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Abstract—Cloud radio access network (C-RAN) is a promising
technology for fifth-generation (5G) cellular systems. However the
burden imposed by the huge amount of data to be collected (in
the uplink) from the radio remote heads (RRHs) and processed
at the base band unit (BBU) poses serious challenges. In order
to reduce the computation effort of minimum mean square error
(MMSE) receiver at the BBU the Gaussian message passing (MP)
together with a suitable sparsification of the channel matrix can
be used. In this paper we propose two sets of solutions, either
centralized or distributed ones. In the centralized solutions, we
propose different approaches to sparsify the channel matrix, in
order to reduce the complexity of MP. However these approaches
still require that all signals reaching the RRH are conveyed to
the BBU, therefore the communication requirements among the
backbone network devices are unaltered. In the decentralized
solutions instead we aim at reducing both the complexity of MP at
the BBU and the requirements on the RRHs-BBU communication
links by pre-processing the signals at the RRH and convey a
reduced set of signals to the BBU.

Index Terms—Cellular Systems; cloud radio access network
(C-RAN); message passing (MP); Uplink.

I. INTRODUCTION

The fifth-generation (5G) of mobile communication systems

has ambitious targets in terms (among others) of data rate,

latency, number of supported users. Among the technologies

envisioned to this end, cloud radio access network (C-RAN)

may provide the flexibility in the deployment and planning of

the network, combined with powerful energy-efficient compu-

tational resources [1].

Indeed, since the signal processing of multiple cells is

implemented in the centralized facility of the base band unit

(BBU), the computational resources are allocated on demand

to the areas that have instantaneously more users, also with

a better handling of inference and hand-off capabilities. On

the other hand the need to process signals of many radio

remote heads (RRHs) poses significant challenges to the BBU.

Various approaches have been proposed to reduce the huge

amount of data that is exchanged in this centralized approach,

including suitable quantization of either the received signal [2]

or the log-likelihood ratios (LLRs) [3]. On the other hand, also

the signal processing itself at the BBU is very challenging,

since even a minimum mean square error (MMSE) receiver

requires the inversion of very large matrices. Similar problems

are encountered in massive-multiple input multiple output

(MIMO) systems with a huge number of users. About the

reduction of signal processing burden in up-link detection,

it has been proposed in [4] to cluster both users and RRHs

based on the distance of terminals from RRH thus parallelizing

MMSE operations into small size matrix operations. A further

step forward has been done in [5] where it is proposed

to implement the MMSE receiver by the message passing

(MP). By exploiting the Gaussian distribution of the noise,

a simple solution is obtained where the complexity per unit

network area remains constant with growing network sizes. In

particular [5] combines MP with the sparsification approach

of [4], i.e., a first selection of users based on their distance

from RRH reduces the size of the equivalent channel matrix

before MP is applied.

In this paper we leverage on the results of [5] to propose

two sets of solutions, either centralized or distributed ones. In

the centralized solutions, we propose different approaches to

sparsify the channel matrix, in order to reduce the complexity

of MP. However these approaches still require that all signals

reaching the RRH are conveyed to the BBU, therefore the

communication requirements among the backbone network

devices are unaltered. In the decentralized solutions instead

we aim at reducing both the complexity of MP at the BBU

and the requirements on the RRHs-BBU communication links

by pre-processing the signals at the RRH and conveying a

reduced set of signals to the BBU.

The rest of the paper is organized as follows. We first

introduce the system model in Section II. Then we propose

the centralized sparsification techniques in Section III. The

decentralized sparsification methods are discussed in Section

IV. Numerical results are presented in Section V, before

conclusions are obtained in Section VI.

Notation: matrices and vectors are denoted in boldface. xT

and xH denote the transpose and Hermitian of vector x,

respectively.

II. SYSTEM MODEL

We consider the up-link of a cellular network with Nc

cells, each one containing a base station (BS) equipped with

Na omnidirectional receive antennas (RRHs). Each cell is

populated by Nu mobile terminals (MTs) uniformly distributed
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over the entire cell area, each one equipped with a single

antenna and transmitting with power P .

The overall network can be seen as a MIMO system, where

the unit-power column vector x of size K = NcNu comprises

the data signals of MTs scaled by
√
P before transmission,

whereas column vector y of size N = NcNa comprises all

signals received by RRHs. The MIMO channel model of the

up-link from MTs to the RRHs can be written as

y =
√
PHx+w , (1)

where H is the N × K channel matrix with entries [H ]i,j
and w is the additive white Gaussian noise (AWGN) vector

with independent and identically distributed (i.i.d.) complex

Gaussian entries with zero-mean and variance N0.

The signals received by the RRHs are forwarded to the BBU

that aims at performing the MMSE receiver, i.e., computing

x̂ = P
1

2HH(PHHH +N0I)
−1y. (2)

A. Randomized Gaussian MP decoder

The MP algorithm can be used to solve the interference

problem over sparse factor graphs [6], therefore providing the

solution of the MMSE receiver (2). Since the received signal is

affected by Gaussian noise we can use the Gaussian message-

passing (GMP) solution, and in particular we focus on the

randomized randomized GMP (RGMP) of [5] which has been

shown to have better convergence properties. In order to obtain

the MMSE estimate of the transmitted signal x the proposed

RGMP Algorithm exploits the knowledge of the statistical

description of all the elements in (1) and iteratively updates

the values of mean and variance of all components of both

x and y vectors. The Algorithm stops updating these values

when a stopping criterion is satisfied and the MMSE estimate

of x is returned.

The computational complexity of the RGMP Algorithm is

O(NK2), hence it depends on the number of users (growing

quadratically with it) and receiving antennas of the system.

In large systems, with many MTs and RRHs, the decoding

process is therefore prohibitively complex. An approach to

reduce the complexity is to reduce the number of non-zero

entries in H over which the MP is run, i.e. applying MP on

a sparsified version of H . Note that the sparsification on the

one side will reduce the complexity, while on the other side

provides an approximation of x̂, thus reducing the ASR (ASR)

of the system.

Different approaches will be analysed in the following

sections: a centralised approach, where sparsification is per-

formed at the BBU pool before RGMP decoding, and a

distributed approach, where sparsification is applied as pre-

coding operations at each BS.

III. CENTRALIZED SPARSIFICATION METHODS

With centralized sparsification methods the decoding pro-

cess is entirely demanded to the central BBU pool. Then

the signal received at the RRH, down-converted to base-band

and converted to the digital domain, is entirely forwarded

to the BBU. Hence no local processing is performed at the

BS. Since no pre-processing operation is done at the BS in

order to reduce the computational complexity of the decoding

process, this latter task is demanded to the central BBU. We

here introduce and discuss different approaches to sparsify the

channel matrix by performing operations on its entries at the

BBU.

A. Sparsification based on the received power (CRPS)

The first approach is based on the received power. In

particular, we set to zero the channel matrix coefficients having

power below a threshold value Pmin.

We thus obtain matrix Ĥ with entries

[Ĥ]i,j =

{

[H ]i,j if |[H ]i,j|2 ≥ Pmin

0 otherwise.
(3)

The neglected coefficients can be accounted for as additional

noise into the system. In particular, defining the error matrix

H̃ = H − Ĥ the statistical power of noise and error N0

becomes

N̂0 = N0 +
1

N

N
∑

n=1

K
∑

k=1

|[H̃]n,k|2 (4)

RGMP is then run over channel Ĥ and considers as noise

power N̂0.

B. Sparsification based on semi-orthogonality (MCOS)

The second proposed approach is based on MT channels

semi-orthogonality. Let us consider singularly each BS: we

notice that MTs having orthogonal channels do not interfere.

Now, assuming that each MT signal is mainly detected by

the antennas of its cell, we can ignore the contribution of the

external MTs since they will not significantly contribute to the

computation of the MMSE.

In formulas, let us consider the channel row vector hk1
=

[H ]n1,k1
, [H ]n2,k1

, ..., [H ]nNa
,k1

] from MT k1 to all RRHs

belonging to a certain BS with indexes in the set A =
{n1, n2, ..., nNa

}. The orthogonality among channels toward

the same BS is established by the internal product of the chan-

nels and we consider that two channels are semi-orthogonal if

the product is below a threshold Tprod, i.e.,

|hk1
hH
k2
|2 < Tprod. (5)

If MTs k1 outside the cell i is semi-orthogonal to all MTs

inside the cell, then entries of channel matrix H corresponding

to the link between MT k1 and all RRHs of BS i are set to

zero.

C. Sparsification based on the correlation

The idea is to reduce the number of rows of the channel

matrix by selecting the subset S of the antennas A(c) located

in cell c. In order to chose a suitable subset and, hence, which

rows to delete, we exploit the algorithms presented in [7], i.e.

correlation based sparsification (CBS) and mutual information

based sparsification (MIBS). We denote by Nac the number of



antennas, and hence the number of rows of the channel matrix

relative to c used for decoding.

In formulas, we consider couples {n1, n2} of antennas and

channel matrix rows gn∈A(c) = [[H ]n,1, [H ]n,2, ..., [H ]n,K ],
belonging to set A of cell c and measure their correlation as

cn1,n2
= |gn1

gH
n2
|2. (6)

For each cell the correlation between couples of antenna

channels belonging to the considered cell is computed. Then

the couple with highest correlation is selected and the antenna

channel with lowest power is discarded. Its corresponding row

in the channel matrix is hence set to zero. This procedure

is repeated until we set to zero a number of rows equal

to Na − Nac. A description of this method is provided in

Algorithm 1.

Algorithm 1: Correlation Based Method (CBS)

Data: H , Nac

Result: H

1 for c=1 to Nc do

2 for n=1 to Na −Nac do
1) compute correlation for each couple {n1, n2}

∈ A(c) with (6),

2) choose the couple with highest correlation,

3) set to zero the row of H corresponding to the

antenna n = argmin
n∈{n1,n2}

∑K

k=1 |[H ]n,k|2

3 end

4 end

5

D. Sparsification based on the mutual information

This antenna selection approach, MIBS, behaves similarly

to Algorithm 1, except that correlation in step 1 is substituted

by the normalized mutual information. The mutual information

for a couple {n1, n2} ∈ A(c) is computed as

I(n1, n2) = log2

( ‖hn1
‖2‖hn2

‖2
‖hn1

‖2‖hn2
‖2 + |hn1

hH
n2
|2
)

(7)

whereas its normalized version is

I0(n1, n2) =
I(n1, n2)

min{| log2 ‖hn1
‖2 |, | log2 ‖hn2

‖2 |}
. (8)

In Algorithm 1 we replace (6) with (8). In both CBS and MIBS

the noise power N0 is not modified as in (4), because, when

deleting an antenna channel (and hence a channel matrix row),

we assume that its information is contained in the other rows

of the considered couple.

IV. DISTRIBUTED SPARSIFICATION METHODS

The centralized sparsification approach has the drawback

that the entire received signal is forwarded from RRHs to

the central BBU. Since the requirements for a front-haul link

are very stringent (multi-gigabit-per-second-capacity and few-

milliseconds latency [8]) and this amount of data turns out to

be prohibitively high for satisfying this requirements, we con-

sider distributed sparsification solutions, which aim together

at reducing both the decoding computational complexity and

the amount of data flowing through the front-haul.

In this section we will discuss sparsification applied as pre-

coding at the BS of each cell before forwarding the received

signals to the BBU. Let yc be the received Na-size column

vector signal at the BS of cell c. If we consider a pre-coding

Nr×Na matrix B for cell c and we multiply it by the received

signal we obtain

Byc = BHNr

√
P x̃+BHN̄r

√
P i+Bw, (9)

where x̃ is the vector containing signals coming from MTs

in set M (as later discussed), HNr
is the sub-channel matrix

composed by the columns of H for users considered in M,

HN̄r
is the sub-channel matrix composed by the column of

H for users 6∈ M and is the vector containing signals coming

from users 6∈ M.

Pre-coding matrix B can assume different forms and con-

sider different number and types of users. In particular, we

let G be the sub-channel matrix of users in M. Then we set

B = GH , i.e. B assumes to form of the matched matrix to the

considered channel. A second option provides that B is the

zero-forcing matrix, i.e. B = GH(GGH)−1. In the following

we define different strategies to select M.

A. Selection based on the position (PSS)

We first assume the knowledge of users location and, in

particular, we know the cell each user belongs to. Then M is

the set of users located in cell c, with |M| = Nu. Matrix B

will hence be a Nu×Na dimesnion matrix. Such a pre-coding

operation hence reduces the number of rows of the sub-channel

matrix of each cell from Na (the number of antennas of the

considered BS) to Nu. We notice that, with the pre-coding

operation, noise vector entries are correlated and that the MP

algorithm must be modified. Since noise power remains the

same in all branches the noise level depends on n and becomes

N0(n) = N0

Nu
∑

k=1

|[B]n,k|2, (10)

with n ∈ {1, ..., Nu}, which takes into account correlation

introduced by matrix B in each receiver branch. This new

version of RGMP will be considered as default for henceforth

presented methods. Note that this approach is sub-optimal

respect to MMSE as the MP solution in this case neglects

the correlation among the noise components.

B. Selection based on received power (DRPS)

In this approach MTs are selected according to the received

power. We select the Np users with highest power reaching

the BS of cell c, i.e. given the channel from user k to the BS

in c, we compute the received power (11) for each user in the

cellular network,

p(k) =
∑

n∈A(c)

|[H ]n,k|2 (11)



and consider the Np users with highest p(k) toward the BS

of cell c. The channel matrix columns of this set of users will

then compose the columns of matrix G for cell c.

C. Selection based on mixed criterion (MSS)

The third approach is a mix of the first two. In fact matrix

G collects columns of both users located in cell c and the Np

most powerful users, i.e. with highest p(k), located outside

cell c.

V. NUMERICAL RESULTS

We here first present the ASR results obtained for all the

sparsification methods introduced in previous sections and then

discuss their computational complexity. Mostly the trade-off

between ASR and computational complexity is analyzed. We

consider a scenario with Nc = 16 cells, each one equipped

with a BS with Na = 8 RRHs. Each cell contains Nu = 4
users and each user is allocated the same transmitting power

P = 1. Noise power is chosen to have a border cell signal to

noise ratio (SNR) of 0 dB. In the following we assume that

H is affected by both path loss (with coefficient α = 2) and

Rayleigh fading, so that each entry is a zero-mean complex

Gaussian random variable with variance equal to the inverse

of the distance from the considered MT and the considered

antenna of the BS. Channel matrix entries are i.i.d.

The RGMP Algorithm is stopped when the mean of the

transmitted signal does not change more than 1% in one

iteration. Each method has been compared both in terms of

sparsification level, i.e. the number of entries of the channel

matrix H different from zero after sparsification, and channel

ASR. All results have been compared with those of pure

RGMP, i.e. without channel sparsification.

A. Centralized sparsification

We consider first the centralized sparsification.

Fig. 1 reports the mean ASR values vs. SNR for two parameter

values of each centralized sparsification method and for RGMP

without channel sparsification. ASR results for MIBS are

analogous to the ones obtained with CBS, and are not reported

here for brevity. With all the presented methods we can obtain

good results in terms of ASR values, comparable or equal to

that obtained with RGMP without channel sparsification.

B. Distributed sparsification

Distributed sparsification has been implemented for both

matched and zero forcing matrix B. Fig. 2 reports mean ASR

values vs. SNR obtained for the maximum and minimum

considered users by distributed sparsification methods and for

RGMP without channel sparsification. We denoted the differ-

ent methods with their acronym followed by the number of

considered users. We can see that the matched implementation

of B outperforms the zero-forcing implementation is terms of

mean ASR. Furthermore the matched implementation of all

methods considering the maximum number of users, allows a

better exploitation of the channel for low SNR values obtaining

mean ASR values equal to the ones obtained with RGMP

without channel sparsification.
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Fig. 1. Mean ASR vs. SNR for centralized sparsification.
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C. Computational complexity analysis

We now analyse the computational complexity of the dif-

ferent approaches in terms of number of decoding operations

after sparsification. This depends on the number of entries

of Ĥ 6= 0 as each requires two sums over the total number

of users K , operations that are repeated until the stopping

criterion is satisfied. Hence the total number of operations is

Nop = 2K s I, (12)

where s denotes the number of channel matrix entries different

from 0, and I the number of message passing iterations needed

to satisfy the stopping criterion. Fig. 3 shows the ASR vs.

the number of operations needed for the decoding process for

the centralized sparsification methods with an SNR level of 0

dB. We notice that with semi-orthogonal-based sparsification

we obtain the best performing system, with an achievable sum

rate of 58 bit/s/Hz and a computational complexity of 9.2 ·105
operations. However notice that this implementation is not the



TABLE I
BEST DECODING COMPUTATIONAL COMPLEXITY AND ASR FOR THE DIFFERENT SPARSIFICATION METHODS: 0 DB SNR

Sparsification method Sparsification level # of operations ASR [bit/s/Hz]

Pure RGMP 8192 2097152 60

CRPS, Pmin = 0.001 4121 1582464 60.19

MCOS, Tprod = 0.001 4288 1097728 58.83

CBS, Lr = 1 7168 1835008 55.72

MIBS, Lr = 1 7168 917504 58.73

PSS, B = GH 4096 1835008 57

MSS, 6 usr.B = GH 6144 1835008 63.5

DRPS , 4 usr. B = GH 4096 1966080 61.28

DRPS, 4 usr. B = GH(GGH)−1 4096 393216 46.2

DRPS , 8 usr. B = GH 8192 4082131 63.25

best performing in terms of achievable sum rate, instead it is

the best compromise between computational complexity and

ASR. Notice that RGMP without channel sparsification obtains

an ASR of 60 bit/s/Hz with a computational complexity of

2.1 · 106 operations. Hence the reduction of 1 · 106 operations

comes with an ASR loss of 2 bit/s/Hz.
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Fig. 3. Trade-off between computational complexity and achievable sum-rate
for centralized sparsification methods: 0 dB SNR.

Fig. 4 reports the ASR vs. the number of operations needed

for the decoding process for the centralized sparsification

methods with an SNR level of 0 dB. We notice that the

best compromise between ASR and computational complexity

is obtained for MSS with matched matrix, which presents

an ASR of approximately 63 bit/s/Hz with a computational

complexity of 2 · 105 operations.

Table I reports the obtained computational complexity and

ASR values for the best performing parameter of each method

when SNR value is 0 dB. A trade-off can be obtained, since we
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Fig. 4. Trade-off between computational complexity and achievable sum-rate
for distributed sparsification methods: 0dB SNR

want to maximize the ASR while maintaining a low computa-

tional complexity. We can hence state that all methods present

a channel ASR comparable to the one obtained with pure

RGMP, but generally need a significantly lower number of

decoding operations. The best performing among all presented

methods in terms of both computational complexity and ASR

is MIBS sparsification when SNR value is 0 dB. This method

needs less than half of the number of operations required by

pure RGMP with an ASR loss of approximately 2 bit/s/Hz.

VI. CONCLUSIONS

For a C-RAN system where signals coming from many

RRHs we have considered the problem of implementing a

MMSE receiver at the BBU. In order to decrease the com-

putational complexity a RGMP algorithm has been consid-

ered, and suitable sparsifications of the channel matrix have

been introduced. We considered both centralized approaches,

performed at the BBU and requiring a complete transfer of

received signals from the RRHs and decentralized solutions



where a pre-processing is performed at the BS. This latter

solution not only has been shown to be effective in terms

of reduction of the computational complexity of the decoding

process, but also of the amount of data flowing from the BSs to

the BBU, and hence of the front-haul network capacity as well

as the centralization overhead. Numerical results have shown

a variety of trade-off between complexity and performance

(in terms of ASR) confirming that the proposed solutions are

promising for an implementation of these approaches in 5G

C-RAN systems.
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