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Abstract—Besides the determined construction of polar codes
in BEC channels, different construction techniques have been
proposed for AWGN channels. The current state-of-the-art al-
gorithm starts with a design-SNR (or an operating SNR) and
then processing is carried out to approximate each individual bit
channel. However, as found in this paper, for fading channels,
an operating SNR can not be directly used in approximating
the bit channels. To achieve a better BER performance, the
input SNR for the polar code construction in fadding channels
is derived. A selection of the design-SNR for both the AWGN
and the fading channels from an information theoretical point
of view is studied. Also presented in this paper is the study of
sacrificing a small data rate to gain orders of magnitude increase
in the BER performance.

I. I NTRODUCTION

Polar codes have been proposed by Erdal Arıkan in [1]. The
fact is that polar codes can achieve the channel capacity at a
low encoding and decoding complexity ofO(N logN). The
original format of polar codes in [1] is non-systematic. Later,
a systematic version of polar codes was invented by Arıkan
in [2], which is shown to outperform the non-systematic polar
codes in terms of the BER performance.

Channel combining and splitting realize the polarization of
N channels. After these two stages, channels are polarized
in the sense that bits transmitting in these channels either
experience almost noiseless channels or almost completely
noisy channels for a largeN . Then one can easily achieve
a rate of transmission close to the channel capacity, simply
by choosing to transmit over the good bit channels and fix the
bits in bad channels. However, at a finite block lengthN and a
data rateR = K/N (K being the number of information bits
in each codeword of lengthN ). A ranking algorithm of the
bit channels according to their bit error rate (BER) becomes
necessary to selectK good channels out of theN channels.
This selection of bit channels completely defines a polar code
for any given underlying channel.

In this paper, we consider the underlying channels to be
AWGN channels and fading channels. To select the good
indices in a AWGN channel, as stated in [1], a Monte-
Carlo simulation can be used to sort the bit channels. This
algorithm has a high complexity ofO(MN logN), where
M is the number of iterations of the Monte-Carlo simulation.
A more recent construction algorithm for AWGN channels is
proposed by Tal and Vardy [3] which is based on an earlier
proposal from Mori and Tanaka [4] [5]. The algorithm in [3]
is by far the best construction algorithm with a complexity of
O(N · µ2 logµ) whereµ is a user defined variable (Note that

this complexity excludes the quantization of a AWGN channel
to a discrete-alphabet channel). In [6], the estimation of bit-
channels based on a Gaussian approximation is proposed.
This was found to well-approximate the actual bit-channels
of polar codes in [7] and [8]. A similar algorithm after the
original proposal in [6] was studied in [7], [8]. The Gaussian
approximation algorithm involves relatively higher complexity
function computations, with a complexity ofO(N) function
computations (excluding the selection of K best among N
metrics obtained).

From the discussions of the constructions of [1], [3], [6]–
[8] for AWGN channels, it’s seen that all algorithms start
with a specified value of the signal-to-noise ratio (SNR).
In practice, it’s difficult (or expensive) to compute the code
indices with the variation of the SNR. Hence, a design-SNR
is desired to construct polar codes that produce a good BER
performance for a given data rateR and possible variations
of the system SNR. In [9], a design-SNR is produced from
extensive simulations.

In this paper, we propose a selection of the design-SNR
for any data rateR from an information theoretical analysis.
For a system with an operating SNR and a data rateR, a
design-SNR can be used to obtain the code indices instead of
the operating SNR. Both AWGN channels and block fading
channels are considered in the analysis of this paper. In
block fading channels, we also conduct a study of sacrificing
a small data rate in the large-SNR region to gain orders
of magnitude increase of the BER performance. Simulation
results are provided to verify the validness of the selection of
the design-SNR and the great increase of the BER performance
at a small cost of the data rate.

The rest of the paper is organized as follows. In Section II,
we describe fundamentals of non-systematic polar code and
systematic polar code. Section III introduces a transmission
scheme which can improve the BER performance in orders of
magnitude at a small cost to the data rate in fading channels.
In Section IV, we analyze the design-SNR and present a
selection of the design-SNR for both the AWGN and the fading
channels. We finally present our simulation results in Section
V and conclude this paper in Section VI.

II. POLAR CODE FUNDAMENTALS

In this section, the relevant theories about non-systematic
polar codes and systematic polar codes are presented.
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A. Non-Systematic Polar Codes

A polar code may be specified completely by
(N,K,A, uAc), where N is the length of a codeword,
K is the number of information bits encoded per codeword,
A is a set ofK indices called information bit locations from
{1, 2, ...., N − 1, N}, anduAc consists of the frozen bits. For
an (N,K,A, uAc) polar code, a codeword is obtained as:

x = uA ·GA + uAc ·GAc (1)

whereGA denotes the submatrix ofG formed by the rows
with indices inA, andG equalsF⊗n for any n = log

2
N .

HereF is the standard polarizing kernelF =
(

1 1

0 1

)

.
The Successive Cancellation Decoding (SCD) algorithm in

[1] uses a decoding operation that is similar to the belief
propagation (BP) algorithm. The likelihoods evolve in the
inverse direction from the right to the left, as illustratedwith
an example in [1], using a pair of likelihood transformation
equations. Then the bit decisions are made at the left of the
circuit and is used in the rest of the decisions.

B. Systematic Polar Codes

The systematic polar code split the codeword into two parts
by writing x = (xB, xBc). So (1) can be written as

xB = uA ·GAB + uAc ·GAcB (2)

xBc = uA ·GABc + uAc ·GAcBc (3)

where theG = F⊗n andF =
(

1 0
1 1

)

, the matrixGAB is a sub-
matrix of the generator matrix with elements(Gi,j)i∈A,j∈B,
and similarly for the other submatrices. The proposition in[2]
says that if (and only if)A andB have the same number of ele-
ments andGAB is invertible, there exists a systematic encoder
(B, uAc). It performs the mappingxB 7→ x = (xB, xBc). The
vectoruA can be obtained by computing

uA = (xB − uAcGAcB)(GAB)
−1 (4)

In [2], we’ve known thatB = A is the necessary conditions of
establishing the one-to-one mappingxB 7→ uA. In the rest of
the paper, the systematic encoding of poalr codes will useA,
instead ofB. So, the mapping of (2) and (3) can be rewritten
as:

xA = uA ·GAA + uAc ·GAcA (5)

xAc = uA ·GAAc + uAc ·GAcAc (6)

III. POLAR CODESTRANSMISSION OVER

FADING CHANNELS

In this section, we present a transmission scheme which
can improve the BER performance in orders of magnitude at
a small cost to the data rate.

The underlying channel we consider is

y = h · x̃+ n (7)

where h follows a normal distributionN (0, 1), n is the
additive white Gaussian noise with mean 0 and varianceσ2,
and x̃ is the binary modulated transmitted symbol:{0, 1} →

{1,−1}. The encoded bitsx = uG is thus modulated to
x̃. The N channels experienced bỹx, denoted ash, are
assumed to be i.i.d and are stable forNb code blocks. This is a
block fading channel model which can be observed in various
wireless communication scenarios. In our study, assumeh is
known at the receiver. With the channel estimation ofh, the
underlying channel in (7) can be converted to:

ỹ = |h| · x̃+ n (8)

Due to the limitations of the channel estimation algorithms,
there is a limit of the channel values below which the estima-
tion is unreliable. In this paper, we do not attempt to discuss
the limitations of various channel estimation algorithms.In-
stead, we keep this limit of channel values as a variableα. As
seen in the sequel, the change ofα with channel estimation
algorithms does not increase the complexity of our algorithm.

For a givenα, a percentage can be calculated:p = Pr{|h| ≤
α}, which translates to the fact that⌊N ∗ p⌋ observations at
the receiver are not reliable. These unreliable observations
in return will cause a poor BER performance. In this case,
to maintain a given BER performance, either a higher SNR
or a lower data rate can be applied. Here a question arises:
whether the SNR should be increased or the data rate should
be lowered? Which selection yields a better performance? To
answer this question, we resort to the work of [10] for the
asymptotic behavior of polar codes. The relationship of the
block error ratePe with the data rateR and the capacity of
the underlying channelI(W ) is rewritten as below from [10]

Pe = 2−2

n
2

+
√

nQ−1( R
I(W )

)+o(
√

n)

(9)

where Q−1(x) is the reverse function ofQ(x) =
1√
2π

∫∞
x

e−
t2

2 dt. The fundamental information theoretical
analysis yields the channel capacityI(W ) = C of (7) as

C = E
|h|
{C(|h|

√

γ)} (10)

whereγ is the SNR andC(|h|√γ) is defined as

C(|h|√γ) =
∫ ∞

−∞

1√
2π

e
−(y−|h|√γ)2

2 log
2

2

1 + e−2y|h|√γ
dy

+

∫ ∞

−∞

1√
2π

e
−(y+|h|√γ)2

2 log
2

2

1 + e2y|h|
√
γ
dy

(11)

As the evaluation of (11) is not closed, we can use an upper
bound of C ≤ C(E{|h|}√γ) to approximateI(W ). The
functionPe is concave in terms of the data rateR when fixing
I(W ). It’s also concave in terms ofSNR=γ for a fixed data
rate R. Fig. 1 showsPe as a function of the data rateR
under several SNR values. From Fig. 1, we can see clearly
that with a fixed data rate, increasing SNR does not yield
a significant BER performance increase at high SNR regions.
Instead, decreasing the data rateR is a better choice. With this
principle, we propose the following Algorithm 1 to improve
the BER performance in fading channels whenever a certain
amount of bad channels are detected. In this algorithm,Qs is
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Fig. 1: The trend of the block error rate forN = 1024 using
the asymptotic analysis in (9).

a channel index matrix chosen according to the quality of bit
channels andM is approximately equal toN · p.

INPUT : a matrixh = {h1, h2, · · · , hN}, α, data
rateR, N , SNR, M , Qs

OUTPUT: chosen coding idx and
chosen frozen idx // new good
channel indices and new bad
channel indices

1 n info = N ∗R ;
2 Take the absolute value ofh(coding idx) to h abs ;
3 rm Num = 0 ;
4 for i← 1 to n info do
5 if h abs(i) < α then // accumulate the

number of h samller than α
6 rm Num = rm Num+ 1 ;
7 end
8 end
9 if rm Num <= M then

10 Mi = rm Num ;
11 end
12 if rm Num > M then
13 Mi = M ;
14 end
15 c ← channel capacity of theSNR ;
16 Round downMi ∗ c to Num;
17 chosen coding idx = Qs(1, (n info−Num)) ;
18 chosen frozen idx = Qs(n info−Num+1, N) ;
19 chosen coding idx andchosen frozen idx ranked

by the order from small to large ;
Algorithm 1: The algorithm to obtain new good chan-
nel indices and bad channel indices in fading channels
whenever a certain amount of bad channels are detected

With Algorithm 1, a system in a fading channel first selects
a α according to the channel estimation algorithm. Then
another valueM = ⌊Np⌋ is selected which can be a tradeoff

between the BER performance and the data rate decrease.
WhenM (or any number smaller thanM ) unreliable channel
estimations are detected, a data rate decrease is performed:
M ∗ c channels are changed from the data-bearing channels to
the frozen channels. Herec is the calculated channel capacity
according to the operating SNR= γ and the capacity of
C = C(E{|h|}γ) in (11). This decrease ofM ∗ c is that the
M unreliable observations theoretically loseM ∗c information
bits.

It’s worthwhile to emphasize that the variation ofα andM
does not increase the complexity of Algorithm 1. This resides
in the choice of the sorted channelsQs. A change ofα andM
only changes the numberM ∗ c which eventually only results
in how many entries are selected fromQs. As long asQs is
provided, the complexity does not change with the variation
of the parameterα andM . In the next Section, we provide a
theoretical way to constructQs for a given data rateR.

IV. D ESIGN-SNR ANALYSIS

For a system with an operating SNR =γ and a data rateR
in AWGN channels, a construction based on [3] can be carried
out with thisγ. Theoretically, with any change in SNR, a new
construction should be obtained to accommodate this change
of SNR. However, to a lot of systems, a real time construction
is too complicated to perform. In [9], a design-SNR is found
from simulations which can produce a good BER performance
for a range of SNRs. In this paper, we provide an information
theoretical foundation for the existence of the design-SNRfor
a fixed data rateR.

Let’s first look at the AWGN channels. The constellation
constrained channel capacity of the AWGN channel is shown
in (10) with h = 1. For a fixed data rateR, the required SNR
= γ to achieve this data rateR can be obtained as:

γ = C−1(R) (12)

whereC−1(x) is the inverse function ofC(x) in (11). Let’s
denote the required SNR for a data rateR asγR. For a fixed
data rateR, this γR is the design-SNR which should be used
for the construction of polar codes.

For fading channels, in order to use the construction algo-
rithm like [3], we need to convert the channel in (8) to an
AWGN channel. One way to do this is to take the mean of
the channel in (8) with respect toh

E
h
{ỹ} ≈ E{|h|} · x̃+ n (13)

which has an equivalentSNR of

γh = E{|h|}2γ = µ2γ. (14)

In (14), µ = E{|h|}. For the normal distributionh, µ ≈ 0.4.
Therefore, we have

γh (dB) = γ (dB)− 8 (dB) (15)

If a point-by-point construction is to be carried out for the
underlying channel in (7), then the input SNR for the con-
struction algorithm should be a modified versionγh shown



in (15) instead of directly using the operating SNRγ. This
point is verified in the simulation results in the next section:
the BER performance of polar codes constructed usingγ is
poorer than that constructed byγh.

Like AWGN channels, a design-SNR also exists for fading
channels. However, from the simulation results, we find that
the design-SNR does not follow the relationship shown in
(15): a design-SNR ofγR for a AWGN channel does not
produce a design-SNRγRh = γR − 8 (all in dB) for the
fading channel in (7). Surprisingly, AWGN channels and the
fading channels in (7) share the same design-SNR. Simulation
results are provided to show the performance of the design-
SNR selections for AWGN channels and fading channels.

V. NUMERICAL RESULTS

To verify the fading channel transmission scheme of polar
codes in Algorithm 1 and the design-SNR selection, simulation
results are provided in this section. All the polar codes
construction in this section are based on [3].

Algorithm 1 is carried out using the following parameters:
N = 1024, R = 0.36, α = 0.2, andM = 64. The sorted
channel indicesQs are generated in two ways: 1) point-by-
point construction of (15); 2) the design-SNR for the data
rateR = 0.36. The design-SNR is computed using (12). For
R = 0.36, the desgin-SNR is computed to be−1.822 dB.
The BER performance of systematic polar codes are shown in
Fig. 2, where the solid squared line is the original BER per-
formance with code indices selected from the point-by-point
construction with the input SNR given in (15) and the solid
line with diamonds is the BER performance of polar codes
constructed this way with Algorithm 1 running at the same
time. Clearly, the BER performance is greatly improved with
Algorithm 1: the BER is reduced by 21 times while the data
rate is only reduced by 15%. The two dashed lines in Fig. 2
are the corresponding BER performance using the design-SNR
-1.822 dB instead of a point-by-point construction. The same
improvement is observed when running our Algorithm 1.

Fig. 3 shows the BER performance comparison between
the construction using the design-SNR and the point-by-point
construction in AWGN channels. The polar code has a block
length N = 1024 and R = 0.36. The design-SNR for this
case is the same as in Fig. 2. The two solid lines in Fig. 3 are
the non-systematic BER performance using the point-by-point
construction and the design-SNR construction. From Fig. 3,it
can be seen that the BER performance of non-systematic polar
codes using the design-SNR construction matches closely with
the point-by-point construction. The same can be seen for the
systematic polar codes.

The simulation results of the design-SNR in fading channels
are shown in Fig. 4. The polar code block length is again
N = 1024 and the data rate isR = 0.36. According to Section
IV, in fading channels, the design-SNR is the same as that
of the AWGN channels. Therefore in this case, the design-
SNR is -1.822 dB. The two square lines (solid and dashed)
are the BER performance of non-systematic and systematic
polar codes constructed point-by-point using the operating
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Fig. 2: The BER performance of systematic polar codes
transmission over fading channels using Algorithm 1. The
block length isN = 1024 and the data rateR = 0.36.
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Fig. 3: The design-SNR performance in AWGN channels. The
polar code have a block lengthN = 1024 and the data rate
R = 0.36.

SNR. The two lines (solid and dashed) with up-triangles are
the BER performance of non-systematic and systematic polar
codes constructed point-by-point using the operating SNR -8
as shown in (15). And the two lines (solid and dashed)
with hexagrams are the BER performance of non-systematic
and systematic polar codes constructed using the design-SNR
−1.822 dB. The first thing to notice from Fig. 4 is that the
BER performance of both the systematic and non-systematic
polar codes with the point-by-point construction using the
operating SNR is much worse than the construction using
SNR - 8 and the design-SNR of -1.822 dB. This shows that the
point-by-point construction of polar codes in fading channels
of (7) should use an input SNR in (15) instead of directly using
the operating SNR. In the mean time, the BER performance of
both the systematic and non-systematic polar codes with the
design-SNR is either better or equal to that of the point-by-
point construction using SNR - 8 dB. The design-SNR clearly
can be used for the polar code construction in fading channels.
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Fig. 4: The design-SNR performance of polar codes in fading
channels. The code block length isN = 1024 and the data
rateR = 0.36.

VI. CONCLUSION

In this paper, we propose a fading channel transmission
scheme of polar codes which can greatly improve the BER
performance at a small cost to the data rate. An algorithm is
given to implement the proposed scheme. In the mean time,
a design-SNR selection is proposed based on an information
theoretical analysis. This design-SNR selection is valid for
both the AWGN channels and fading channels. Simulation

results are provided which verified the transmission scheme
and the design-SNR selection.
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