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Abstract—For greedy block sparse recovery where the sparsity
level is unknown, we derive a stopping condition to stop the
iteration process. Focused on the block orthogonal matching
pursuit (BOMP) algorithm, we model the energy of residual
signals at each iteration from a probabilistic perspective. At the
iteration when the last supporting block is detected, the resulting
energy of residual signals is supposed to suffer an obvious
decrease. Based on this, we stop the iteration process when the
energy of residual signals is below a given threshold. Compared
with other approaches, our derived condition works well for the
BOMP recovery. What is more, we promote our approach to the
interference cancellation based BOMP (ICBOMP) recovery in
paper [1]. Simulation results show that our derived condition
can save many unnecessary iterations and at the same time
guarantees a favorable recovery accuracy, both for the BOMP
and ICBOMP recoveries.

I. I NTRODUCTION

In the last few years, compressed sensing (CS) [2] has drawn
increased interest in many areas such as signal processing
and multi-user communications [3], [4], [5]. The CS theory
claims that when the signals of interest are sparse with many
elements being zero, even sampling the signals using a rate
less than the Nyquist rate, it can be recovered from the down-
sampled measurements almost without losing the information.
The early work on CS assumes that each of the nonzero
signals is just randomly located among all possible positions
of a vector, i.e., random-sparsity case. However, as statedin
papers such as [6], the nonzero signals are usually clustered,
exhibiting the structure of block-sparsity. The block-sparsity
indicates that, when partitioning the sequential signals into
blocks, only some blocks contain nonzero components and all
other blocks are zero.

Supposes is an Nd × 1 signal vector given ass =
[

sT1 · · · , sTi · · · , sTN
]T

where superscriptT stands for the
transpose andsi is a d × 1 sub-vector,1 ≤ i ≤ N . Suppose
only Na out of N sub-vectors are nonzero, usually with
Na ≪ N . The sparsity level is thusNa. When d = 1, s

exhibits the property of random-sparsity, and whend > 1, s
exhibits the structure of block-sparsity. The CS measuress us-
ing anM ×Nd measurement matrixB = [B1,B2, · · · ,BN ],
given asy = Bs, with M < Nd, whereM stands for the
measurement number. If the measurement is performed in a
noisy environment, it hasy = Bs+ z wherez represents the
noise vector.

For sparse signal recovery, many algorithms such as [7],
[8] are proposed. Among all the algorithms, greedy algorithms

[7], [8] are important since they are simple for practical use.
All the greedy recovery algorithms of random-sparsity can
be transplanted to the block-sparsity case. For example, the
block OMP (BOMP) is developed from the OMP algorithm
for the block-sparse recovery [6]. Existing results demonstrate
that, compared with the random-sparsity, exploiting the block
structure provides better signal reconstruction performance.

Sparsity levelNa is an important parameter for the sparse
recovery, especially for the greedy recovery. Many works, such
as [7], [8] assume that theNa is a priori known to control
the iteration number. Unfortunately in reality,Na is usually
unknown at the signal recovery side and its estimation is there-
fore necessary. It should be noted that, if the estimated sparsity
level is smaller thanNa, some nonzero signals will certainly
be missed to detect; if the estimated value is larger thanNa,
unnecessary iterations will harm the recovery performance[9],
including degradation in accuracy and increase in complexity.
To address this problem, work in [10] proposes automatic dou-
ble overrelaxation (ADORE) thresholding method to estimate
the sparsity level and reconstruct the signal simultaneously.
Other works such as [9], [11] also adopt some stop criterions
to stop the iterations process of the greedy recovery. However,
all the above works are for the random-sparse recovery.

In this paper, we focus on the BOMP recovery of the block-
sparsity situation where the sparsity level is unknown. Rather
than giving the stopping condition by experience, or setting
a maximum iteration number as in [12], we theoretically
derive the stopping condition. We model the energy of the
residual signal vector from a probabilistic perspective and we
use its distribution to derive a threshold to stop the greedy
process. When the energy of residual signal is smaller than
that threshold, all the supporting blocks are supposed to
have been detected and the BOMP algorithm will finish its
iteration process. This approach works well for the BOMP, as
demonstrated by the simulation. This gives us the confidence
to promote the method. Specially, we use the same method to
derive the stopping condition for the iterations of interference
cancellation based BOMP (ICBOMP) algorithm in [1]. The
ICBOMP is developed from the BOMP algorithm for the small
packet recovery.

The rest of the paper is organized as follows. In Section
II, we derive the iteration stopping condition for the BOMP
recovery. In Section III, we transplant the method to the
ICBOMP recovery in [1]. In section IV, some related works
are cited. Finally, numerical studies are shown in Section V,
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followed by the conclusion in Section VI.
Notation: Vectors and matrices are denoted by boldface

lowercase and uppercase letters, respectively. The identity
matrix of sizen × n is denoted asIn. For a subsetI ⊂
[N ] := {1, 2, · · · , N} and a matrixB := [B1,B2, · · · ,BN ]
consisting ofN sub-matrices (blocks) of equal size,BI stands
for a sub-matrix ofB whose block indices are in setI; for a
vector s := [sT1 , s

T
2 , · · · , sTN ]T , sI is similarly defined. Value

|I| stands for the cardinality of setI. Given two setsI1 and
I2, I1\I2 = I1 ∩ Ic2 . ⊗ stands for the Kronecker product.

II. STOPPINGCONDITION FOR THEBOMP RECOVERY

In this part, we give a more detailed description for the
block-sparsity recovery problem, and we take the BOMP
algorithm as an example to derive the stopping condition from
the probabilistic perspective.

A. Block-sparsity Recovery Problem

As mentioned earlier, the measurement of block-sparse
signal vectors in a noisy environment is given asy = Bs+z.
In this paper, all the parameters are assumed in complex field.
Besides, for the later derivation convenience, we assume that:
1) matrixB is randomly generated, and all its entries are i.i.d.
Gaussian variables with a mean zero and a variance1

M
; 2)

nonzero signals ins are i.i.d. variables of zero mean and unit
variance; 3) noisez ∼ CN

(

0, σ2IM
)

. Gaussian approach
makes theB almost surely satisfy the restricted isometry
property (RIP) which is necessary for the sparse recovery [13].

Let I be the set containing the unknown indices ofNa

nonzero blocks, with cardinal number|I| = Na. Then the
measurement can be rewritten as

y =
∑

i∈I

Bisi+z = BIsI + z. (1)

B. BOMP Recovery

Also for the later derivation convenience, the iteration
process of the BOMP is summarized here. At thek-th iteration,
k ∈ {1, 2, · · ·}, let rk denote the residual signal andΛk denote
the set containing the indices of already detected blocks, their
initializations are respectively given asr0 = y andΛ0 = ∅.
Then, the BOMP iteration is performed as follows:

1) For j ∈ {[N ] \Λk−1}, select the block that has the
maximum correlation with the residual signals:

jk = argmax
j

∥

∥BH
j rk−1

∥

∥

2

2

2) update the index set:

Λk = Λk−1 ∪ {jk}

3) update the signal by the least-square (LS) algorithm:

s̄Λk
= argmin

s0

‖y −BΛk
s0‖2

4) update the residual signals:

rk = y −BΛk
s̄Λk

The above BOMP iterations are terminated when certain
condition is satisfied, either it reaches to the maximum allowed
iteration number as in [12], [1], or the energy of the residual
signals is below an empirical value as in [14]. The later
approach is based on the common fact that the energy of the
residual signals will usually suffer and obvious decrease when
the last supporting block is selected. Different from thesetwo
kinds of approaches, in the following, by viewing the energyof
the residual signals to be a random variable, we theoretically
derive the iteration stopping condition from a probabilistic
perspective.

C. Energy Evaluation of Residual Signal

At the k-th BOMP iteration, it has|Λk| = k. The signal
update is given as

s̄Λk
= (BH

Λk
BΛk

)−1BH
Λk

y. (2)

The energy of residual signal is a random variable and is
defined asEk = ‖rk‖22 = (y −BΛk

s̄Λk
)
H
(y −BΛk

s̄Λk
).

Assume that there arena (0 ≤ na ≤ Na) supporting blocks
remained to detect, i.e.,|I\Λk| = na, then theEk has a mean
value given as follows

µk =E
[

sHI\Λk
BH

I\Λk
BI\Λk

sI\Λk

]

−E
[

sHI\Λk
BH

I\Λk
BΛk

(BH
Λk
BΛk

)
−1

BH
Λk

BI\Λk
sI\Λk

]

+E
[

zH(IM −BΛk
(BH

Λk
BΛk

)
−1

BH
Λk
)z
]

=nad− na

kd2

M
+(M − kd)σ2

=(M − kd)

(

σ2 +
nad

M

)

(3)
where the property of the mathematical trace operation is
used. And it should be noted that a more exact mean value
should consider the order statistics of signal blocks, but the
expressions will be complicated. For deriving a usable mean
value, the above derivations omit the order statistics.

Since each component ofrk is a superposition of many
independent variables, it can be approximated as a Gaussian
variable. We further assume that components ofrk are i.i.d.
Gaussian variables and each of them has a mean of zero and
a variance of̃σ2, with σ̃2 = µk

M
= M−kd

M

(

σ2 + nad
M

)

. Then
Ek follows a chi-squared distribution with2M degrees of
freedom, and its variance is given as

σ2
k =M(M + 1)

(

σ̃2
)2 − µ2

k

=
(M − kd)

2

M

(

σ2 +
nad

M

)2 (4)

Usually,M is large. In this case, it’s reasonable to treatEk

as a Gaussian variable, satisfyingEk ∼ N
(

µk, σ
2
k

)

.

D. Stopping Condition

As above stated, when the last supporting block is selected
at thek-th iteration of BOMP algorithm, a sharp decrease will
happen to the energy of the residual signals. This gives us the



idea to derive a threshold, to stop the BOMP iterations. That
is if Ek is smaller than the set threshold, the last supporting
block is supposed to have been selected and then the iterations
can be terminated.

TheEk is a random variable, and its distribution is decided
by the following two cases:

C1: |I\Λk| = na ≥ 1.
C0: |I\Λk| = na = 0.
The mean and variance of theEk are respectively given as

(3) and (4), for both of the above two cases. When performing
energy detection by a thresholdηk,1, a missed detection
probability, saypm, will happen by deciding theC1 to be
theC0. Applying Gaussian variable to approximateEk, it has
that

P (Ek ≤ ηk,1) = Φ

(

ηk,1 − µk

σk

)

= pm (5)

whereΦ (x) = 1√
2π

∫ x

−∞ exp
(

− t2

2

)

dt. By substituting (3)
and (4) into (5), it gives that

ηk,1 = (M − kd)

(

σ2 +
nad

M

)(

1 +
Φ−1 (pm)√

M

)

(6)

whereΦ−1(pm) is the inverse function ofΦ(x). ηk,1 can be
regarded as the maximum threshold for a maximum allowed
missed detection probabilitypm.

On the other hand, if a maximum false detection probability,
say pf , is allowed for deciding theC0 to be theC1, it has
that

P (Ek ≥ ηk,0) = 1− Φ

(

ηk,0 − µk

σk

)

= pf (7)

which gives that

ηk,0 = (M − kd)

(

1− Φ−1 (pf )√
M

)

σ2 (8)

Undoubtedly, if the set threshold, sayηk, is required to
take both the missed detection probability and false detection
probability into account, a tradeoff should be made between
the two probabilities. Note that, if the false detection happens
under theC0, the iteration continues and some non-supporting
blocks will be selected for signal update. This will degradethe
recovery accuracy and at the same time increase the recovery
complexity; However, when missed detection happens to the
C1, some supporting blocks will be identified to be non-
supporting, which will severely have an adverse impact on
the sparse recovery performance. Therefore, a more accuracy
performance cares more about the missed detection probabil-
ity. Supposepm and pf are respectively the allowed missed
and false alarm probabilities, then the reasonableηk is given
as follows

ηk = min (ηk,1, ηk,0) (9)

Remark 1: Since iteration is processed at the recovery
side, parameterk can be exactly known at the recovery side.
Therefore, thresholdηk will be adjusted with iterationk.

Remark 2: In practice, we setna = 1 to derive ηk,1,
because: 1)na is unknown at the recovery side, which can not
be directly used; 2) for the threshold derived fromna = 1,

conditional probabilityP (Ek ≤ ηk|na ≥ 2) is smaller than
conditional probabilityP (Ek ≤ ηk|na = 1), this means the
derived thresholdηk is also applicable for thek-th iteration
when two or more supporting blocks are remained to detect.

III. STOPPINGCONDITION FOR THE ICBOMP RECOVERY

In the communication scenario of [1], an uplink system of
N mobile users and a base station (BS) withMant antennas
is considered. By exploiting the sparse block transmission
that only Na out of the total N users are actively and
simultaneously transmitting data, the work also establishes the
block-sparsity model as follows

y =
√
ρ0

N
∑

n=1

Bnsn + z =
√
ρ0Bs+ z (10)

whereρ0 is the signal to noise ratio (SNR). As a block of
B ∈ CMantT×Nd, Bn = Pn ⊗ hn ∈ CMantT×d wherePn ∈
CT×d is a kind of precoding matrix andhn ∈ CMant×1 is the
channel gain from then-th user to the BS,1 ≤ n ≤ N . s is
the block-sparse signal to be recovered, with lengthd for each
block sn. z is the complex Gaussian noise vector.

To improve the recovery performance, the authors in [1]
propose the interference cancellation based BOMP (ICBOMP)
algorithm, which improves from the BOMP algorithm by
taking advantage of the error correction and detection code
in the communication, to perform the recovery ofs. The
ICBOMP behaves the same as the BOMP in block detection,
signal update and residual update. Their main difference is
that for the ICBOMP, some blocks of signals may have been
correctly recovered before finishing all the iterations andneed
no further update. However, in [1] the problem of when to stop
the ICBOMP iterations is not specially studied, the authors
only set a maximum iteration number. In this part, we derive
the stopping condition for the ICBOMP algorithm. For detailed
process of the ICBOMP algorithm, please refer to [1].

As the performance analysis in [1], entries ofPn, hn andz
are all assumed to be i.i.d. complex Gaussian variables, respec-
tively in CN (0, 1

T
), CN (0, 1) andCN (0, 1). Nonzero entries

of s are i.i.d. Quadrature Phase Shift Keying (QPSK) symbols,
each of which has unit energy. Besides, it should be noted that,
by the ICBOMP algorithm, it has1 ≤ |Λk| = l ≤ k. Suppose
na active users are remained to detect when thek-th iteration
is finished, then similar to the derivations of (3) and (4), the
mean and variance of the residual energy of ICBOMP are
respectively given as

µk = (MantT − ld)

(

1 +
naρ0d

T

)

σ2
k =

(MantT − ld)2

MantT

(

1 +
naρ0d

T

)2 (11)

and the final energy threshold is given byηk =
min (ηk,1, ηk,0), where theηk,1 andηk,0 are respectively given



by

ηk,1 = (MantT − ld)

(

1 +
naρ0d

T

)(

1 +
Φ−1 (pm)√

MantT

)

ηk,0 = (MantT − ld)

(

1− Φ−1 (pf)√
MantT

) (12)

for certain allowed missed alarm probabilitypm and false
alarm probabilitypf . As the previous Section II-D,na = 1 is
used to deriveηk,1.

IV. RELATED WORKS

In sparse signal recovery literature, many earlier works have
considered the stopping condition for greedy algorithms. As a
conclusion, three common stopping conditions are

Condition 1:
‖s̄k+1 − s̄k‖2

‖s̄k‖2
< ǫ1 (13)

Condition 2: ‖rk‖22 < ǫ2 (14)

Condition 3: setting a maximum iteration number. (15)

Condition 1 indicates that the algorithm will stop when
the relative change of the reconstructed signals between two
consecutive iterations is smaller than a certain value. This
kind of approach is mentioned in [9], but no specificǫ1 is
given in the paper. In [15], empirical values like10−6 is
set for ǫ1. Condition 2 shows that the algorithm will stop
when the energy of the residual signals is smaller than a
certain threshold. In [9], thresholdǫ2 is set to be the energy
of noise vector. And in [11], such a stopping condition is also
theoretically discussed. Other works like [12] sets a maximum
iteration number, and [7] assumes thatNa is known and
iteration number is exactly setNa. However, such kinds of
approaches are not feasible for practical use, especially when
Na cannot be a priori known. It should also be noted that all
the above works are for random sparsity case.

In our later numerical studies for the BOMP recovery,
Condition 1 and Condition 2 will be simulated for the block
sparsity case for comparison. And for the ICBOMP recovery,
Condition 3 will be simulated for comparison.

V. NUMERICAL STUDIES

This section presents the numerical studies. To our derived
thresholds for the BOMP and ICBOMP algorithms, probabili-
ties pm andpf are respectively set to be 0.1% and 0.5%. The
followings are some cited simulation results.

A. on the BOMP Recovery

The system size for the BOMP recovery is set as:d = 50,
N = 640 and M = 2000. The Na supporting blocks are
chosen uniformly at random among allN blocks. Entries
of the measurement matrix and the nonzero signal blocks
are generated as i.i.d. complex Gaussian variables, follow-
ing CN (0, 1

M
) and CN (0, 1), respectively. As comparisons,

the thresholds in (13) and (14) are respectively given as
ǫ1 = 0.25 and ǫ2 = Mσ2, where 0.25 is a reasonable
value concluded from training simulations andMσ2 is the
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Fig. 1. Performance for BOMP recovery

energy of noise vector. The simulation results are presented as
required iteration number vs. SNR, normalized mean square
error (NMSE, calculated by‖s−s̄‖2

2

‖s‖2

2

) vs. SNR and successful
detection probability vs. SNR, respectively in Figure 1(a),
Figure 1(b) and Figure 1(c). The SNR here is defined as1

σ2 .
To accelerate the process, the maximum iteration number of
the BOMP is set 30 to deal with case where the thresholds
cannot stop the BOMP timely.

Figure 1(a) tells us that our derived threshold can stop the
iterations timely. As the SNR increases, the required iteration
number nearly equals to the number of supporting blocks.
However, the threshold given by (13) produces many false
detections in low SNR regime, and threshold given by (14)
will make certain number of supporting blocks missed to
detect. Figure 1(b) shows that, the NMSE achieved by the



derived threshold is a little higher than that ofǫ2 in low
SNR regime, it is because some false detections degrade the
recovery performance. However it is always better than that
of set ǫ1. As the SNR increases, the output NMSE gradually
becomes the smallest among the stopping conditions. Figure
1(c) demonstrates that, the derived threshold still guarantees a
very high successful detection probability.

B. on the ICBOMP Recovery

For the communication scenario in [1] stated, system pa-
rameters are set:d = 200, N = 640, Mant = 8, T = 5d and
Na = 16, ρ0 is the SNR. Entries of the precoding matrices
and channel vectors are generated as i.i.d. complex Gaussian
variables, followingCN (0, 1

T
) and CN (0, 1), respectively.

QPSK is applied for signal modulation. Convolutional code is
used as the error correction code and 24 bits cyclic redundancy
check (CRC) code is used as the error detection code. Soft-
decision Viterbi decoding of 16 quantization levels is usedas
the channel decoder. As a reference, the ICBOMP recovery
will perform 30 iterations, which is exactly the case in [1].
The results required iteration number vs. SNR and symbol
error rate (SER) vs. SNR are shown in Figure 2.

The results show that, in the given SNR regime from -
6dB to 2dB, our derived threshold always makes the iteration
number near the real sparsity level 16, which saves nearly
14 unnecessary iterations to greatly reduce the computational
cost. In the accuracy performance, a slightly higher SER is
observed for the threshold. This comes from the fact that
compared with 30 iterations, more supporting blocks will be
missed to detect when much less iterations are performed.

VI. CONCLUSIONS

In this paper, a theoretical stopping condition is derived
for greedy block sparse recovery when the sparsity level is
unknown. By studying the energy of the residual signals at
each iteration, a condition is derived for stopping the iteration
process of the BOMP algorithm. The approach works well for
the BOMP recovery. And then we promote the work to derive
the stopping condition for the ICBOMP recovery in [1]. The
work contributes to saving many unnecessary iterations.
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