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Abstract—In this paper, proactive resource allocation based
on user location for point-to-point communication over fading
channels is introduced, whereby the source must transmit a
packet when the user requests it within a deadline of a single
time slot. We introduce a prediction model in which the source
predicts the request arrival Tp slots ahead, where Tp denotes
the prediction window (PW) size. The source allocates energy
to transmit some bits proactively for each time slot of the PW
with the objective of reducing the transmission energy over the
non-predictive case. The requests are predicted based on the
user location utilizing the prior statistics about the user requests
at each location. We also assume that the prediction is not
perfect. We propose proactive scheduling policies to minimize the
expected energy consumption required to transmit the requested
packets under two different assumptions on the channel state
information at the source. In the first scenario, offline scheduling,
we assume the channel states are known a-priori at the source
at the beginning of the PW. In the second scenario, online
scheduling, it is assumed that the source has causal knowledge of
the channel state. Numerical results are presented showing the
gains achieved by using proactive scheduling policies compared
with classical (reactive) networks. Simulation results also show
that increasing the PW size leads to a significant reduction in the
consumed transmission energy even with imperfect prediction.

Index Terms—Energy efficiency, resource allocation, hard
deadline, dynamic programming, predictive networks

I. INTRODUCTION

The increasing number of wireless devices, e.g., smart
phones, tablet computes, that are accessing wireless networks
is leading to rapid evolution of the traffic load. In this context,
wireless networks should be enhanced to support this increas-
ing load under limited resources while satisfying the desired
quality of service [1]. One of the critical resources is the
transmission energy, where minimizing energy consumption
reduces the cost of downlink transmission and extends the
battery life of wireless devices in uplink transmission. In this
work, our objective is minimizing the transmission energy by
utilizing the predictability of human behavior.

There are various studies, e.g., Song et al. [2] and Jensen [3],
showing that user behavior is highly and precisely predictable.
Recently, utilizing the predictability of user behavior has
received considerable attention in many applications for com-
munication networks. El Gamal in [4] showed that com-
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munication systems can use lower bandwidth to achieve a
required outage probability via predicting incoming requests.
In [5], the authors proposed a proactive source coding scheme
for dynamic content that minimizes the communication cost,
where the source non-causally knows the transmission cost
before starting the transmission. In [6], [7], it has been shown
that proactive data download can achieve a win-win situation,
in which the users minimize their payments and the carrier
maximizes its profit. De Mari in [8] introduced energy efficient
scheduling of delay constrained transmission by assuming
several scenarios of the future channel state knowledge.

As a result of the regularity of user’s trajectory on weekdays,
future locations of the user usually can be predicted with high
accuracy. In [2], [3], the mobile phone is used as a sensor to
collect information about user behavior, enabling the network
to predict future locations of the user. In [9], experiments for
predicting future locations with high accuracy was introduced
based on a Markov model. Therefore, predictive networks can
track transitions in the user location, and predict the future
locations of the user. Predicting the user location can be
very useful in predicting its requested traffic. For example, an
application can run in the background of the smart devices to
collect data about user requests from each location and submit
this data to the network as proposed in [4]. Hence, predictive
networks can predict the user requests in future slots based on
the user location at the current time slot (TS).

Optimal scheduling of delay-constrained transmission was
investigated in [10], whereby the source has T slots to transmit
a packet of B bits. These traditional networks are deemed
reactive, where the request is served after it is initiated by the
user, and hence, the source is limited by the deadline of T
slots. Let us assume that the network can perfectly predict the
user request Tp slots in advance, where Tp is the prediction
window (PW) size. Hence, the source can transmit a packet
of B bits within Tp + T slots instead of T slots only which
can lead to minimizing the transmission energy.

In this paper, we develop a proactive scheduling policy that
consumes an amount of energy lower than that consumed
in reactive networks by proactively transmitting some bits
from the packet during the PW, i.e., before the user requests
it. We assume that the deadline of the request is a single
TS, i.e., T = 1, and the prediction of the request arrival
is inaccurate through the PW. Therefore, at some instants,
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the network might incorrectly predict the request arrival and
transmit some bits proactively which leads to wasting the
transmission energy. We propose a smart proactive scheduler
that estimates the probability of the request arrival using the
current user location and the prior statistics. The proposed
proactive scheduler minimizes transmission energy by select-
ing the number of bits transmitted proactively at each TS of
the PW based on the estimated probability of requesting the
packet. We propose two different scheduling polices, namely
offline scheduling and online scheduling, where the prediction
in both polices is not perfect. Under offline scheduling policy,
the network is assumed to have non-causal knowledge of the
channel states. This is not a practical assumption but we use it
to gauge the performance bounds of our proposed algorithms.
While under the online policy, the network is assumed to
causally know the channel state information at the beginning of
each TS. We compare the performance of predictive networks
with reactive networks using numerical simulations to show
the gain achieved by using the proposed proactive scheduling
strategies.

The remainder of the paper is organized as follows. In
Section II, we define the system model and formulate the
optimization problem. In Section III, we introduce the proac-
tive scheduling strategy for the offline scheduling scenario.
Section IV presents the optimal scheduler for the online
scheduling scenario. In Section V, we present our numerical
results. Finally, we conclude the paper in Section VI.

II. SYSTEM MODEL

Consider a source communicating with a single user in a
time-slotted wireless network. The user can make a request for
a packet of size B bits at the beginning of any TS and each
request has a deadline of a single TS. Therefore for reactive
networks, when the user requests the packet at a certain TS,
the source must transmit B bits before the end of this TS. In
predictive networks, the source has the capability to predict
the request arrival Tp slots ahead, where Tp represents the
PW size and Tp ∈ N+. Without loss of generality, we focus
on the request initiated by the user at TS t = 1, where t
denotes the index of slots in the time duration Tp + 1 that
consists of the PW time slots and the deadline, i.e., t ∈ {Tp+
1, · · · , 1}, where the index of time t is in descending order
(similar to [10]). Let Tp = {Tp + 1, · · · , 2} denote the set
of slots belonging to the PW and t = 1 is the actual arrival
time of the predicted request as shown in Fig. 1. The binary
parameter I is an indicator to the request arrival at TS t = 1.
It is defined as

I =

{
1 if the user requests the packet at TS t = 1
0 otherwise. (1)

We assume that the prediction is inaccurate. Hence, the source
does not know the exact value of the indicator I at each TS
t ∈ Tp. Thus, during the PW, the indicator I is a Bernoulli
random variable with parameter pt that denotes the probability
of the request arrival at the last TS t = 1.

1pT Time slots

PW Deadline

Actual arrival time
Begin to serve the 

predicted request

12pT

Fig. 1. Predictive Networks

We assume that the source is transmitting with the channel
capacity under unit variance white Gaussian Noise. Therefore,
the number of bits transmitted proactively at TS t is given by

bt = WT log2

(
1 +

htE (bt, ht)

WT

)
(2)

where E (bt, ht) is the amount of energy used for transmission
at time slot t, and ht denotes the channel state at TS t. The
channel states ht, t = Tp+1, · · · , 1, are assumed independent
and identically distributed(i.i.d) random variables varying from
one TS to another according to a known continuous distribu-
tion. Furthermore, W and T denote the channel bandwidth
and the TS duration respectively. For simplicity, let WT equal
unity so that the energy consumed to transmit bt at TS t is
given by

E (bt, ht) =
2bt − 1

ht
. (3)

Moreover, let βt denote the remaining bits of the packet at
beginning of TS t, i.e., after transmitting some bits in earlier
time slots, where βTp+1 = B and βt is given by

βt = B −
Tp+1∑
i=t+1

bi = βt+1 − bt+1. (4)

A. Problem formulation

Our objective is to get an energy-efficient scheduler that
minimizes the consumed energy to deliver the packet before
the end of the deadline upon request. The scheduler transmits
proactively some bits during the PW before the user requests
the packet at TS t = 1. Hence, the source estimates the mean
value of the indicator I through the PW to determine the
number of bits transmitted at each TS t ∈ Tp1. Accordingly,
the proactive scheduling policy can be obtained by solving the
following optimization problem

min
bTp+1,··· ,b1

E

{
TP+1∑
t=2

E (bt, ht) + E (b1, h1) I

}
(5a)

subject to
Tp+1∑
t=1

bt = B (5b)

bt ≥ 0 ∀ t ∈ {1, · · · , Tp + 1} (5c)

1If we assume that the user requests are predicted perfectly, then the
scheduling problem is equivalent to scheduling B bits in Tp + 1 time slots
as in [10].



where E denotes the expectation operator. The cost func-
tion (5a) represents the total expected energy of transmission.
It consists of two terms. The first term represents the total con-
sumed energy during the PW to transmit some bits proactively,
and the second term represents the consumed energy during
the deadline to complete the transmission of the packet if and
only if the user requests it at TS t = 1, i.e., if I = 1. The
constraint (5b) assures that no violation of the deadline occurs.

At each TS of the PW, t ∈ Tp, there is a tradeoff between
proactively transmitting more bits to minimize the energy
consumption if the request arrives at t = 1, and reducing
the proactive transmission to reduce the wasted energy if the
request does not arrive at t = 1. Hence, the allocated bits bt,
t ∈ Tp, depend heavily on the expected value of the indicator I
calculated at TS t, i.e., pt. In the last TS t = 1, the remaining
bits b1 are transmitted using the energy E (b1, h1) if and only
if I = 1.

In reactive networks, i.e., when Tp = 0, if the user requests
the packet at TS t = 1 the source has a single TS to transmit
it. Hence, the consumed energy ER is given by

ER =
2B − 1

h1
. (6)

B. Dynamic estimation of the probability of request arrival

Since the probability of the request arrival, pt, is signifi-
cantly correlated with the user location. We develop a dynamic
estimate of pt through the PW based on the current user
location. Let X (t) denote the user location at TS t that
takes a value from the set S, where S is a finite set of
k locations, {l1, l2, · · · , lk}, containing all possible locations
of the user. We assume that X (Tp + 1) , · · · , X (1) is a
stationary Markov process [9] where S represents the state
space of the process and the k × k transition probability
matrix is denoted by L where the (i, j)th element of L is
given by Li,j = Pr{X (t) = lj |X (t+ 1) = li}. Note that
the transition probabilities can be estimated by observing the
mobility pattern of the user over a sufficiently long time
interval. Let gi denote the probability that the user requests the
packet given that the user is located at location li, i.e., gi =
Pr{I = 1|X (1) = li}. Thus, the row vector g = [g1, · · · , gk]
denotes the prior statistics vector. Note that each element gi
of the statistics vector g can be computed by counting the
number of times that the user requests the packet from the
location li.

Once the source observes X (t), t ∈ Tp, the source can
estimate the probability of request arrival at TS t = 1 as
follows

pt = Pr{I = 1|X (t)}

=

k∑
i=1

Pr{X (1) = li|X (t)} gi

= πππt Lt−1 gT

(7)

where πππt = [π1, · · · , πk] is the observation row vector whose
j-th element πj = 1 if X (t) = lj and the other elements
πi = 0 ∀ i 6= j. The elements of the matrix Lt−1 are the

conditional probabilities of the user location at TS t = 1 given
his location at t, and (·)T denotes the transpose operator. Note
that the probability of the request arrival {pt}

Tp+1
t=2 changes

from one TS to another during the PW due to the change in
the user location.

In the next sections, we propose an energy-efficient sched-
uler that can minimize the expected energy of transmission
compared to reactive networks.

III. OFFLINE SCHEDULING

Here, we assume that the source non-causally knows the
channel states {ht}

Tp+1
1 at the first TS of the PW, i.e., the

source has the ability to predict the future channel states [11].
Although this assumption is non-realistic, the results of this
section are useful in providing an upper bound on the
performance of causal scheduling algorithms presented in
Section IV. Moreover, the offline scheduling is used to get
suboptimal solution for online scheduling when Tp > 1 as we
will discuss later in Section IV-B. First, we get a closed-form
expression of the optimal scheduler when Tp = 1. Next, we
discuss the general case for Tp > 1.

A. Proactive scheduling policy for Tp = 1

At TS t = 2, the source transmits b2 bits based on its
information about h1, h2 and p2, where p2 is obtained from
equation (7). At TS t = 1, the source takes one of two actions:
a) If the user requests the packet, i.e., the prediction is correct,
the remaining bits of the packet b1 = B − b2 are transmitted,
b) In the case of erroneous prediction, i.e., the user does not
request the packet, the source will not transmit b1, and the
source loses the amount of energy consumed at TS 2.

Proposition 1. The optimum number of bits for proactive
transmission when Tp = 1 is given by

b2 =

〈
B

2
+

1

2
log2

(
h2

h1

)〉B
0

(8)

where h1 = h1

p2
and 〈.〉B0 denotes the truncation from below

at 0 and from above at B.

Proof: See Appendix
We can see from (8) that the parameter p2 has significant

effect on determining the number of bits allocated to TS 2.
Decreasing p2, i.e., decreasing the probability that the packet
would be requested at t = 1, leads to increasing the effective
channel gain h1 which reduces the number of bits transmitted
proactively (b2). In other words p2 → 0 leads to h1 →∞ and
b2 → 0. On the other hand, if p2 = 1, i.e., the source knows
certainly that I = 1, the problem reduces to the scheduling
problem introduced in [10]. In this case, when h2 = h1, the
packet is divided equally between the two time slots. However,
when h2 > h1 more than half the packet is transmitted
proactively due to favorable channel state at TS t = 2. We note
that the source does not transmit some bits from the packet
proactively if h2 < 2−Bh1. Hence, the channel state h2 must
be greater than 2−Bh1 to allow proactive scheduling.



B. Proactive scheduling policy for Tp > 1

In this case the source has Tp + 1 time slots to serve the
predicted request. Therefore, the source allocates a number
of bits bt to be transmitted at TS t according to the current
channel state ht compared to the future channel states {hi}t−1

i=1

and the expected value of the indicator I at this TS, i.e., pt.

Proposition 2. The optimal scheduling policy for Tp > 1 is
given by

bt =

〈
log2

(
ht
εtth

)〉βt
0

where Ht = {ht, ht−1, · · · , h1}, h1 =
h1
pt

H̄t = {h|h ∈ Ht, h > εtth}
N = |H̄t|

εtth = 2−
βt
N G (H̄t) .

(9)

The operation |H| denotes the number of elements in the
set H and G (H) denotes the geometric mean of the elements
in this set. Notice that the set Ht contains the present channel
state and the channel states of the future time slots. However,
the set H̄t is a subset of Ht containing the channel states that
are greater than threshold value εtth.

Proof: At TS t, the optimization problem (5) can be
formulated as the following optimization problem

min
bt,··· ,b1

t∑
i=2

2bi − 1

hi
+

(
2b1 − 1

h1

)
pt

subject to
t∑
i=1

bi = βt

bi ≥ 0 ∀ i ∈ {t, t− 1, · · · , 1}.

(10)

The objective function is the expected energy of transmission
calculated at the TS t. The Hessian of the objective function of
problem (10) is a diagonal matrix with non-negative diagonal
elements, and hence, the optimization problem is a convex
problem. The optimal solution can be obtained by solving
the Karush-Kuhn Tucker (KKT) conditions yielding (9). The
details are omitted due to space considerations.

At TS t, the scheduler solves the problem (10) to get the
vector b = [bt, · · · , b1]. However, only the value of bt is
utilized where the scheduler transmits bt bits at TS t. In the
next time slot, t−1, the scheduler resolves problem (10) again
after updating the probability of requesting the packet based
on the current user location. Note that the tth TS is utilized
for proactive transmission if and only if ht > εtth, where the
channel state h1 is replaced by h1 that reflects the effect of the
accuracy of prediction on the proactive scheduler. Decreasing
pt leads to increasing h1 and εtth which reduces the number of
bits transmitted proactively. Furthermore, increasing the PW
size Tp gives the source a better chance to select the favorable
time slots that have ht > εtth to transmit more parts of the
packet proactively which decreases the total consumed energy.

IV. ONLINE SCHEDULING
In this section, we assume that the source has causal channel

state information, i.e., at the beginning of TS t the source
knows ht, but future channel states {hi}t−1

i=1 are not known.
Let At denote the information available to the source at TS t,
i.e.,

At =

{
(βt, ht, pt) t ∈ Tp
(βt, ht, I) t = 1

. (11)

We aim to get the proactive scheduling policy G∗ =[
bTp+1

(
ATp+1

)
, · · · , b1 (A1)

]
which is a sequence of func-

tions mapping the available information to the source at TS
t into a number of bits transmitted at this TS to minimize
the cost function (5a), where the expectation with respect to
the random indicator I and the channel states hTp+1, · · · , h1.
The optimal policy G∗ can be obtained by solving the prob-
lem (5) recursively using the standard dynamic programming
algorithm

J1 (β1, I, h1) = E (β1, h1) I (12a)

J2 (β2, p2, h2) = min
0≤b2≤β2

E (b2, h2) + EI
{
J1 (β2 − b2, I)

}
(12b)

Jt (βt, pt, ht) = min
0≤bt≤βt

E (bt, ht) + J t−1 (βt − bt, pt)

(12c)

where J t−1 (β, p) = Eh {Jt−1 (β, p, h)}, represents the mini-
mum expected energy to transmit β bits through the remaining
t − 1 slots given Pr (I = 1) = p. We take the expectation to
the random indicator I when applying the backward recursion
in (12b) since the source does not know the value of I in
the PW time slots. In (12a), the source transmits all the
remaining bits at the last TS t = 1 if and only if I = 1
to complete the transmission of the packet before the end of
the deadline. In (12b), and (12c), the source determines the
optimal bit b∗t allocated to the TS t ∈ Tp that minimizes the
current consumed energy plus the expected energy to transmit
the remaining bits through the remaining slots, where the
expectation is taken with respect to the future channel states
and the random indicator I . The optimality of the algorithm
is verified according to Bellman’s equations [12].

A. Proactive scheduling policy for Tp = 1

Proposition 3. The optimum number of bits allocated to the
TS 2 is given by

b2 =

〈
B

2
+

1

2
log2 (h2ν1p2)

〉B
0

where ν1 = Eh
{

1

h

}
.

(13)

Proof: By applying Bellman’s equations (12), we have
EI
{
J1 (β, I)

}
=
(
2β − 1

)
ν1p2, and hence, the solution to

the optimization problem at TS 2 is given by

b2 = arg min
0≤b2≤B

2b2 − 1

h2
+
(
2B−b2 − 1

)
ν1p2 (14)

Since the problem (14) is a convex problem, the optimal b2 is
obtained by equating the first derivative to zero.



B. Proactive scheduling policy for Tp > 1

There is no closed form expression for the optimal schedul-
ing policy for Tp > 1 since the closed form expression for
the cost function J t (β, p) defined in (12) does not exist.
Therefore the optimal scheduler is obtained numerically by
using the discretization method (see Section 6.4 in [12]).
However, we can get two suboptimal solutions similar to [10]
whose performance is close to the optimal one.

1) Certainty equivalent Scheduler (CES): We obtain the
certainty equivalent scheduler (CES) by applying the follow-
ing steps at each TS t ∈ Tp: a) the source replaces each
uncertain variable at TS t with its mean. Hence, we assume
the channel inversion of the future time slots { 1

hi
= ν1}t−1

i=1

and E {I} = pt. b) the source determines bt by applying
the offline scheduling described in Section III-B over the
following channels inversion: 1

ht
, { 1

hi
= ν1}t−1

i=1 . Therefore,
the CES is given by

bt =

〈
βt
t

+
t− 1

t
log2

(
ht
εtCES

)〉βt
0

where εtCES =
1

ν1p
1
t−1

t

(15)

2) Suboptimal II Scheduler: The suboptimal II scheduler is
obtained by relaxing the constraint 0 ≤ bt ≤ βt. Therefore, we
can get an approximate closed-form expression for J t−1 (β, p)
by using mathematical induction as

J̃ t−1 (β, p) = (t− 1) 2
β
t−1G (νt−1, · · · , ν1) p

1
t−1

− (t− 2 + p) ν1
(16)

where νi = Eh
{

1

h
1
i

}i
and the operation G (νt, · · · , ν1)

denotes the geometric mean
(∏t

i=1 νi

) 1
t

. Therefore, at the
beginning of each TS t ∈ Tp, the number of bits (bt) is
determined by solving the following optimization problem

bt = arg min
bt

2bt − 1

ht
+ J̃ t−1 (βt − bt) . (17)

Note that problem (17) is a convex optimization problem.
Therefore, we get the following suboptimal II scheduler by
equating the first derivative to zero and using the truncation
operator to maintain the constraint 0 ≤ bt ≤ βt which yields

bt =

〈
βt
t

+
t− 1

t
log2

(
ht
εtSubII

)〉βt
0

where εtSubII =
1

G (νt−1, · · · , ν1) p
1
t−1

t

.
(18)

V. NUMERICAL RESULTS

In this section, we compare the performance of predictive
networks and reactive networks to illustrate the gain that
can be achieved by using the proposed proactive scheduling
policies. We run 103 Monte-Carlo simulations to evaluate
the expected transmission energy of predictive and reactive
networks. We assume that the user can exist in three locations,
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Fig. 2. Comparison between proactive scheduling schemes with different
PW size and the reactive scheme.

i.e., k = 3. In each simulation, the elements of the transition
matrix L are generated with uniform distribution and each
row is normalized. In addition, the elements of the vector g
are randomly generated according to a uniform distribution.
At each simulation, the channel states {ht}

Tp+1
t=1 are randomly

generated according to a truncated exponential distribution
with parameter λ = 1 and threshold to = 0.001. Then, we
generate a sample path of the user location according to the
stationary Markov chain described in Section II-B, where the
initial location of the user X (Tp + 1) is generated according
to the steady-state probability distribution of the Markov chain.
Finally, the request initiated at TS t = 1 is generated according
to the user location X (1) and the statistics vector g. For
example, if X(1) = l2, the indicator I is generated as a
Bernoulli random variable with parameter g2.

Numerical results for the offline scheduling algorithm de-
scribed in Section III-B are shown in Fig. 2 that displays
the expected transmission energy versus the packet size for
different values of Tp (Tp = 0 represents the reactive case).
Fig 2 shows the gap between the expected energy of reactive
and predictive networks. It is clear that increasing the PW size
Tp leads to decreasing the expected transmission energy.

In Fig 3, we investigate the performance of the online
scheduling schemes with PW size Tp = 4 versus reactive
networks. It is shown that the gap between the proposed
algorithms and the reactive case increases when the packet size
increases. We can also see that when the packet size increases,
the suboptimal solutions converge to the optimal one obtained
by using the discretization method. However, Suboptimal II
performs better than CES since the suboptimal II is obtained
by relaxing the constraint 0 ≤ bt ≤ βt that might be satisfied
for large packet size.

In Fig 4, we display the amount of energy that can be saved
by using our proactive scheduling strategy when PW size Tp =
1 described in Section III-A. The expected saved energy is
defined by the difference between the expected transmission
energy of traditional (reactive) and predictive networks in dB
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Fig. 3. Comparison of online scheduling schemes with PW size Tp = 4
and reactive (traditional) scheme.

units. The following values of p2 that denote the probability of
the request arrival at TS t = 1, are simulated p2 = {0.1, 0.5, 1}
to show the impact of the prediction accuracy on the expected
saved energy. The results show that proactive scheduling can
achieve gain for each value of p2, where the expected saved
energy increases as the packet size B increases.

VI. CONCLUSION
In this paper, we have proposed proactive scheduling

schemes for delay-constrained traffic under two different as-
sumptions on the channel state information at the source.
Our schemes are based on predicting the request arrival Tp
slots ahead so that the source can optimize the transmission
energy in each TS of the PW with the objective of minimizing
the expected transmission energy. Throughout this paper, we
have assumed that prediction is not perfect and the effects
of prediction errors on the proactive energy allocation were
taken into account. Numerical results have been provided to
demonstrate the superiority of the proactive scheduling strate-
gies, where predictive networks achieve significant reduction
in the transmission energy compared to reactive ones.

APPENDIX

The optimum scheduler is the solution to the problem (5)
by taking the expectation with respect to the indicator I . Thus,
the problem (5) can be reformulated as follows

arg min
0≤b2≤B

2b2 − 1

h2
+

(
2B−b2 − 1

h1

)
p2 (19)

We define f (b2) as the objective function in (19)

f (b2) =
2b2 − 1

h2
+

(
2B−b2 − 1

h1

)
p2 (20)

The first and second derivatives of f (b2) are given by

df

db2
=

2b2

h2
ln (2)− 2B−b2

h1
p2 ln (2) (21)

d2f

db22
=

2b2

h2
(ln (2))

2
+

2B−b2

h1
p2 (ln (2))

2 (22)
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Fig. 4. Expected saved energy in dB for Tp = 1.

where d2f
db22
≥ 0 ∀ b2 ≥ 0, i.e., the optimization problem (19) is

a convex problem. Thus the optimum solution b2 is obtained by
setting the first derivative to zero in (21) where the constraint
0 ≤ b2 ≤ B is not violated by using the truncation operator.
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