf∗j |

)
, (28)

ekj = βf∗j . (29)

Similarly, the worst-case CSI errors which minimize the
EH of user k are the solution to the following problem

min
{ekj}

|(ĥHkj + eHkj)f
∗
j | s.t. ‖ekj‖2 ≤ η2

kj , ∀j, k ∈ K. (30)

Let ẽkk denote the optimal solution of (30) when j = k,
which can be calculated following the same approach as
used for (26) and (27). In the case j 6= k, we modify the
cost function using the method of Lagrange multipliers [29],
which yields the following Lagrangian function3

L = (ĥHkj + eHkj)F
∗
j (ĥkj + ekj) + τkj(e

H
kjekj − η2

kj), (31)

where F∗j = f∗j (f∗j )H and τkj is the Lagrange multiplier
associated with the bounded CSI error constraint from
transmitter j to receiver k. Taking the gradient of L in (31)
with respect to conj(ekj), we can obtain

ẽkj = −(F∗j + τkjI)
−1F∗j ĥkj =

F∗j ĥkj

τkj + ‖f∗j ‖
2 . (32)

The Lagrange multiplier τkj can be determined by solving

ẽHkj ẽkj − η2
kj = 0. (33)

3In this case, (30) cannot be simply solved because the mild assumption
does not hold in this case.

Introducing gkj = F∗j ĥkj , (33) becomes

gHkjgkj

(τkj + ‖f∗j ‖
2
)
2 = η2

kj . (34)

Therefore, the lagrange multiplier τkj can be given by

τkj =
√

gHkjgkj/η
2
kj − ‖f

∗
j ‖2. (35)

We note that ẽkk = ekk but in the case j 6= k, ẽkj and
ekj can not be simultaneously attained for the same channel
realizations, which means that a CSI error vector minimizing
both SINR and EH with given beamforming vectors and PS
ratios does not exit in general. However, we employ both ẽkj
and ekj to guarantee the robustness of the joint design.

With the worst-case analysis described above, we recover
the rank-one solution by scaling up the beamforming vector f∗k
by
√
ϕk and then jointly optimize {ϕk} and receive PS ratios

{ρk} to satisfy both worst-case SINR and EH constraints and
yet minimize the total transmission power. Specifically, we
consider the following problem with given {f∗k}

min
{ρk, ϕk}

K∑
k=1

ϕk‖f∗k‖
2 (36a)

s.t.
ρkϕkukk

K∑
j=1,j 6=k

ρkϕj ũkj + ρkσ2
k + ω2

k

≥ γk, (36b)

ξk (1− ρk)

 K∑
j=1

ϕjukj + σ2
k

 ≥ ψk, (36c)

0 ≤ ρk ≤ 1, ϕk > 0, ∀k ∈ K, (36d)

where {ukj}Kj,k=1 = {|(ĥHkj + ẽHkj)f
∗
j |2} denote the minimum

interference power and {ũkj}Kk=1,j 6=k = {|(ĥHkj + eHkj)f
∗
j |2}

denote the maximum interference power. Let us define
xk = ϕk

γk
ukk −

∑K
j=1,j 6=k ϕj ũkj − σ2

k, xk is implicitly
supposed to be larger than 0, and note that otherwise (36b)
will be infeasible. Thus, (36b) can be rewritten as

‖[2ωk, xk − ρk]‖ ≤ xk + ρk. (37)

Similarly, by introducing yk =
K∑
j=1

ϕjukj + σ2
k, (36c) is

equivalent to

‖[2
√
ψk/ξk, yk + ρk − 1]‖ ≤ yk − ρk + 1. (38)
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TABLE I
ALGORITHM-1 : PROPOSED SDR-BASED ROBUST DESIGN

1. Solve problem (17) to obtain the optimal
{
F∗

k

}
and

{
ρ∗k
}

.
2. For each k, find the principal eigenvector

{
f∗k
}

of F∗
k . If

rank
(
F∗

k

)
= 1, ∀k ∈ K, then

{
f∗k
}

and
{
ρ∗k
}

are the
optimum solution and exit the algorithm, otherwise go to Step
3.

3. Solve problem (39) with
{
f∗k
}

to obtain {ϕk} and {ρk}.
4. Return the beamforming vectors

{√
ϕkf

∗
k

}
and {ρk}.

Then problem (36) can be reformulated as

min
{ρk, ϕk}

K∑
k=1

ϕk‖f∗k‖2

s.t. ||[2ωk, xk − ρk]|| ≤ xk − ρk,
‖[2
√
ψk/ξk, yk + ρk − 1]‖ ≤ yk − ρk + 1,

xk = ϕk

γk
ukk −

K∑
j=1,j 6=k

ϕj ũkj − σ2
k,

yk =
K∑
j=1

ϕjukj + σ2
k, 0 ≤ ρk ≤ 1,

ϕk > 0, xk ≥ 0, yk ≥ 0, ∀k ∈ K.

(39)

The above optimization problem is a SOCP problem [30]
because its objective function is linear and its constraints
are linear or second-order cones. It can be efficiently solved
by off-the-shelf algorithms. The proposed SDR-based robust
algorithm for problem (8) is summarized in Table I.

C. SOCP Relaxation

In Subsection A, we relaxed the robust JBPS problem as a
SDP problem. It is well known that solving a SDP problem
requires relatively high computational complexity. To obtain a
low complexity solution, we propose to formulate the original
problem as a SOCP problem based on proper relaxations, i.e.
SOCP relaxation. Similar to [17], problem (8) can be relaxed
as the following problem by replacing the EH constraints
with the sum of the SINR and EH constraints

min
{fk,ρk}

K∑
k=1

‖fk‖2

s.t.

1
γk
|hHkkfk|

2 −
K∑
j 6=k
|hHkjfj |

2 ≥ σ2
k +

ω2
k

ρk
,(

1 + 1
γk

)
|hHkkfk|

2 ≥ ψk

ξk(1−ρk) +
ω2

k

ρk
,

0 ≤ ρk ≤ 1, ‖ekj‖2 ≤ η2
kj , ∀j, k ∈ K.

(40)

According to (24), we have the following inequality

|hHkjfj | = |ĥHkjfj + eHkjfj |
≤ ||ĥHkjfj |+ |eHkjfj || ≤ ||ĥHkjfj |+ ηkj‖fj‖|, j 6= k.

(41)

Together with inequality (25), the SINR constraints in (40)
can be reformulated as

1
γk
||ĥHkkfk| − ηkk‖fk‖|2

≥
K∑

j=1,j 6=k
||ĥHkjfj |+ ηkj‖fj‖|

2
+ σ2

k +
ω2

k

ρk
.

(42)

Similarly, the EH constraints in (40) can be expressed as(
1 +

1

γk

)
||ĥHkkfk| − ηkk‖fk‖|2 ≥

ψk
ξk(1− ρk)

+
ω2
k

ρk
. (43)

Furthermore, by introducing auxiliary variables βkj
′s,

which satisfy

|ĥHkkfk| − ηkk ‖fk‖ ≥ βkk, (44)

|ĥHkjfj |+ ηkj ‖fj‖ ≤ βkj , j 6= k, (45)

(42) and (43) can be expressed as

1

γk
β2
kk ≥

K∑
j=1,j 6=k

β2
kj + σ2

k +
ω2
k

ρk
, (46)

(
1 +

1

γk

)
β2
kk ≥

ψk
ξk(1− ρk)

+
ω2
k

ρk
. (47)

Let a2
k = ρk and b2k = 1− ρk, it follows that a2

k + b2k = 1. By
further introducing c2k ≥

ω2
k

a2k
, d2

k ≥
ψk

ξkb2k
and |ĥHkjfj | ≤ ekj ,

we can write (40) as the following SOCP problem

min
{fk, ak, bk, ck, dk, βkj}, {ekj}j 6=k

t

s.t. ‖[fT1 , . . . , fTK ]‖ ≤ t,
‖[JTk , σk, ck]‖ ≤ 1√

γk
βkk,

ηkj‖fj‖ ≤ −ekj + βkj , |ĥHkjfj | ≤ ekj , j 6= k,

ηkk‖fk‖ ≤ ĥHkkfk − βkk,
‖[ck, dk]‖ ≤

√
1 + 1

γk
βkk,∀i,

‖[2(ψk/ξk)1/4, dk − bk]‖ ≤ dk + bk,
‖[2√ωk, ck − ak]‖ ≤ ck + ak,
‖[ak, bk]‖ ≤ 1,
ak ≥ 0, bk ≥ 0, βkj ≥ 0, ∀j, k,∈ K

(48)

where

Jk = [βk1, . . . βk(k−1), βk(k+1), . . . , βkK ]T . (49)

The constraints ‖[ak, bk]‖ ≤ 1 must be satisfied with equality
at optimality; otherwise the objective value can be further
decreased by increasing ak′s. Note that we can restrict ĥHkkfk
to be positive, which incurs no loss of optimality since we can
always phase-rotate the vector fk such that ĥHkkfk is positive
real without affecting the cost function or the constraints. Since
the solution to the SOCP relaxation problem (40) may not be
a feasible solution to problem (8), a robust solution recovery
method must be employed to ensure the robustness, which will
be introduced in the following subsection.

D. Proposed Closed-form Robust Solution Recovery Method

In Subsection B, we introduced a rank-one recovery method
to recover a robust solution for problem (17) by solving a
SOCP problem (39). Due to the SOCP relaxation, the solution
to problem (48) may not be robust to all possible channel
realizations. In this subsection, we propose a closed-form
recovery method in which {f∗k} obtained by solving (48) are
scaled up by a common factor

√
ϕ, and then jointly optimize

ϕ and the receive PS ratios {ρk} to satisfy both the worst-case
SINR and EH constraints. Since we relax the EH constraints
in (48), it is required that ϕ > 1 to ensure the robustness
of the algorithm, which means that more power is needed
to satisfy the worst-case EH constraints. It is worth noting
that this closed-form method was first proposed in [13] where
perfect CSI is considered.
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TABLE II
ALGORITHM-2 : PROPOSED ROBUST DESIGN WITH SOCP RELAXATION

1. Solve problem (48) to obtain the optimal {f∗k } and {ρ∗k}.
2. Solve problem (52) with {f∗k } to obtain ϕ∗ and {ρk}.
3. Return the beamforming vectors {

√
ϕ∗f∗k } and {ρk}.

Similar to problem (36), we consider the following problem
with given {f∗k}

min
ϕ, {ρk}

ϕ
K∑
k=1

‖f∗k‖2

s.t. ϕρkukk

ϕ
K∑

j=1,j 6=k

ρkũkj+ρkσ2
k+ω2

k

≥ γk,

ξk(1− ρk)

(
ϕ

K∑
j=1

ukj + σ2
k

)
≥ ψk,

0 ≤ ρk ≤ 1, ϕ > 1, ∀k ∈ K,

(50)

where the definitions of ukj and ũkj have already been stated

in Section III-B. Introducing x̃k = 1
γk
ukk −

K∑
j=1,j 6=k

ũkj and

ỹk =
K∑
j=1

ukj , ∀k ∈ K, problem (50) can be equivalently

rewritten as
min
ϕ, {ρk}

ϕ

s.t. ρk ≥ ω2
k

ϕx̃k−σ2
k
,

1− ρk ≥ ψk

ξk(ϕỹk+σ2
k)
,

0 ≤ ρk ≤ 1, ϕ ≥ 1, ∀k ∈ K.

(51)

Similar to [13], problem (51) admits a closed-form solution,
which is given by

min
ϕ≥1

ϕ

s.t. ϕ̃k =

{
1, 0 < gk(1) ≤ 1
ϕ̄, gk(1) > 1 or gk(1) ≤ 0

,

ϕ ≥ ϕ̃k, ∀k ∈ K,

(52)

where gk(ϕ) =
ω2

k

ϕx̃k−σ2
k

+ ψk

ξk(ϕỹk+σ2
k)

and ϕ is the largest root

of the equation gk(ϕ) = 1. Additionally, ρk =
ω2

k

ϕ∗x̃k−σ2
k

is
the corresponding PS ratio with given ϕ∗, where ϕ∗ is the
optimal solution of (52). The proposed robust design with
SOCP relaxation for problem (8) is summarized in Table II.

Remark: It is worth noting that the two algorithms intro-
duced in Section III-B and III-D can both be employed to re-
cover a feasible rank-one solution to the relaxed problem (17)
and (48), respectively. The two algorithms exhibit a tradeoff
between recovery accuracy and computational complexity. In
Algorithm-1, we employ the rank-one recovery method from
Section III-B while in Algorithm-2, the recovery method from
Section III-D is employed to further reduce the computational
complexity. It is also important to note that the two algorithms
have very close performance in our simulations.

IV. PROPOSED ITERATIVE ROBUST DESIGN

Since the robust design approaches presented in Section
III rely on relaxation techniques, they may not guarantee the
optimal solution, we propose an iterative algorithm based on
CCCP [31], [32] in this section to improve the relaxation
solutions and possibly obtain the optimal solutions.

A. CCCP-based Iterative Robust Design
The CCCP technique is widely adopted for solving non-

convex problems [32] by transforming them into a sequence
of convex programming problems. The basic idea behind the
proposed CCCP-based algorithm is to iteratively approximate
the original non-convex feasible set in (10) around the current
solution by a convex subset and then solve the resulting convex
approximation at each iteration [33].

While the conventional CCCP considers scalar functions,
for the current application we need to extend it to the case
of matrix functions. Our iterative method is motivated by the
observation that the non-convex constraint rank(Fk) = 1 is
equivalent to the constraint

fkf
H
k = Fk. (53)

Hence, relaxing constraint (53) to fkf
H
k � Fk results in the

following problem

min
{Fk, fk, αk, βk, λkj , µkj}, {pkj , qkj}j 6=k, t

t2 (54a)

s.t. ‖[fT1 , . . . , fTK ]‖ ≤ t, (54b)
(18), (19), (20) and (21), (54c)
αk ≥ 1, βk ≥ 1, invp(αk) + invp(βk) ≤ 1, (54d)
pkj ≥ 0, qkj ≥ 0, j 6= k, (54e)

fkf
H
k � Fk, (54f)

Fk � 0, λkj ≥ 0, µkj ≥ 0, ∀j, k ∈ K. (54g)

Lemma 1: Problem (10) is equivalent to problem (54).
Proof: As we can see, problem (54) is a relaxed version

of problem (10), thus if the optimal solution {f∗k ,F∗k, ρ∗k} of
(54) satisfies f∗k f

∗H
k = F∗k, we can assert that problem (10) is

equivalent to problem (54). We prove f∗k f
∗H
k = F∗k by showing

that rank(F∗k) = 1, which is quite obvious since f∗k f
∗H
k is a

rank one matrix. This completes the proof.
As we can see, only constraint (54f) in problem (54) is

non-convex. Thus, with the help of the following inequality

fkf
H
k − (f ik(fk − f ik)

H
+ (fk − f ik)f iHk + f ikf

iH
k )

= (fk − f ik)(fk − f ik)H � 0,
(55)

we can transform (54f) to

fkf
H
k � f ik(fk − f ik)H + (fk − f ik)f iHk + f ikf

iH
k � Fk, (56)

where f ik denotes the current feasible point in the ith iteration.
With (56), problem (54) can be reformulated as the follow-

ing convex optimization problem in the ith iteration of the
proposed CCCP-based algorithm

min
{Fk, fk, αk, βk, λkj , µkj}, {pkj , qkj}j 6=k, t

P (f ik) (57a)

s.t. ‖[fT1 , . . . , fTK ]‖ ≤ t, (57b)
(18), (19), (20) and (21), (57c)
αk ≥ 1, βk ≥ 1, (57d)
invp(αk) + invp(βk) ≤ 1, (57e)
pkj ≥ 0, qkj ≥ 0, j 6= k, (57f)

f ik(fk − f ik)
H

+ (fk − f ik)f iHk + f ikf
iH
k � Fk, (57g)

Fk � 0, λkj ≥ 0, µkj ≥ 0, ∀j, k ∈ K, (57h)
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TABLE III
ALGORITHM-3 : PROPOSED CCCP-BASED ITERATIVE ROBUST DESIGN

1. Define the tolerance of accuracy δ and the maximum iteration
number Nmax. Initialize the algorithm with a feasible point
{f0k , ρk}. Set the iteration number i = 0.

2. Repeat:
– Solve problem (57) with the current feasible point
{f ik, ρk}.

– Assign the solution to {f i+1
k , ρk} and update the iteration

number : i = i+ 1.
3. Until: the objective function converges, i.e. |P i+1−P i| < δ

or the maximum number of iterations is reached, i.e. i > Nmax.

where P (f ik) = t2.
Lemma 2: Suppose problem (57) is feasible, then strong

duality holds true for problem (57) and its dual problem.
The proof is relegated to Appendix A.

To summarize, we can see that the feasible set of problem
(54) is a subset of the original set defined in problem (17).
Then, if the initial point {f0

k} is feasible for (54), all the
feasible points {f ik} obtained by iteratively solving problem
(54) always belong to the true feasible set of (17). The
proposed CCCP-based iterative robust design for problem (8)
is summarized in Table III. Regarding its convergence, we
have the following Lemma.

Lemma 3: Algorithm-3 produces a non-increasing sequence
of objective values. Moreover, every limit point {f∗k} of the
iterates generated by Algorithm 3 is a KKT point of problem
(10).

Proof : Please see Appendix B.

B. The Proposed Initialization Method

The proposed Algorithm-3 presented in the previous sub-
section requires an initial feasible point of problem (8) [31].
If problem (57) is initialized with an infeasible point, then the
CCCP may fail at the first iteration.

The proposed initialization method is based on Algorithm-2.
As has been stated in Section III-C, the solution obtained by
solving (48) may not be robust to all channel realizations due
to SOCP relaxation. In order to make the initialization method
as simple as possible, we propose a new method instead of
the robust solution recovery method in Section III-D. We
first observe that the solution obtained by solving (48) can
provide guaranteed SINR levels if (48) is feasible. Thus, if
we scale up the beamforming vector {f∗k} by a sufficiently
large common factor

√
ϕ, then {√ϕf∗k , ρ∗k} will be a feasible

point of problem (8), since

ϕρ∗k|(ĥ
H
kk+eH

kk)f∗k |
2

ϕρ∗k

(
K∑

j=1,j 6=k

|(ĥH
kj+eH

kj)f∗j |
2
+σ2

k

)
+ω2

k

≥ ρ∗k|(ĥ
H
kk+eH

kk)f∗k |
2

ρ∗k

(
K∑

j=1,j 6=k

|(ĥH
kj+eH

kj)f∗j |
2
+σ2

k

)
+ω2

k

, ∀ϕ ≥ 1.
(58)

Let

P ∗EH
k = ξk(1− ρ∗k)

 K∑
j=1

|(ĥHkj + ẽHkj)f
∗
j |

2
+ σ2

k

 , (59)

where ẽHkj is calculated by (32) and (35). Then ϕ can be
expressed as

ϕ =

ψk

ξk(1−ρ∗k) − σ
2
k

P∗EH
k

ξk(1−ρ∗k) − σ
2
k

. (60)

We remark that Algorithm-3 consists of a two-stage algo-
rithm for solving problem (8). In the first stage, the initializa-
tion method is applied to find a feasible solution of problem
(8). If the initialization method fails to find a feasible solution,
Algorithm-3 declares failure and stops. In the second stage, we
iteratively solve problem (57).

V. COMPLEXITY ANALYSIS

In this section, we compare the relative computational
complexities of the proposed robust design algorithms. As will
be seen from our analysis and the simulation results in Section
VI, the proposed robust algorithms exhibit a tradeoff between
computational efficiency and robust performance. For ease
of comparison, we assume that all transmitters are equipped
with the same number of antennas, i.e., Nk = N, ∀k ∈ K.
Moreover, we apply the basic elements of complexity analysis
as used in [34].

1) Algorithm-1: Consider problem (17), which involves 2K2

linear matrix inequality (LMI) constraints of size N + 1
and K LMI constraints of size N .4 Here, the number of
decision variables n is on the order of O(KN2 +4K2). Thus,
the complexity of a generic interior-point method (IPM) for
solving problem (17) is on the order of the quantity shown
on the first row of Table IV. Regarding the complexity of
the rank-one recovery method (39), we note that it involves
2K variables and 2K second-order cone (SOC) constraints
of dimension 3. Hence, it follows that the complexity of the
SOCP problem is O(2K

√
4K [2K32 + 4K2]). We note that

the complexity of the worst-case channel vector calculation
is dominated by singular value decomposition and matrix
inversion operations, and it is considered to be negligible
compared to solving problem (17).

2) Algorithm-2: Problem (48) involves 2K2 + 4K + 1
SOC constraints, including 1 SOCs of dimension KN + 1,
K SOCs of dimension K + 2, K2 SOCs of dimension
N + 1, 4K SOCs of dimension 3, and K2 − K SOCs of
dimension 2. The number of variables n is on the order of
O(KN + 3K + 2K2). Thus, the complexity of a generic
IPM for solving problem (48) is the quantity shown on the
second row of Table IV. Here, the complexity of the closed-
form robust solution recovery method is dominated by the
worst-case channel vector calculation and solving a quadratic
equation, which is negligible.

3) Algorithm-3: Problem (57) involves KN2+KN+4K2+
2K + 1 variables, 1 SOC constraints of size KN + 1, 2K2

LMI constraints of size N + 1, and 2K LMI constraints of
size N . Hence, the complexity of the CCCP-based iterative
robust design is as shown on the third row of Table IV.

We can check the asymptotic complexity of the proposed
algorithms when N and K are large, i.e. let N = K → ∞.

4Here, we ignore the constraints of lower sizes, since they will not affect
the order of the whole problem.
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TABLE IV
COMPLEXITY ANALYSIS OF THE ROBUST DESIGNS

Robust design Complexity Order (suppressing the ln(1/ε) )

Algorithm-1 O(n
√

2K2(N + 1) +KN [2K2(N + 1)3 +KN3 + 2nK2(N + 1)2 + nKN2 + n2])

+O(2K
√
4K [2K32 + 4K2]), n = O(KN2 + 4K2)

Algorithm-2 O(n
√
4K2 + 8K + 2 [(KN + 1)2 +K(K + 2)2 +K2(N + 1)2 + 4K32 + (K2 −K)22 + n2])

n = O(KN + 3K + 2K2)

Algorithm-3 The complexity of Algorithm-2 + O(nNmax
√

2K2(N + 1) + 2KN + 2 [2K2(N + 1)3 + 2KN3

+2nK2(N + 1)2 + nKN2 + (KN + 1)2 + n2]), n = O(KN2 +KN + 4K2 + 2K + 1), Nmax is the iteration number

One can verify that the complexities of the proposed algo-
rithms in Table IV are on the orders of 2

√
2N11.5, 66N7 and

2
√

2NmaxN11.5, respectively. As seen, the lowest complexity
is achieved by Algorithm-2, followed by Algorithm-1 and
Algorithm-3.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
robust JBPS algorithms numerically. We assume there are K =
3 transmit-receive pairs and all transmitters are equipped with
Nk = N, k ∈ {1, 2, 3} antennas unless otherwise specified.
We assume that each transmit-receive pair has the same set
of parameters, i.e., γk = γ, ψk = ψ, ξk = ξ, σ2

k = σ2,
ω2
k = ω2 and ηkj = η, ∀j, k ∈ K for simplicity. Moreover, the

nominal channel vectors {ĥkj} are randomly generated from
independent and identical Rayleigh fading distribution with
average power 1. We set ξ = 1, σ2 = −30 dBm, ω2 = −20
dBm, δ = 10−4 and Nmax = 20 in all our simulations. All
the modelling and solution of the algorithms are performed
using CVX [35] on a desktop Intel (i3-2100) CPU running at
3.1GHz and 4GB RAM.

1) Feasibility rate: We first present the feasibility rates of
the three robust JBPS design algorithms. In the simulation, a
robust design algorithm is considered infeasible for a channel
realization if CVX reports an infeasible status or x̃k ≤ 0 in
the robust solution recovery method. The feasibility of the
non-robust design [16] are tested with 100 channel errors
satisfying the NBE model for each channel realization. Fig.
2 and Fig. 3 present the simulation results obtained over 1000
channel realizations. One can observe from this figure that the
three algorithms exhibit similar (almost identical) feasibility
rate compared to the bound.5 The non-robust method fails to
satisfy both the SINR and EH constraints almost all the time
under NBE model.

2) Transmission power: We illustrate the performance of
the three robust designs in terms of average transmission
power over 1000 problem instances. Fig. 4 shows performance
comparison among the three robust designs, the transmission
power being averaged over problem instances where the robust
designs are all feasible. It is observed that, as a price paid
for guaranteed worst-case performance, the robust designs
require higher average transmission power than the non-
robust design. However, Algorithm-1/2/3 show near-optimal
performance compared to the bound. The performance of
Algorithm-3 is slightly better than Algorithm-1 due to the fact
that higher-rank solutions may be returned by solving problem

5The feasibility rate of the bound is equivalent to the feasibility rate of
solving problem (17) without rank recovery.
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Fig. 2. Feasibility rate (%) versus various η. N = 4, γ = 10 dB, ψ = 5
dBm.
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Fig. 3. Feasibility rate (%) versus various γ. N = 4, η = 0.1, ψ = 5 dBm.
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Fig. 4. Transmission power versus SINR target γ. N = 4, η = 0.1, ψ = 5
dBm.
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Fig. 5. Average worst user SINR versus SINR target γ. N = 4, η = 0.1,
ψ = 5 dBm.

(17). In the low SINR region, almost all the solutions returned
by Algorithm-1 are rank-one (optimal), thus the performance
of Algorithm-3 is slightly inferior to that of Algorithm-1 since
Algorithm-3 does not converge to the optimal solution in
Nmax iterations.

The average worst user SINR performance of the proposed
robust designs is illustrated in Fig. 5 for both the robust and
non-robust designs under the same simulation parameters as
in Fig. 4. Clearly, the average achieved worst user SINR of
the robust designs are all above the SINR target while the
non-robust design fails to satisfy the SINR constraints.

Fig. 6 shows performance comparison among the robust
designs for various EH constraints. One can see that the
robust designs require higher average transmission power than
the non-robust design. The best performance is achieved by
Algorithm-3, followed by Algorithm-1 and Algorithm-2. The
average worst user harvested power of the proposed robust
designs is illustrated in Fig. 7, where the simulation parameters
are the same as in Fig. 6. Clearly, the average achieved worst
user harvested power of the robust designs are all above the
EH target while the non-robust design fails to satisfy the EH
constraints.

-20 -15 -10 -5 0 5 10 15

-25

-20

-15

-10

-5

0

 (dBm)

A
ve

ra
ge

 N
or

m
al

iz
ed

 T
ra

ns
m

itt
ed

 P
ow

er
 (

dB
)

 

 

Non-robust
Algorithm-1
Algorithm-2
Algorithm-3
Bound

14.94 14.96 14.98 15 15.02

-0.08

-0.06

-0.04

-0.02

0

 

 

Fig. 6. Transmission power versus EH target ψ. N = 4, η = 0.1, γ = 10
dB.

3) Execution time: We then compare the performance of the
robust and non-robust designs in terms of average execution
time over 20 channel realizations. Fig. 8 demonstrates the
execution time (on a logarithm scale) versus the number of
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Fig. 7. Average worst user harvested energy versus EH target ψ. N = 4,
η = 0.1, γ = 10 dB.

transmit-receive pairs with fixed number of transmit antennas
N = 18. It is observed that the time consumed by all four
algorithms increases with K. However Algorithm-2 consumes
much less time than Algorithm-1 and Algorithm-3, which
means that Algorithm-2 shows great potential for applications
with large antenna arrays and large number of transmit-receive
pairs. Algorithm-3 requires the most time as a price for better
performance when higher-rank solutions are returned.
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Fig. 8. Comparison of execution time versus K between the robust and
non-robust designs with fixed N = 18. ψ = 5 dBm, η = 0.1, γ = 10 dB.

VII. CONCLUSION

In this paper, we considered the robust JBPS design problem
for multiuser MISO interference channel under a NBE model
for the CSI. Three different robust design approaches were
proposed to handle the highly non-convex JBPS problem
with different performance and complexity. In the first design
approach, we proposed to relax the original problem as a SDP
problem based on SDR, which provides a lower bound for the
robust JBPS problem if a rank-one solution is returned. A rank-
one recovery method was provided to obtain a feasible rank-
one solution if a high-rank solution is returned. In the second
design approach, we formulated the robust JBPS problem as
a SOCP problem based on SOCP relaxation and the Cauchy-
Schwarz inequality. As compared to the SDR-based algorithm,
the SOCP method has lower computational complexity, while
achieving a performance very close to the performance bound.
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We also provided a closed-form robust feasible solution re-
covery method. In the third design approach, a CCCP-based
iterative algorithm was presented to achieve near-optimal
performance when a higher-rank solution is returned by the
SDR-based algorithm. It was proved that any limit point of
the iterative algorithm is a KKT solution to the robust JBPS
problem. The simulation results showed that the proposed
robust transceiver designs have near-optimal performance in
the presence of imperfect CSI.

APPENDIX A
THE PROOF OF LEMMA 2

We introduce the following variables to dualize the cor-
responding constraints in problem (57) (the notation A : B
denotes the constraint B and its dual variable A)

Ũk
∆
=

[
Uk uk
uHk uk

]
: (18), Ṽkj

∆
=

[
Vkj vkj
vHkj vkj

]
: (19),

X̃k
∆
=

[
Xk xk
xHk xk

]
: (20), Ỹkj

∆
=

[
Ykj ykj
yHkj ykj

]
: (21),

akj : λkj ≥ 0, bkj : µkj ≥ 0,
ckj : pkj ≥ 0, dkj : qkj ≥ 0, j 6= k,

e : (57b), α̃k : αk ≥ 1, β̃k : βk ≥ 1, hk : (57e),
Zk : Fk � 0, Ak : (57g).

(61)
Then the dual problem of problem (57) can be expressed as

max
Zk�0,Ũk�0,Ṽkj�0,X̃k�0,
Ỹkj�0,akj≥0,bkj≥0,ckj≥0,dkj≥0

Zk�0,e≥0,α̃k≥0,β̃k≥0,hk≥0


inf

Fk,λkj ,µkj ,

fk,αk,βk,t

pkj ,qkj


L (62)

where L can be expressed as (63), shown at the top of the next
page. Assume ‖ĥkkĥHkk‖ = hkj‖ĥkjĥHkj‖, hkj > 0, then if we
choose Ũk, Ṽkj , X̃k and Ỹkj as in (64), ∀k ∈ K, j 6= k, with
a2 > a1

hkj

γk
, a3 >

a1
hkj

and 1 > 4
a1

+ 2
a3(K+1) , a1, a2, a3 ∈

R+, and choose Ak = I, e and hk as any positive real number,
we have

akk
∆
= ukη

2
kk − Tr(Uk)

=
γkη

2
kk

a1‖ĥkkĥH
kk‖
−min{γka1 ,

γkη
2
kk

2a1Nk‖ĥkkĥH
kk‖
}Tr(INk

)

≥ γkη
2
kk

a1‖ĥkkĥH
kk‖
− γkη

2
kkNk

2a1Nk‖ĥkkĥH
kk‖

=
γkη

2
kk

2a1‖ĥkkĥH
kk‖

> 0,

(65)

akj
∆
= vkjη

2
kj − Tr(Vkj)

=
η2kj

a2‖ĥkj ĥH
kj‖
−min{ 1

a2
,

η2kj

2a2Nk‖ĥkj ĥH
kj‖
}Tr(INk

)

≥ η2kj

a2‖ĥkj ĥH
kj‖
− η2kjNk

2a2Nk‖ĥkj ĥH
kj‖

=
η2kj

2a2‖ĥkj ĥH
kj‖

> 0.

(66)

Following the same derivation, we can obtain bkk ≥ 0 and
bkj ≥ 0. Furthermore, we have

ckj
∆
= uk − vkj = γk

a1‖ĥkkĥH
kk‖
− 1

a2‖ĥkj ĥH
kj‖

> γk
a1‖ĥkkĥH

kk‖
− γk

a1hkj‖ĥkj ĥH
kj‖

= 0,
(67)

dkj
∆
= ykj − xk

= 1

a1(K−1)‖ĥkj ĥH
kj‖
− 1

a3(K+1)‖ĥkkĥH
kk‖

> 1

a1(K−1)‖ĥkj ĥH
kj‖
− 1

a1(K+1)‖ĥkj ĥH
kj‖

> 0,

(68)

α̃k
∆
= ukω

2
k, β̃k

∆
= xk

ψk
ξk
, (69)

and Zk can be expressed as (70). which implies that {Ũk},
{Ṽkj}, {X̃k} and {Ỹkj} define a strictly feasible point of
the dual problem and the resulting dual problem is a bounded
problem. Thus, the dual problem is always strictly feasible.
Together with the fact that problem (57) is feasible, we can
see that Slater’s condition always holds for the dual problem
(62). Hence, problem (57) can attain its minimum and strong
duality holds [22]. This completes the proof.

APPENDIX B
THE PROOF OF LEMMA 3

In this appendix, we extend the convergence proof of [36]
to the case of matrix function. We denote problem (57) by
P(f ik). Define R(fk,Fk)

∆
= fkf

H
k − Fk and R(fk, f

i
k,Fk)

∆
=

f ik(fk − f ik)H + (fk − f ik)f iHk + f ikf
iH
k − Fk. It follows that

R(fk, fk,Fk) = R(fk,Fk). In the following, we complete the
proof through three steps.

In the first step, we show that each {f ik}, i = 1, 2, . . .
is feasible to problem (54). To this end, it suffices to show
that {f i+1

k } is a feasible solution of problem (54), provided
that {f ik} is feasible. Assume {f ik} is feasible to problem (54),
thus we have R(f ik, f

i
k,Fk) = R(f ik,Fk) = f ikf

iH
k −Fk � 0. It

follows that there must exist {f i+1
k } that is feasible to problem

P(f ik), that is, {f i+1
k } is such that R(f i+1

k , f ik,Fk) � 0. It
follows that

R(f i+1
k ,Fk) = f i+1

k f
(i+1)H
k − Fk � R(f i+1

k , f ik,Fk)
= f ik(f i+1

k − f ik)H + (f i+1
k − f ik)f iHk + f ikf

iH
k − Fk � 0,

(71)
where the first matrix inequality comes from (55). This implies
that {f i+1

k } is feasible to problem (54). This completes the first
step.

In the second step, we show that the objective value
sequence {P (f ik)} monotonically decreases as the iteration
index i increases. We denote the optimal solution to P(f ik)
in the ith iteration by {f ik,Fik, ρi}. According to the first
step, {f ik,Fik, ρi} is a feasible solution to P(f ik). Moreover, in
the (i + 1)th iteration, the solution {f i+1

k ,Fi+1
k , ρi+1} is the

optimal solution to P(f ik). Thus, we have P (f i+1
k ) ≤ P (f ik),

implying the monotonic convergence of {P (f ik)} since P (fk)
is bounded below and P (f ik) is convergent. This completes the
second step.

In the third step, we prove that any limit point {f∗k ,F∗k, ρ∗k}
of the iterates {f ik,Fik, ρik} is a KKT point of problem (10).

Let S(f ik) and C(f ik) denote the solution set and constraint
set of problem P(f ik). We first prove f∗k ∈ S(f∗k ). Since
{f∗k} is a limit point of {f ik}, there must exist a conver-
gent subsequence {f ijk } such that limj→∞f

ij
k = f∗k . Since

the objective function P (fk) of P(f ik) is strictly convex in
{fk ∈ CNk×1}, the point {f i+1

k } is unique [22]. Hence, the
entries of the two sequences, {P (f ik)} and {f ik}, have a one-
to-one correspondence. By restricting to a subsequence, we
can assume that {f ij+1

k } converges to a limit point f∗∗k .
Define the constraint set C�(f̃k)

∆
= {fk|R(fk, f̃k,Fk) � 0}

and C�(f̃k)
∆
= {fk|R(fk, f̃k,Fk) � 0}. It follows that

C�(f̃k) ⊂ C�(f̃k), ∀f̃k. Let us consider the set C�(f∗k ). Since
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L = t2 +
K∑
k=1

Tr{[ Ak − 1
γk
Uk +

K∑
j 6=k

Vjk −Xk −
K∑
j 6=k

Yjk − Zk ]Fk}+
K∑
k=1

ukσ
2
k − xkσ2

k

+
K∑
k=1

(−akk − Tr
(
Uk

)
+ ukη

2
kk)λkk +

K∑
k=1

K∑
j 6=k

(−akj − Tr
(
Vkj

)
+ vkjη

2
kj)λkj +

K∑
k=1

K∑
j 6=k

(−ckj + uk − vkj)pkj

+
K∑
k=1

(−bkk − Tr
(
Xk

)
+ xkη

2
kk)µkk +

K∑
k=1

K∑
j 6=k

(−bkj − Tr
(
Ykj

)
+ ykjη

2
kj)µkj +

K∑
k=1

K∑
j 6=k

(−dkj − xk + ykj)qkj ,

+
K∑
k=1

(ukω
2
k − α̃k)αk +

(
xk

ψk

ξk
− β̃k

)
βk + α̃k + β̃k + hk(invp(αk) + invp(βk)− 1)

+
K∑
k=1

Tr(Ak(f ik(fk − f ik)
H

+ (fk − f ik)f iHk + f ikf
iH
k ))− e

(√
K∑
k=1

Tr(fkfHk )− t

)
,

Uk = Uk + ukĥ
H
kk + ĥkku

H
k + ukĥkkĥ

H
kk, Vjk = Vjk + vjkĥ

H
jk + ĥjkv

H
jk + vjkĥjkĥ

H
jk,

Xk = Xk + xkĥ
H
kk + ĥkkx

H
k + xkĥkkĥ

H
kk, Yjk = Yjk + yjkĥ

H
jk + ĥjky

H
jk + yjkĥjkĥ

H
jk.

(63)

Ũk
∆
=

[
Uk uk
uHk uk

]
= diag

{
min

{
γk
a1
,

γkη
2
kk

2a1Nk‖ĥkkĥH
kk‖

}
INk

, γk
a1‖ĥkkĥH

kk‖

}
� 0,

Ṽkj
∆
=

[
Vkj vkj
vHkj vkj

]
= diag

{
min

{
1
a2
,

η2kj

2a2Nk‖ĥkj ĥH
kj‖

}
INk

, 1

a2‖ĥkj ĥH
kj‖

}
� 0,

X̃k
∆
=

[
Xk xk
xHk xk

]
= diag

{
min

{
1

a3(K+1) ,
η2kk

2a3Nk(K+1)‖ĥkkĥH
kk‖

}
INk

, 1

a3(K+1)‖ĥkkĥH
kk‖

}
� 0,

Ỹkj
∆
=

[
Ykj ykj
yHkj ykj

]
= diag

{
min

{
1

a1(K−1) ,
η2kj

2a1(K−1)Nk‖ĥkj ĥH
kj‖

}
INk

, 1

a1(K−1)‖ĥkj ĥH
kj‖

}
� 0,

(64)

Zk
∆
= I− 1

γk
Uk +

K∑
j 6=k

Vjk −Xk −
K∑
j 6=k

Yjk � I− 1
γk
Uk −Xk −

K∑
j 6=k

Yjk = I− 1
γk

min{γka1 ,
γkη

2
kk

2a1NkĥkkĥH
kk

}INk

−min{ 1
a3(K+1) ,

η2kk

2a3Nk(K+1)ĥkkĥH
kk

}INk
−

K∑
j=1,j 6=k

min{ 1
a1(K−1) ,

η2jk

2a1(K−1)NkĥjkĥH
jk

}INk
− ĥkkĥ

H
kk

a3(K+1)ĥkkĥH
kk

− ĥkkĥ
H
kk

a1ĥkkĥH
kk

−
K∑

j=1,j 6=k

ĥjkĥ
H
jk

a1(K−1)ĥjkĥH
jk

� I− 1
γk

(γka1 I +
γkĥkkĥ

H
kk

a1ĥkkĥH
kk

)− ( 1
a3(K+1)I +

ĥkkĥ
H
kk

a3(K+1)ĥkkĥH
kk

)

−
K∑

j=1,j 6=k
( 1
a1(K−1)INk

+
ĥjkĥ

H
jk

a1(K−1)ĥjkĥH
jk

) � (1− 4
a1
− 2

a3(K+1) )I � 0,

(70)

R(fk, f̃k,Fk) is continuous in f̃k and limj→∞f
ij
k = f∗k , then

there must exist, for any fixed fk ∈ C�(f∗k ), an integer Ifk
such that

R(fk, f
ij
k ,Fk) � 0,∀j > Ifk . (72)

This implies that there must exist a sufficiently large T such
that

C�(f∗k ) ⊆ C�(f
ij
k ) ⊂ C�(f

ij
k ),∀j > T. (73)

Since {f ij+1
k } ∈ S(f

ij
k ), we can see that

P (fk) ≥ P (f
ij+1
k ), ∀fk ∈ C�(f∗k ) ⊂ C�(f

ij
k ). (74)

Moreover, since P (·) is a continuous function, we have by
letting j →∞ in (74) that

P (fk) ≥ P (f∗∗k ), ∀fk ∈ C�(f∗k ). (75)

It follows from the continuity of R(fk, f̃k,Fk) that

P (fk) ≥ P (f∗∗k ), ∀fk ∈ C�(f∗k ). (76)

One the other hand, we can infer from the second step that

P (f∗k ) = P (f∗∗k ). (77)

Furthermore, since f
ij
k is feasible to problem (54) and

R(f
ij
k , f

ij
k ,Fk) = R(f

ij
k ), we have f

ij
k ∈ C�(f

ij
k ). It follows

that f∗k ∈ C�(f∗k ). Combining this with (76) and (77), we
obtain f∗k ∈ S(f∗k ).

According to Lemma 1, we have f∗k f
∗H
k = F∗k. Then we

argue that {f∗k ,F∗k, ρ∗k} satisfy the KKT conditions of problem
(54). With Lemma 2 and f∗k ∈ S(f∗k ), there must exist optimal
Lagrange multipliers as follows (fix αk, βk)

Ũ∗k
∆
=

[
U
∗
k u∗k

u∗Hk u∗k

]
, Ṽ∗kj

∆
=

[
V
∗
kj v∗kj

v∗Hkj v∗kj

]
,

X̃∗k
∆
=

[
X
∗
k x∗k

x∗Hk x∗k

]
, Ỹ∗kj

∆
=

[
Y
∗
kj y∗kj

y∗Hkj y∗kj

]
,

Z∗k, a∗kj , b∗kj , c∗kj , d
∗
kj .

(78)

Together with {F∗k, f∗k , α∗k, β∗k , λ∗kj , µ∗kj , p∗kj , q∗kj}, we can see
that the following KKT conditions of problem P(f∗k ) hold

Uk(F∗k, {p∗kj}j 6=k, λ
∗
kk, α

∗
k) � 0,

Vkj(F
∗
j , p
∗
kj , λ

∗
kk) � 0, j 6= k,

Xk(F∗k, {q∗kj}j 6=k, µ
∗
kk, β

∗
k) � 0,

Ykj(F
∗
j , q
∗
kj , µ

∗
kj) � 0, j 6= k,

F∗k � 0, λ∗kj ≥ 0, µ∗kj ≥ 0, ∀k ∈ K,

(79)



13

Z∗k
∆
=

I− 1
γk

(U
∗
k + u∗kĥ

H
kk + ĥkku

∗H
k + u∗kĥkkĥ

H
kk)+

K∑
j 6=k

(V
∗
jk + v∗jkĥ

H
jk + ĥjkv

∗H
jk + v∗jkĥjkĥ

H
jk)−

(X
∗
k + x∗kĥ

H
kk + ĥkkx

∗H
k + xkĥkkĥ

H
kk)−

K∑
j 6=k

(Y
∗
jk + y∗jkĥ

H
jk + ĥjky

∗H
jk + y∗jkĥjkĥ

H
jk) � 0,

Ũ∗k � 0, Ṽ∗k � 0, X̃∗k � 0, Ỹ∗k � 0,

a∗kk
∆
= u∗kη

2
kk − Tr(U

∗
k) ≥ 0,

a∗kj
∆
= v∗kjη

2
kj − Tr(V

∗
kj) ≥ 0, j 6= k,

b∗kk
∆
= x∗kη

2
kk − Tr(X

∗
k) ≥ 0,

b∗kj
∆
= y∗kjη

2
kj − Tr(Y

∗
kj) ≥ 0, j 6= k,

c∗kj
∆
= uk

∗ − v∗kj ≥ 0, d∗kj
∆
= y∗kj − x∗k ≥ 0,

(80)

Tr(Ũ∗kUk(F∗k, {p∗kj}j 6=k, λ
∗
kk, α

∗
k)) = 0,

Tr(Ṽ∗kjVkj(F
∗
j , p
∗
kj , λ

∗
kk)) = 0, j 6= k,

Tr(X̃∗kXk(F∗k, {q∗kj}j 6=k, µ
∗
kk, β

∗
k)) = 0,

Tr(Ỹ∗kjYkj(F
∗
j , q
∗
kj , µ

∗
kj)) = 0, j 6= k,

Tr(Z̃∗kF
∗
k) = 0,

a∗kjλ
∗
kj = 0, b∗kjµ

∗
kj = 0,

c∗kjp
∗
kj = 0, d∗kjq

∗
kj = 0, j 6= k, ∀j, k ∈ K,

(81)

where we have used the fact f∗k f
∗H
k = F∗k. Note that (79)

denotes the primal feasible conditions, (80) denotes the first-
order necessary optimality conditions and dual feasibility
conditions, (81) denotes the complementarity conditions. Eqs.
(79)-(81) imply that {f∗k ,F∗k, ρ∗k} is a KKT point of problem
(54). From the above analysis, we conclude that {f∗k ,F∗k, ρ∗k}
is a KKT point of problem (10). This completes the proof.
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