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Abstract—For greedy block sparse recovery where the sparsity [[7], [8] are important since they are simple for practica¢ us
level is unknown, we derive a stopping condition to stop the All the greedy recovery algorithms of random-sparsity can
iteration process. Focused on the block orthogonal matchim be transplanted to the block-sparsity case. For exampde, th

pursuit (BOMP) algorithm, we model the energy of residual . .
signals at each iteration from a probabilistic perspective At the block OMP (BOMP) is developed from the OMP algorithm

iteration when the last supporting block is detected, the reulting  for the block-sparse recovery [6]. Existing results deni@te
energy of residual signals is supposed to suffer an obvious that, compared with the random-sparsity, exploiting theckl

decrease. Based on this, we stop the iteration process whemet = structure provides better signal reconstruction perforcea
energy of residual signals is below a given threshold. Comped Sparsity levelN, is an important parameter for the sparse

with other approaches, our derived condition works well for the -
BOMP recovery. What is more, we promote our approach to the recovery, especially for the greedy recovery. Many workshs

interference cancellation based BOMP (ICBOMP) recovery in as [7], [8] assume that th&/, is a priori known to control
paper [1]. Simulation results show that our derived conditon the iteration number. Unfortunately in realit), is usually

can save many unnecessary iterations and at the same timeynknown at the signal recovery side and its estimation isthe
guarantees a favorablle recovery accuracy, both for the BOMP fore necessary. It should be noted that, if the estimatedsispa
and ICBOMP recoveries. . . . .
level is smaller thanV,, some nonzero signals will certainly

be missed to detect; if the estimated value is larger tNan
unnecessary iterations will harm the recovery perform§@jce

In the last few years, compressed sensing (CS) [2] has drawsluding degradation in accuracy and increase in compylexi
increased interest in many areas such as signal processigtddress this problem, work in[10] proposes automatic dou
and multi-user communications|[3].1[4].1[5]. The CS theoryle overrelaxation (ADORE) thresholding method to estanat
claims that when the signals of interest are sparse with mamg sparsity level and reconstruct the signal simultarlgous
elements being zero, even sampling the signals using a r@iger works such a$][9]. T11] also adopt some stop criterions
less than the Nyquist rate, it can be recovered from the dowg-stop the iterations process of the greedy recovery. Hewev
sampled measurements almost without losing the informatig| the above works are for the random-sparse recovery.
The early work on CS assumes that each of the nonzerqn this paper, we focus on the BOMP recovery of the block-
signals is just randomly located among all possible passtiosparsity situation where the sparsity level is unknown hRat
of a vector, i.e., random-sparsity case. However, as sfatecthan giving the stopping condition by experience, or sgttin
papers such asl[6], the nonzero signals are usually clasterg maximum iteration number as i |12], we theoretically
exhibiting the structure of block-sparsity. The blockis derive the stopping condition. We model the energy of the
indicates that, when partitioning the sequential signats i residual signal vector from a probabilistic perspectived ame
blocks, only some blocks contain nonzero components and @e its distribution to derive a threshold to stop the greedy

I. INTRODUCTION

other blocks are zero. _ _ process. When the energy of residual signal is smaller than
Supposes is anTNd x 1 signal vector given as = that threshold, all the supporting blocks are supposed to
[s{---,s]---,sk]" where superscripl’ stands for the have been detected and the BOMP algorithm will finish its

transpose and; is ad x 1 sub-vector,l < i < N. Suppose iteration process. This approach works well for the BOMP, as
only N, out of N sub-vectors are nonzero, usually wittdemonstrated by the simulation. This gives us the confidence
N, < N. The sparsity level is thusv,. Whend = 1, s to promote the method. Specially, we use the same method to
exhibits the property of random-sparsity, and when 1, s derive the stopping condition for the iterations of integiece
exhibits the structure of block-sparsity. The CS meassies cancellation based BOMP (ICBOMP) algorithm in [1]. The
ing anM x Nd measurement matri8 = [B1,Bs,--- ,By]|, ICBOMP is developed from the BOMP algorithm for the small
given asy = Bs, with M < Nd, where M stands for the packet recovery.
measurement number. If the measurement is performed in &he rest of the paper is organized as follows. In Section
noisy environment, it hag = Bs + z wherez represents the Il, we derive the iteration stopping condition for the BOMP
noise vector. recovery. In Section Ill, we transplant the method to the
For sparse signal recovery, many algorithms such[as [F;BOMP recovery in[[1]. In section IV, some related works
[8] are proposed. Among all the algorithms, greedy algarih are cited. Finally, numerical studies are shown in Sectipn V
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followed by the conclusion in Section VI.

The above BOMP iterations are terminated when certain

Notation: Vectors and matrices are denoted by boldfacendition is satisfied, either it reaches to the maximurmagi
lowercase and uppercase letters, respectively. The fgeniteration number as i [12]]1], or the energy of the resldua

matrix of sizen x n is denoted ad,,. For a subsetl C
[N] :={1,2,--- ,N} and a matrixB := [B1,Bs, -+ ,By]
consisting ofN sub-matrices (blocks) of equal siZ8; stands
for a sub-matrix ofB whose block indices are in sét for a
vectors := [sT,sT, .- sT]7, s; is similarly defined. Value
|I| stands for the cardinality of sdt Given two sets/; and
I, H1\I, = I N I§. ® stands for the Kronecker product.

II. STOPPINGCONDITION FOR THEBOMP RECOVERY

signals is below an empirical value as in_[14]. The later
approach is based on the common fact that the energy of the
residual signals will usually suffer and obvious decreakenw

the last supporting block is selected. Different from these
kinds of approaches, in the following, by viewing the enesfy

the residual signals to be a random variable, we theorstical
derive the iteration stopping condition from a probabiist
perspective.

In this part, we give a more detailed description for thg' Energy Evaluation of Residual Signal

block-sparsity recovery problem, and we take the BOMP At the k-th BOMP iteration, it hagAx| = k. The signal

algorithm as an example to derive the stopping conditiomfrouPdate is given as

the probabilistic perspective. Sp, = (BkaAk)leka- )

The energy of residugal signal is a ran%om variable and is
As mentioned earlier, the measurement of block-spardefined asky = ||rx[; = (v —Ba,8a,)" (y — Ba,Sa,)-

signal vectoss in a noisy environment is given 3s= Bs+z. Assume that there are, (0 < n, < N,) supporting blocks

In this paper, all the parameters are assumed in complex figlmained to detect, i.el/\Ax| = nq, then theE}, has a mean

Besides, for the later derivation convenience, we assuate tivalue given as follows

1) matrix B is randomly generated, and all its entries are i.i.d.

Gaussian variables with a mean zero and a variql;}ceZ)

nonzero signals is are i.i.d. variables of zero mean and unit _E [SH BZ . B, (BE B —1BH B S }

variance; 3) noisez ~ CAN (0,0°I,). Gaussian approach ‘e BraBa (B Ba) By Brasna,

makes theB almost surely satisfy the restricted isometry +E [zH(IM — By, (BkaAk)lefk)z}

property (RIP) which is necessary for the sparse recovély [1 o

A. Block-sparsity Recovery Problem

jos =E [SﬁAkB?\AkBI\AkSI\Ak]

Let I be the set containing the unknown indices /§f
nonzero blocks, with cardinal numbéf| = N,. Then the
measurement can be rewritten as

y= ZBiSi+Z =Brs; +z.
i€l
B. BOMP Recovery

1)

kd
:nad — TLG‘W—F (M — kd) 0'2

Ngd
M
3)
where the property of the mathematical trace operation is

used. And it should be noted that a more exact mean value
should consider the order statistics of signal blocks, het t

= (M — kd) (02 +

Also for the later derivation convenience, the iteratioxpressions will be complicated. For deriving a usable mean

process of the BOMP is summarized here. Atkh iteration,
ke {1,2,---}, letr, denote the residual signal ai\g denote
the set containing the indices of already detected blotlesr, t
initializations are respectively given ag = y and Ay = 0.
Then, the BOMP iteration is performed as follows:

1) For j € {[N]\Ax_1}, select the block that has thea variance of52, with 52 =

maximum correlation with the residual signals:

ji = angmax [BY'xe |
J

2) update the index set:
Ap=Ap1U{jr}
3) update the signal by the least-square (LS) algorithm:

Sa, = argmin ||y — Ba,sol|,
So

4) update the residual signals:

rp =y — Ba,8a,

value, the above derivations omit the order statistics.

Since each component af, is a superposition of many
independent variables, it can be approximated as a Gaussian
variable. We further assume that componentsofare i.i.d.
Gaussian variables and each of them has a mean of zero and
Lo — Mohd (52 4 ned) Then
E}, follows a chi-squared distribution witRA degrees of
freedom, and its variance is given as

Loy 2
op =M(M +1) (6%)" — u2
2 2
O, )
M M

Usually, M is large. In this case, it's reasonable to tréat
as a Gaussian variable, satisfyifig ~ N (p, 07).

(4)

D. Sopping Condition

As above stated, when the last supporting block is selected
at thek-th iteration of BOMP algorithm, a sharp decrease will
happen to the energy of the residual signals. This giveseaus th



idea to derive a threshold, to stop the BOMP iterations. Thebdnditional probabilityP(E;, < ng|n, > 2) is smaller than

is if Ej is smaller than the set threshold, the last supportimgnditional probabilityP(E; < ng|n, = 1), this means the

block is supposed to have been selected and then the itessatiderived threshold;, is also applicable for thé-th iteration

can be terminated. when two or more supporting blocks are remained to detect.
The E}, is a random variable, and its distribution is decided

by the following two cases:
Cl: |I\Ag| =n, > 1.

CO: [I\Ag| =14 = 0. _ . In the communication scenario ofl[1], an uplink system of
The mean and variance of tlg, are respectively given aS v mobile users and a base station (BS) withy, antennas
(3) and ), for both of the above two cases. When performifg considered. By exploiting the sparse block transmission
energy detection by a thresholg;, a missed detection 4t only N, out of the total N users are actively and
probability, sayp,,, will happen by deciding th&€1 to be  gimytaneously transmitting data, the work also establighe

the CO. Applying Gaussian variable to approximdig, it has block-sparsity model as follows
that

IIl. STOPPINGCONDITION FOR THEICBOMP RECOVERY

P(Ey <npa1) =@ (771@107;/%) = DPm %)

N
y:\/%Zann—i—z:\/p_oBs—i—z (20)
n=1

where ® (z) = \/Lz_ﬂ [* exp (—%)dt. By substituting [(B)
and [3) into [[b), it gives that where p, is the signal to noise ratio (SNR). As a block of
ngd 1 (pn) B ¢ CMaTxNd B — P, ®h, € CMaTxd whereP,,
> <1 + 7) (6) CT*4is a kind of precoding matrix ant,, € CMax! is the
VM channel gain from thex-th user to the BS] <n < N. s is
where®~!(p,,) is the inverse function of(z). n;,; can be the block-sparse signal to be recovered, with lenbfbr each
regarded as the maximum threshold for a maximum allowédbck s,,. z is the complex Gaussian noise vector.
missed detection probability,,. To improve the recovery performance, the authorslin [1]
On the other hand, if a maximum false detection probabilitj;opose the interference cancellation based BOMP (ICBOMP)
say py, is allowed for deciding the€0 to be theCl, it has algorithm, which improves from the BOMP algorithm by

Mk = (M — kd) (02 +

that taking advantage of the error correction and detection code
P(Eyr >nko)=1—@ (M> =ps (7) in the communication, to perform the recovery af The
Tk ICBOMP behaves the same as the BOMP in block detection,
which gives that signal update and residual update. Their main difference is
> (pr)\ that for the ICBOMP, some blocks of signals may have been
Nk,0 = (M — kd) (1 - W) (8) correctly recovered before finishing all the iterations aeed

) ) . no further update. However, inl[1] the problem of when to stop
Undoubtedly, if the set threshold, say, is required 10 the ICBOMP iterations is not specially studied, the authors
take both the missed detection probability and false defect on|y set a maximum iteration number. In this part, we derive
probability into account, a tradeoff should be made betwege stopping condition for the ICBOMP algorithm. For dedéli
the two probabilities. Note that, if the false detectionp@ms rocess of the ICBOMP algorithm, please refer(to [1].
under theCO, the iteration continues and some non-supporting a5 the performance analysis i [1], entries®f, h,, andz
blocks will be selected for signal update. This will degrétt® ;.0 41l assumed to be i.i.d. complex Gaussian variablgseces
recovery accuracy and at the same time in.crease the reCOVRRYy in CA/(0, L), CA(0,1) andCA/(0, 1). Nonzero entries
complexity; However, when missed detection happens {0 e are j.ji.d. Quadrature Phase Shift Keying (QPSK) symbols,
C1, some supporting blocks will be identified to be nONg,ch of which has unit energy. Besides, it should be noted tha
supporting, which will severely have an adverse impact WY the ICBOMP algorithm, it has < |Ax| = I < k. Suppose
the sparse recovery performance. Therefore, a more ageurge 4ctive users are remained to detect when/tb iteration

performance cares more about the missed detection prebaigﬁfinished, then similar to the derivations &1 (3) af#l (4 th

ity. Supposep,,, and p; are respectively the allowed misseqnean and variance of the residual energy of ICBOMP are
and false alarm probabilities, then the reasonaflés given respectively given as

as follows

M = min (Mk,1, ko) ()] napod>

fir = (Man{ — 1d) <1 +

(Mand — 1d)? | 4 Napod ?
]\/[antT T

Remark 1 Since iteration is processed at the recovery
side, parametet can be exactly known at the recovery side.
Therefore, threshold; will be adjusted with iteratiork.

Remark 2 In practice, we setr, = 1 to derive iy 1,
because: 1), is unknown at the recovery side, which can nadnd the final energy threshold is given by, =
be directly used; 2) for the threshold derived from = 1, min (91, 7x,0), Where they, 1 andn o are respectively given

(11)

o =



by

30
d o1
M1 = (Mandl —1d) | 1+ ftaPo 14+ ﬂ 25
T MantT 9] I
2 () (12 ===
= (Mand —1d) |1 — ——= z
nk,() ( ant ) ( MantT) _g 156 - =S
for certain allowed missed alarm probabilify, and false S0 Diiigllil?‘“k
alarm probabilityp. As the previous Sectidi 13Dy, = 1 is 5 1 e Conditon 1 N, =20
. ndition 2
used to derivey ;.  Conditon3 e — 20
00 2 4 6 8
IV. RELATED WORKS SNR(dB)

. . . a) Iteration number
In sparse signal recovery literature, many earlier worke&eha @

considered the stopping condition for greedy algorithmsaA 025
conclusion, three common stopping conditions are

0.2

”S/H-l__ sk||2 <€ (13)
”Sk”Q 015

Condition 2: [[r4]|2 < es (14)
Condition 3: setting a maximum iteration number (15)

Condition 1:

- Condition 2 N, = 20

NMSE

0.1

0.054 _
Condition 1 indicates that the algorithm will stop when -

the relative change of the reconstructed signals between tw 0
consecutive iterations is smaller than a certain values Thi ° ? SNRl,l(dB) ° ¢
kind of approach is mentioned in][9], but no specific is (b) NMSE

given in the paper. In[T15], empirical values |k is
set for ¢;. Condition 2 shows that the algorithm will stop
when the energy of the residual signals is smaller than a
certain threshold. In]9], thresholg is set to be the energy
of noise vector. And in[[11], such a stopping condition isoals
theoretically discussed. Other works like [12] sets a maxim
iteration number, and 7] assumes that, is known and
iteration number is exactly se¥,. However, such kinds of
approaches are not feasible for practical use, especidgnw
N, cannot be a priori known. It should also be noted that all T Coniton 3\
the above works are for random sparsity case. 2 o 8
In our later numerical studies for the BOMP recovery,
Condition 1 and Condition 2 will be simulated for the block
sparsity case for comparison. And for the ICBOMP recovery,
Condition 3 will be simulated for comparison. Fig. 1. Performance for BOMP recovery

o
o

Successful Detection Probability

o
5

N
o
o

(c) Successful detection probability for sup-
porting blocks

V. NUMERICAL STUDIES

This section presents the numerical studies. To our derive@ergy of noise vector. The simulation results are presesge
thresholds for the BOMP and ICBOMP algorithms, probabilf€auired iteration number \Iligsll\lR normalized mean square
tiesp,, andp; are respectively set to be 0.1% and 0.5%. THefror (NMSE, calculated WW) vs. SNR and successful

followings are some cited simulation results. detection probability vs. SNR, respectively in Figdre 1L(a)
Figure[I(B) and FigureI{c). The SNR here is defined!as
A. on the BOMP Recovery To accelerate the process, the maximum iteration number of

The system size for the BOMP recovery is set@s: 50, the BOMP is set 30 to deal with case where the thresholds
N = 640 and M = 2000. The N, supporting blocks are cannot stop the BOMP timely.
chosen uniformly at random among aW blocks. Entries  Figure[I(@) tells us that our derived threshold can stop the
of the measurement matrix and the nonzero signal blociksrations timely. As the SNR increases, the required tiiema
are generated as i.i.d. complex Gaussian variables, follomumber nearly equals to the number of supporting blocks.
ing CN(0, ﬁ) and CN(0,1), respectively. As comparisons,However, the threshold given by (13) produces many false
the thresholds in[{13) and_{14) are respectively given dgtections in low SNR regime, and threshold given by (14)
e1 = 025 andes = Mo?, where 0.25 is a reasonablewill make certain number of supporting blocks missed to

value concluded from training simulations addo? is the detect. Figurd I(b) shows that, the NMSE achieved by the



derived threshold is a little higher than that ef in low

SNR regime, it is because some false detections degrade the
recovery performance. However it is always better than that
of sete;. As the SNR increases, the output NMSE gradually
becomes the smallest among the stopping conditions. Figure
demonstrates that, the derived threshold still guaeema

very high successful detection probability.

w
o

N
o

N
o

P @ —B-—————B-——————

B. on the ICBOMP Recovery
For the communication scenario inl [1] stated, system pa- -4 -2

rameters are setl = 200, N = 640, Ma= 8, T = 5d and SNR(dB)

N, = 16, po is the SNR. Entries of the precoding matrices (a) Ilteration number

and channel vectors are generated as i.i.d. complex Gaussia

variables, followingCA(0, ) and CA(0,1), respectively.

QPSK is applied for signal modulation. Convolutional cosle i

used as the error correction code and 24 bits cyclic redwydan 10°

check (CRC) code is used as the error detection code. Soft-

decision Viterbi decoding of 16 quantization levels is ussd 3 107°

the channel decoder. As a reference, the ICBOMP recovery

will perform 30 iterations, which is exactly the case in [1]. 107

The results required iteration number vs. SNR and symbol

error rate (SER) vs. SNR are shown in Figlie 2. 10'4_6 o > o
The results show that, in the given SNR regime from - SNR(dB)

6dB to 2dB, our derived threshold always makes the iteration (b) SER

number near the real sparsity level 16, which saves nearly

14 unnecessary iterations to greatly reduce the computdtio Fig. 2. Performance for ICBOMP recovery

cost. In the accuracy performance, a slightly higher SER is

observed for the threshold. This comes from the fact that L _ o _

compared with 30 iterations, more supporting blocks will b&! tbégfggsggdsshsci;n‘go'Wi';'he'?ggg_rmdu'ﬁg?"ggéég’,mggfﬁgrgnﬂ‘: g;'t?_g

missed to detect when much less iterations are performed.  mjzation in Mobile, Ad Hoc and Wireless Networks (WOpt), 2011
International Symposium on, pp. 154-160, IEEE, 2011.
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