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Abstract

The deluge of wireless data traffic catalyzed by the growing number of data-intensive devices

has motivated the deployment of small-cell in fifth-generation (5G) networks. A primary challenge

for deploying dense small-cell networks comes from the lack of practical techniques that efficiently

handle the increased network interference at a low cost. This has aroused considerable interest in

the distributed precoder/combiner coordination techniques that leverage the channel reciprocity,

while relying on the local channel state information (CSI) available at each communication end. In

this thesis, a distributed approach is proposed to the problem of signal-to-interference-plus-noise-

ratio (SINR)-guaranteed power minimization (SGPM) for multicell multiuser (MCMU) multiple-

input multiple-output (MIMO) systems. Unlike prior SGPM approaches, the proposed technique

is based on solving necessary and sufficient optimality conditions, which are derived by decom-

posing the original problem into forward and backward (FB) subproblems, while ensuring the

strong duality of each subproblem. The proposed distributed SGPM algorithm makes use of FB

adaptation and Jacobi recursion for iterative filter design and power allocation, respectively. A

sufficient condition for the feasibility of the proposed distributed algorithm is analyzed, based on

the application of the matrix inverse-positive theory. Unlike the existing fully distributed FB filter

update algorithms, the proposed approach guarantees target SINR performance as well as its con-

vergence to a stationary point. Simulation results illustrate the enhanced power efficiency with the

performance guarantees of the proposed method compared to the existing distributed techniques.
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Chapter 1

Background and Introduction

1.1 Background of this Thesis

Wireless communication technology is an essential component of modern society, which con-

tains substantial practical applications such as mobile cellular access, machine-type communi-

cation, device-to-device communication, the Internet of things, etc. While the earlier wireless

standards was primarily handling channel fading, the current fifth-generation (5G) standard aims

to address the challenge coming from the exponentially increased number of smartphone users.

The deluge of wireless data traffic catalyzed by the growing number of data-intensive devices has

motivated the deployment of small-cells in 5G networks [ABC+14, SBS+16, BLM+14].

Dense small-cell networks are capable to provide increased quality of service (QoS) at an

attractively low cost, and further aggregating the sum-rate as the numbers of cells as well as an-

tennas grow when combined with the advanced multiple-input multiple-output (MIMO) antenna

techniques due to accommodating more spatially reusable spectrum [SBS+16]. Therefore, they

hold great potential to meet the exponentially growing demand for data service by expanding the

capacity of modern wireless cellular networks, and have been given massive attention in recent

years.

Simultaneously, as spectrum dedicated to wireless communications continues to be in high

demand, dense small-cell deployment in sub-28 GHz millimeter wave (mmWave) bands1 becomes

increasingly important [MRSD15, Met14, GKBS17]. Unlike the above-28 GHz spectrum, in sub-

1In 5G, sub-28 GHz bands, e.g., X-band (8–12 GHz), Ku-band (12–18 GHz), and Ka-band (24–28 GHz) have been
popularly discussed.
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28 GHz bands, fully digital processing is feasible and dense urban channels follow Rayleigh/Rician

fading [SR14]. Thus, in both sub-6 GHz and sub-28 GHz mmWave bands, interference is still a

limiting factor [GKBS17, DK18] and poses challenges as accumulated intra-cell and inter-cell

interference can severely deteriorate the link quality. How to efficiently suppress or even cancel

out the interference is an open and challenging problem. The thesis focus on designing a new

technology to tackle the above challenge.

1.2 Introduction of Previous Techniques

An approach to addressing the interference issue is employing advanced MIMO precoding tech-

niques in order to maximize the network sum rate [GKBS17, GHH+10, WCLa+12, CWHLa15].

However, these approaches do not address fairness across users because sum rate maximization

often results in interference amplification. The techniques such as widely linear transceiver design

[LAV16], max-min fairness beamforming [KSL08, SDZ06], and rate-splitting [JC17] are able to

address the fairness concern. Nevertheless, weighted sum-rate maximization in [LAV16] requires

an additional constraint for designing the weight matrix and the multiple/single-group multicasting

setup in [KSL08, SDZ06, JC17] cannot be directly extended to the MIMO network when joint pre-

coder and combiner optimization is considered. Providing fairness still remains a critical challenge

in MIMO networks.

Reducing or turning off the transmit power of strong users can effectively mitigate the inter-

ference [SSB+13, GKBS15]. A drawback of such approaches is insufficient utilization of the

available degrees of freedom. A rather prudent strategy is minimizing the transmit power while

guaranteeing a certain level of quality of service (QoS) for each user [Ben02]. In this category,

the designs of MIMO precoders and/or combiners that minimize the total transmit power subject

to signal-to-interference-plus-noise-ratio (SINR) constraints have been popularly studied [Ben02,

PLM04, WES06, DY10, CTJLa07, CTR02, SCR07, VM99, SRHL16, PTK+16, PTL11, TPK09,

SCW+12]. We refer to the latter strategy as SINR-guaranteed power minimization (SGPM). The

SGPM problem in MIMO is non-convex, so it is not directly solvable.
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Optimal approaches to SGPM have been studied for single-user MIMO systems, based on

the application of the majorization theorem [PLM04], second-order-cone programming (SOCP)

[WES06], and uplink-downlink (UD) duality2[WES06]. It is possible to extend UD duality and

SOCP to multicell multiuser (MCMU) MIMO beamforming scenarios [DY10], which can be

solved by primal decomposition [PTK+16, PTL11], dual decomposition [TPK09], or more ad-

vanced alternating direction method of multipliers [SCW+12]. However, UD duality and SOCP

only hold when the receive combiner is held fixed. Once joint precoder and combiner design is

involved, UD duality and SOCP does not hold [CTJLa07], and the above algorithms [WES06,

DY10, PTK+16, PTL11, TPK09, SCW+12] cannot be directly extended. Hence, many have

turned to iterative heuristics that combine SOCP (or UD duality) with separate combiner design

algorithms [CTJLa07, SCR07, VM99, SRHL16]. Although the convergence to the first-order nec-

essary Karush-Kuhn-Tucker (KKT) conditions has been presented [SRHL16], the sufficient and

necessary optimality conditions of MCMU MIMO SGPM have not been fully addressed. The ex-

ploitation of optimality conditions is crucial because it reveals a useful direction for designing an

algorithm with performance guarantees.

Global channel state information (CSI) was a prerequisite of prior SGPM techniques for power

allocation [DY10, CTJLa07, CTR02, SCR07, VM99, SRHL16]. In practice, a large fraction of

MCMU MIMO networks will not have access to global CSI. This has motivated the investigation of

fully distributed MCMU MIMO precoding and combining techniques [SSB+13, GKBS15, GCJ11,

SRLH11, GKBS17, BB16] that rely only on local CSI available at each communication end. They

employ forward and backward (FB) iteration to update the combiners in the downlink and the pre-

coders in the uplink, based on the channel reciprocity in time division duplexing (TDD). They can

resort to tractable subproblem formulations, such as maximum (max)-SINR [SSB+13, GCJ11], in-

terference leakage minimization (ILM) [GKBS15, GCJ11], and weighted minimum mean square

error (WMMSE) [SRLH11, BB16] subject to user-wise power constraints. These techniques al-

ways admit feasible solutions. Except for max-SINR [SSB+13, GCJ11], the convergence of FB

2UD duality refers to the situation when the primal downlink SGPM problem shares the same set of SINR values
as the dual uplink SGPM problem.
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ILM [GKBS15, GCJ11] and WMMSE [SRLH11, BB16] has been established. However, the lack

of performance guarantees and QoS unfairness are major drawbacks.

Some recent research on distributed power minimization has addressed QoS unfairness such

as per-stream rate constraints [PTK+16]. By relaxing the original problem to tractable convex

programs, the work in [PTK+16] established the valuable objective convergence of the proposed

distributed algorithm. In [PTK+16], precoders and combiners were also jointly considered. How-

ever, optimality and feasibility conditions are not yet identified.

The feasibility of distributed power minimization is determined by the target QoS values that

must be set prior to iterate the algorithm. If these values are improperly set, SGPM can return non-

positive power values. Though a feasibility condition for power allocation in cellular networks has

been previously studied based on the Perron-Frobenius (PF) theory [CHLT08], how to predefine

feasible SINR values for MCMU MIMO SGPM has not been thoroughly studied.

1.3 Main Contributions

In this thesis, we propose a fully distributed SGPM framework for MCMU MIMO precoding

and combining systems. In particular, we analyze the optimality conditions of the MCMU MIMO

SGPM problem and based on these, derive a fully distributed SGPM algorithm and its feasibility

conditions, which relies on local CSI while providing QoS guarantees. We begin by decomposing

the original SGPM problem into forward and backward non-convex subproblems. We show that

strong duality holds for each subproblem and obtain necessary and sufficient optimality conditions.

It can be shown that the joint optimality conditions of the forward and backward subproblems are

indeed equivalent to those of the original SGPM problem. Our proposed distributed FB SGPM

algorithm is based on solving these optimality conditions.

In particular, the proposed algorithm makes use of Jacobi recursion [KC96] for the power

allocation in conjunction with the FB precoder and combiner adaptation to iteratively solve the

optimality conditions. The Jacobi method refines the transmit power values by leveraging one

scalar feedback introduced between the users and base stations (BSs). We provide a distributed
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approach to predetermine the target SINR values at each communication end to satisfy feasibility

based on the application of the matrix inverse-positive theory [BP94, JS92]. The convergence to

a stationary point of the proposed distributed algorithm is established according to the first-order

stationary conditions. Any target SINR value chosen to meet the feasibility condition ensures the

convergence of the proposed algorithm to a stationary point.

We numerically demonstrate substantially enhanced power efficiency and QoS guarantees of

the proposed algorithm, especially, for dense small-cell networks. It is revealed that the proposed

technique combines the best features of both prior SGPM strategies [Ben02, PLM04, WES06,

DY10, CTJLa07, CTR02, SCR07, VM99, SRHL16] and fully distributed techniques [SSB+13,

GKBS15, GCJ11, SRLH11, GKBS17, BB16] while addressing their individual drawbacks. Pos-

sible variations of the proposed distributed algorithm are presented by extending the proposed

technique to the distributed rank adaptation (RA) and QoS adaptation (QA).

1.4 Organization

The rest of the thesis is organized as follows. In Chapter 2, the system model and preliminaries

are present. In Chapter 3, the SGPM subproblem formulations and their optimality analysis are

enunciated. Chapter 4 devises the distributed SGPM algorithm. Chapter 5 presents the conver-

gence analysis. In Chapter 6, we discuss several practical issues of the proposed algorithm. The

numerical simulation results and the concluding remarks are presented in Chapter 7 and Chapter

8, respectively.

1.5 Notations

A bold lower case a is a vector, a bold upper case A is a matrix. A(u,v) is the uth row and

vth column entry of A. 1M ∈ RM×1, 000M×N ∈ RM×N , and IM ∈ RM×M are the all-one column

vector, all-zero matrix, and M-dimensional identity matrix, respectively. We denote, respectively,

‖A‖F , ‖A‖∞, ‖A‖, A∗, tr(A), and rank(A) as the Frobenius norm, infinity norm that is defined by

5



maxu ∑v |A(u,v)|, arbitrary induced matrix norm, conjugate transpose, trace of A, and rank of A.

ν1:d(A) extracts the first d dominant eigenvectors of A. ρ(A) = maxi |λi(A)| is the spectral radius

of A with λi(A) being the ith eigenvalue of A. R(A) is the range space of A. R+ is the set of

non-negative real numbers and � denotes an elements-wise vector or matrix inequality.
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Chapter 2

System Model and Preliminaries

Abstract

In this chapter, we discuss the system model and problem formulation under consideration.

We also introduce the inverse-positive matrix theory [BP94, JS92] and derive some prelimi-

nary results, which will be used in the rest of the thesis.

2.1 System Model

Consider a MCMU MIMO small cell network consisting of L cells with each cell having one

base station (BS) that simultaneously serves K users as shown in Fig. 2.1. We assume channel

reciprocity in the TDD setting. Users and BSs are equipped with M and N antennas, respectively.

We use the notation `k to denote the kth user in the `th cell where k ∈ {1, ...,K} and ` ∈ {1, ...,L}.

Both downlink (forward direction) and uplink (backward direction) transmission are considered.

The downlink signal model is first presented.

2.1.1 Forward Direction

The received signal in the downlink at user `k is modeled as

y(DL)
`k

= H`k,`Ṽ`ks(DL)
`k

+ ∑
i j 6=`k

H`k,iṼi js
(DL)
i j

+n(DL)
`k

, (2.1)
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where H`k,i ∈CM×N is the channel from BS i to user `k and n(DL)
`k
∈CM×1 is the noise vector at

user `k with each entry being an independent and identically distributed (i.i.d.) zero mean and σ2

variance Gaussian random variable, i.e., n(DL)
`k
∼ C N (0,σ2IM). Ṽ`k∈CN×d is the linear precoder

for user `k, where d is the number of data streams. It can be decomposed to Ṽ`k =
√

α`kV`k , where

α`k ∈R+ is the transmit power value and ‖V`k‖F =1. s(DL)
`k
∈Cd×1 is the signal vector and follows

s(DL)
`k
∼C N (0,Id). The second term on the right hand side (r.h.s.) of (2.1) corresponds to the

intra- and inter-cell interference at user `k. A linear combiner U`k ∈ CM×d is employed at user `k

to restore s(DL)
`k

from y(DL)
`k

such that ŝ(DL)
`k

= U∗`k
y(DL)
`k

. The rank of V`k and U`k is assumed to be d,

i.e., rank(V`k) = rank(U`k) = d. Under the assumption that joint encoding is used across streams

for each user, joint decoding of each user’s streams is used at the users, and interference is treated

as noise, the Shannon rate of user `k is

R`k = log
∣∣Id +U∗`k

R`kU`k(U
∗
`k

Q`kU`k)
−1∣∣ , (2.2)

where R`k , H`k,`Ṽ`k

(
H`k,`Ṽ`k

)∗ and Q`k , ∑i j 6=`k
H`k,iṼi j

(
H`k,iṼi j

)∗
+σ2IM denote the desired

signal and the interference-plus-noise covariance matrices of user `k, respectively.

We define the SINR as the sum signal power across user `k divided by the sum interference

power. Then, the downlink SINR of user `k is expressed as

γ
(DL)
`k

=
α`k

∥∥∥U∗`k
H`k,`V`k

∥∥∥2

F

∑i j 6=`k
αi j

∥∥∥U∗`k
H`k,iVi j

∥∥∥2

F
+σ2

∥∥U`k

∥∥2
F

, (2.3)

which is invariant to power-scaling U`k . Without loss of generality, we assume ‖U`k‖F = 1. The

downlink SINR in (2.3) has a direct relation to the Shannon rate defined in (2.2) as

R`k ≥ log(d(1+ γ
(DL)
`k

)), (2.4)

whose proof can be found in Appendix A.
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Figure 2.1: Blcok diagram of the MCMU MIMO network with L cells and K users per cell.

2.1.2 Backward Direction

In the uplink, the users become the transmitters and the BSs become the receivers. Then, the

conjugate uplink signal received at BS ` is modeled by

y(UL)
`k

=H∗`k,`
Ũ`ks(UL)

`k
+ ∑

i j 6=`k

H∗i j,`
Ũi js

(UL)
i j

+n(UL)
`k

,

where Ũ`k =
√

ω`k U`k and ω`k ∈ R+ is the uplink transmit power. Other notations are defined in

the same manner as the downlink. Similarly, we can express the uplink SINR of user `k at BS ` as

γ
(UL)
`k

=
ω`k

∥∥V∗`k
H∗`k,`

U`k

∥∥2
F

∑i j 6=`k
ωi j

∥∥V∗`k
H∗i j,`

Ui j

∥∥2
F +σ2

∥∥V`k

∥∥2
F

. (2.5)

We assume local CSI is available at each end. This means that user `k has knowledge of the

effective channel matrix H`k,`Ṽ`k and the receive covariance matrix ∑i j H`k,iṼi jṼ∗i j
H∗`k,i

+σ2IM.
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Similarly, the BS ` has knowledge of its effective channels
{

H∗`k,`
Ũ`k

}K
k=1 and the receive covari-

ance matrix ∑i j H∗i j,`
Ũi jŨ∗i j

Hi j,`+σ2IN .

We employ distributed FB iteration [SSB+13, GKBS15, GCJ11, SRLH11, GKBS17, BB16]

to iteratively update the combiners in the downlink and the precoders in the uplink. There are

instantaneous and error-free feedback links between a BS and its serving users. Each feedback

link transfers a scalar parameter per channel use and will be utilized for the distributed power

allocation devised in Chapter 4.

2.2 Inverse-Positive Matrix Theory

The inverse-positive matrix theory [BP94, JS92] is a key tool that we will use to characterize

the feasibility of the proposed problem. Suppose a real linear system

Fx = b, (2.6)

where F ∈ Rn×n, x ∈ Rn×1, and b ∈ Rn×1
+ ∩R(F). We first present some definitions.

Definition 1 (Inverse-positive Matrix) A square matrix F is said to be inverse-positive if F−1

exists and F−1 � 000n×n.

If F is inverse-positive, the system in (2.6) has a non-negative solution x = F−1b� 000n×1.

Definition 2 (Z-matrix) A square matrix F whose off-diagonal elements are non-positive, i.e.,

F(u,v)≤ 0 for u 6= v, is called a Z-matrix.

Definition 3 (Positive Regular Splitting) If a square matrix F can be divided into F = D−C,

where D � 000n×n, C � 000n×n, and D is inverse-positive such that D−1 � 000n×n, the decomposition

F = D−C is called positive regular splitting.

It is shown in [JS92] that if F is a Z-matrix, there exists a positive regular splitting F = D−C =

(I−CD−1)D. Because D is inverse-positive, so is F if and only if I−CD−1 is inverse-positive,

which is closely related to the spectral radius of the positive matrix CD−1 � 000n×n.
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Theorem 1 ([JS92]) Let F = D−C be a positive regular splitting. Then, the following three state-

ments are equivalent: (i) F is inverse-positive; (ii) ρ(CD−1)< 1; (iii) there exists a non-negative

solution x� 000n×1 of (2.6).

Theorem 1 reveals that if F is a Z-matrix, showing that F = D−C is an inverse-positive matrix

is equivalent to verifying either (ii) or (iii). While a sufficient condition for Theorem 1 has been

identified in [Ple76] where its proof relies on stochastic matrix analysis and PF theorem [Mey75],

this sufficient condition can be tractably indentified using a simple spectral radius bound as shown

below.

Lemma 1 ([Ple76]) Let a square matrix F be a Z-matrix with positive diagonal elements. Then, if

F is strictly diagonal dominant (SDD), i.e., |F(u,u)|> ∑
v6=u
|F(u,v)|,∀u, F is inverse-positive.

Proof Because F is a Z-matrix with positive diagonal elements, there exists a positive regular

splitting F = D−O, where D � 000n×n is the diagonal matrix sharing the same diagonal elements

as F, and O � 000n×n has the zero diagonal elements and is formed by taking the absolute value

of the off-diagonal elements of F. We need to show that if F is SDD, then ρ(OD−1) < 1 by

Theorem 1. If F is SDD, i.e., D(i, i) > ∑ j O(i, j), it follows ‖D−1O‖∞ < 1. Then, invoking a

bound ‖D−1O‖∞ ≥ ρ(D−1O) and the equality ρ(D−1O) = ρ(OD−1) leads to ρ(OD−1)< 1. This

completes the proof.

Lemma 1 is useful because it characterizes an inverse-positive matrix without computing its

spectral radius (the condition (ii) in Theorem 1). Leveraging Lemma 1 is the key to obtaining the

feasibility condition of the proposed distributed algorithm in Chapter 4.
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2.3 General Statement of Technique

We let ξ`k>0 be the target downlink SINR value of user `k. The MCMU MIMO SGPM problem

is then formulated as

min
{V`k},{U`k},{α`k}

∑
`k

α`k

subject to γ
(DL)
`k

(
{α`k},{V`k},U`k

)
≥ξ`k , ∀`k,

(2.7)

where γ
(DL)
`k

(
{α`k},{V` j},U`k

)
is the downlink SINR in (2.3) expressed in terms of {α`k}, {V̀ k}

and U`k . The problem in (2.7) jointly optimizes the precoders, combiners, and transmit power

values by minimizing the total transmit power budget subject to the downlink SINR constraints.

As mentioned in Chapter 1.2, UD duality does not hold for the problem in (2.7). Our goal

is to devise a fully distributed and feasible framework that is based on solving the optimality

conditions of (2.7). This will require stringent analysis to characterize the optimality criteria of

(2.7). Moreover, the aimed distributed SGPM must choose the target SINR values {ξ`k} relying

on local CSI to ensure its feasibility. The challenge is the coupled nature of (2.7) does not allow

for amenable analysis. As we will see in the next sections, the key to address the challenges lies in

how to alter the original problem in (2.7) to get tractable subproblems that admit analysis.
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Chapter 3

Optimalilty Conditions

Abstract

In this chapter, the original problem in (2.7) is decomposed into forward and backward

SGPM subproblems, and the optimality conditions of (2.7) are obtained, based on the com-

bined analysis of the two subproblems. The forward subproblem is discussed first.

3.1 Forward SGPM Subproblem

We fix the precoders {V`k} and reformulate the problem in (2.7) in terms of the combiners

{U`k} and the transmit power values {α`k}, yielding the forward SGPM subproblem:

min
{U`k},{α`k}

∑
`k

α`k

subject to γ
(DL)
`k

(
{α`k},U`k

)
≥ ξ`k , ∀`k.

(3.1)

Even though the precoders {V`k} are fixed, (3.1) is still non-convex. This is in contrast with the

prior work [WES06, DY10, CTJLa07, CTR02, SCR07, VM99, SRHL16], in which the optimiza-

tion was with respect to the precoders {V`k} and transmit power values {α`k}, in which the problem

is separable and thus can be optimally solved, for example, by using a SOCP framework.

Though non-convex, strong duality holds for the forward SGPM in (3.1) and hence the opti-

mality conditions are available, which is formally stated in the following theorem.
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Theorem 2 If the primal problem (3.1) is feasible, the strong duality of (3.1) holds and the optimal

solution obeys the following fixed-point equations:

(
∑

i j 6=`k

αi jH`k,iVi jV
∗
i j

H∗`k,i+σ
2IM−

α`k

ξ`k

H`k,`V`kV∗`k
H∗`k,`

)
U`k =000M×d,∀`k, (3.2)

and

tr

(
U∗`k

(
∑

i j 6=`k

αi jH`k,iVi jV
∗
i j

H∗`k,i +σ
2IM−

α`k

ξ`k

H`k,`V`kV∗`k
H∗`k,`

)
U`k

)
= 0,∀`k. (3.3)

Proof See Appendix B.

3.2 Backward SGPM Subproblem

In the uplink, the backward SGPM subproblem is formulated by fixing
{

U`k

}
in the uplink SINR

in (2.5) as

min
{V`k},{ω`k}

∑
`k

ω`k

subject to γ
(UL)
`k

(
{ω`k},V`k

)
≥ ξ`k , ∀`k.

(3.4)

The exact same strong duality as Theorem 2 holds for the backward subproblem in (3.4). Its

optimality conditions are summarized below.

Corollary 1 If the backward SGPM subproblem in (3.4) is feasible, the strong duality of (3.4)

holds and its optimal solution satisfies the following fixed-point equations:

(
∑

i j 6=`k

ωi jH
∗
i j,`

Ui jU
∗
i j

H∗i j,`
+σ

2IN−
ω`k

ξ`k

H∗`k,`
U`kU∗`k

H`k,`

)
V`k =000N×d, ∀`k (3.5)
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and

tr

(
V∗`k

(
∑

i j 6=`k

ωi jH
∗
i j,`

Ui jU
∗
i j

H∗i j,`
+σ

2IN−
ω`k

ξ`k

H∗`k,`
U`kU∗`k

H`k,`

)
V`k

)
= 0, ∀`k (3.6)

The proof of Corollary 1 follows the exact same procedure as the proof of Theorem 2, so we

omit it. The forward and backward subproblems are coupled and related to the original SGPM

problem in (2.7). Regarding their joint optimality to the original problem, we have the following

theorem.

Theorem 3 If the SGPM problem in (2.7) is feasible, the optimal solution of (2.7) coincides with

the joint optimal solution of the forward and backward SGPM subproblems in (3.1) and (3.4),

respectively. Solving for the joint optimality conditions (3.2)–(3.3) and (3.5)–(3.6) leads to an

optimal solution to the original SGPM problem in (2.7).

Proof See Appendix C.

Theorem 3 reveals that solving the original SGPM problem in (2.7) is equivalent to solving

for the fixed-point conditions in (3.2)–(3.3) and (3.5)–(3.6). However, closed-form solutions sat-

isfying (3.2)–(3.3) and (3.5)–(3.6) are difficult to obtain due to unresolvable coupling. More-

over, directly solving (3.2)–(3.3) and (3.5)–(3.6) demands centralized approaches with global CSI,

which is impractical. As previously mentioned, the goal of this work is to develop a fully dis-

tributed framework, based on solving the optimality conditions in (3.2)–(3.3) and (3.5)–(3.6). The

coupling among {V`k}, {U`k}, {α`k}, {w`k} and the local CSI requirement make distributed FB

iteration, also known as block coordinate descent (BCD), an ideal approach to iteratively solve for

the variables in (3.2)–(3.3) and (3.5)–(3.6).
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Chapter 4

Distributed SGPM

Abstract

Based on the analysis in Chapter 3, we devise in this section a distributed FB SGPM algo-

rithm with a feasibility guarantee. The overall FB iteration structure is introduced first and

detailed algorithmic descriptions follow afterward.

4.1 FB Iteration Structure

We let n be the FB iteration index. At the first FB iteration n = 1, the algorithm initializes

the parameters {V(0)
`k
}, {U(0)

`k
}, {α(0)

`k
}, and {ω(0)

`k
}, and determines the feasible target SINR val-

ues {ξ`k}. At each FB iteration, the algorithm solves for the forward optimality conditions (3.2)

and (3.3) in the downlink and the backward optimality conditions (3.5) and (3.6) in the uplink.

Assuming that {V(n−1)
`k
}, {U(n−1)

`k
}, {α(n−1)

`k
}, and {ω(n−1)

`k
} have been designed at the (n− 1)th

FB iteration, we focus on the nth FB iteration, in which {V(n)
`k
}, {U(n)

`k
}, {α(n)

`k
}, and {ω(n)

`k
} are

optimized by solving the following subproblems:

(F1) Fix the precoders {V(n−1)
`k
} and downlink power values {α(n−1)

`k
}, users optimize the com-

biners {U(n)
`k
} to satisfy (3.2) in the downlink;

(P1) Fix the combiners {U(n)
`k
} and precoders {V(n−1)

`k
}, users optimize the downlink power values

{α(n)
`k
} to satisfy (3.3) in the downlink and feed them back to the BSs;

(F2) Fix the combiners {U(n)
`k
} and uplink power values {ω(n−1)

`k
}, BSs optimize the precoders

{V(n)
`k
} to satisfy (3.5) in the uplink;
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Figure 4.1: Block Diagram of the proposed algorithm for the FB iteration.

(P2) Fix the precoders {V(n)
`k
} and combiners {U(n)

`k
}, BSs optimize the uplink power values

{ω(n)
`k
} to satisfy (3.6) in the uplink and feed then back to the users.

A conceptual diagram of the proposed FB iteration is present in Fig. 4.1. In what follows, we

give detailed algorithmic descriptions for (F1), (P1), (F2), and (P2). We first discuss the combiner

design (F1) and downlink power allocation (P1) in the forward iteration.

4.2 Forward Iteration

4.2.1 Combiner Design (F1)

The combiner obeying (3.2) does not admit a unique solution. For instance, if U(n)
`k
∈ CN×d

with rank(U(n)
`k
) = d satisfies (3.2), right multiplication of U(n)

`k
with ΨΨΨ ∈ Cd×d , i.e., U(n)

`k
ΨΨΨ, where

rank(ΨΨΨ) ≤ d, also satisfies (3.2). However, U(n)
`k

ΨΨΨ fails to resolve the d distinct streams because

rank(U(n)
`k

ΨΨΨ) ≤ d. To decouple the d distinct streams, we assume full-rank filters. Then, the
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following lemma provides the solution to (F1).

Lemma 2 Suppose the problem (F1) in the nth FB iteration:

find U(n)
`k

subject to
(−→

Q (n)
`k
− 1

ξ`k

−→
R (n)

`k

)
U(n)
`k

= 000M×d,

‖U(n)
`k
‖F = 1, and rank

(
U(n)
`k

)
= d, ∀`k,

(4.1)

where
−→
Q (n)

`k
,∑i j 6=`k

H`k,iṼ
(n−1)
i j

(
H`k,iṼ

(n−1)
i j

)∗
+σ2IM and

−→
R (n)

`k
, H`k,`Ṽ

(n−1)
`k

(
H`k,`Ṽ

(n−1)
`k

)∗ are

the interference-plus-noise and the desired signal covariance matrices of user `k, respectively,

where Ṽ(n−1)
i j

=
√

α
(n−1)
i j

V(n−1)
i j

. We let the Cholesky decomposition of
−→
Q (n)

`k
be
−→
Q (n)

`k
, L∗L,

where L ∈ CM×M is an upper triangular matrix. The optimal solution of (4.1) is then given by

U(n)
`k

?
=

L−1ν1:d

(
(L∗)−1−→R (n)

`k
L−1

)
∥∥∥L−1ν1:d

(
(L∗)−1−→R (n)

`k
L−1

)∥∥∥
F

, ∀`k, (4.2)

where ν1:d(A) extracts the first d dominant eigenvectors of a symmetric matrix A.

Proof Decomposing
−→
Q (n)

`k
= L∗L and reformulating the constraint in (4.1), the optimal U(n)

`k

?
must

satisfy

L∗
(

IM−
1

ξ`k

(L∗)−1−→R (n)
`k

L−1
)

LU(n)
`k

?
= 000M×d. (4.3)

Because U(n)
`k

?
and L are full rank, (4.3) is true if and only if 1

ξ`k
(L∗)−1−→R (n)

`k
L−1 has at least d

unit-eigenvalues. Because the rank of 1
ξ`k

(L∗)−1−→R (n)
`k

L−1 is d, the optimal solution must obey

LU(n)
`k

?
= a ν1:d

(
1

ξ`k

(L∗)−1−→R (n)
`k

L−1
)
, (4.4)

where a ∈ R is a normalization constant. Taking L−1 of both sides of (4.4) and determining a to

meet ‖U(n)
`k
‖F = 1 results in (4.2). This concludes the proof.
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Note that the constraint ‖U(n)
`k
‖F = 1 in (4.1) makes (4.2) invariant to ξ`k . Moreover, the first

constraint of (4.1) is a generalized eigenvalue problem, which can be equivalently formulated as

the Rayleigh quotient problem

max
U(n)
`k

γ
(DL)
`k

(
{α(n−1)

`k
},U(n)

`k

)
subject to U(n)

`k

∗−→
R (n)

`k
U(n)
`k

diagonal,

(4.5)

whose solution is also (4.2) [GL14, Algorithm 8.7.1]. Due to this equivalence and the SINR

maximization criterion in (4.5), we conclude that U(n)
`k

?
does not decrease the downlink SINR and

γ
(DL)
`k

(
{α(n−1)

`k
},U(n−1)

`k

?)
≤ γ

(DL)
`k

(
{α(n−1)

`k
},U(n)

`k

?)
. (4.6)

The monotonicity in (4.6) will be useful when characterizing the feasibility of the power allocation.

4.2.2 Downlink Power Allocation (P1)

To facilitate a distributed implementation of (P1), we propose the following power update struc-

ture

α
(n)
`k

= δ
(n)
`k

α
(n−1)
`k

, (4.7)

where δ
(n)
`k
∈R+ is a power scaling factor to be optimized to satisfy (3.3). For notational simplicity,

we define the downlink precoding and combining factor as

β
`k,(n)
i j,(n−1) ,

∥∥(U(n)
`k

)∗H`k,iṼ
(n−1)
i j

∥∥2
F . (4.8)
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Then (3.3) can be rewritten as

δ
(n)
`k

β
`k,(n)
`k,(n−1)

∑i j 6=`k
δ
(n)
i j

β
`k,(n)
i j,(n−1)+σ2

= ξ`k , ∀`k. (4.9)

Collecting the LK equations in (4.9) yields

A(n)
(n−1)a

(n)=q, (4.10)

where q = σ2[ξ11,ξ12, . . . ,ξLK ]
T ∈ RLK×1, a(n) = [δ

(n)
11

,δ
(n)
12

, . . .δ
(n)
LK

]T ∈ RLK×1, and

A(n)
(n−1)=



β
11,(n)
11,(n−1) −β

11,(n)
12,(n−1)ξ11 · · · −β

11,(n)
LK ,(n−1)ξ11

−β
12,(n)
11,(n−1)ξ12 β

12,(n)
12,(n−1) · · · −β

12,(n)
LK ,(n−1)ξ12

... . . . ... · · ·

−β
LK ,(n)
11,(n−1)ξLK−β

LK ,(n)
12,(n−1)ξLK · · · β

LK ,(n)
LK ,(n−1)


. (4.11)

(P1) is now formulated as

find a(n)

subject to A(n)
(n−1)a

(n) = q and a(n) � 0LK×1.
(4.12)

4.2.3 Feasibility Condition of (4.12)

The prerequisite of solving (4.12) is to guarantee the feasibility, i.e., showing that the set

Ra(n) , {a
(n) � 0LK×1|A

(n)
(n−1)a

(n) = q} (4.13)

is non-empty. The condition ensuring the feasibility is provided in the following theorem.

20



Theorem 4 For fixed {Ṽ(n−1)
`k
} and {U(n)

`k
}, if the target SINR ξ`k satisfies

0 < ξ`k < β
`k,(n)
`k,(n−1)

/
∑

i j 6=`k

β
`k,(n)
i j,(n−1), ∀`k, (4.14)

the (P1) in (4.12) is feasible.

Proof By the definition of A(n)
(n−1) in (4.11), A(n)

(n−1) is a Z-matrix with the positive diagonal entries.

Note that the inequalities in (4.14) correspond to A(n)
(n−1) being SDD. Then, A(n)

(n−1) is inverse-

positive by Lemma 1. It is concluded from Condition (iii) of Theorem 1 that Ra(n) in (4.13) is

non-empty. This completes the proof.

To solve (4.12) in a distributed manner, we propose a Jacobi-based power allocation algorithm.

Jacobi-Based Power Allocation

Jacobi recursion [KC96] refers to an iterative procedure to solve a linear system equation

without matrix inversion. We let D(n)
(n−1) = diag

(
β

11,(n)
11,(n−1), · · · ,β

LK ,(n)
LK ,(n−1)

)
∈ RLK×LK be the diag-

onal matrix whose entries are taken from A(n)
(n−1). Then, (4.10) can be rewritten as D(n)

(n−1)a
(n)=

(D(n)
(n−1)−A(n)

(n−1))a
(n)+q. Multiplying both sides with (D(n)

(n−1))
−1

leads to the Jacobi recursion

formula,

a(n)
(m)

=
(
ILK−

(
D(n)
(n−1)

)−1
A(n)
(n−1)

)
a(n)
(m−1)+

(
D(n)
(n−1)

)−1
q, (4.15)

where m ≥ 1 is the Jacobi-iteration index. If
∥∥ILK− (D(n)

(n−1))
−1

A(n)
(n−1)

∥∥
∞
< 1, for an initial a(n)

(0),

any sequence a(n)
(0),a

(n)
(1), . . . produced by (4.15) converges to the solution of A(n)

(n−1)a
(n)=q [KC96].

Regarding the convergence of the Jacobi recursion in (4.15) to the solution of (4.12), we have

the following corollary.

Corollary 2 If the condition in (4.14) holds, the Jacobi recursion in (4.15) converges to the solu-

tion of (4.12).
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Proof A(n)
(n−1) is SDD due to (4.14). Therefore, the Jacobi recursion converges to the solution of

(4.12) because the inequality
∥∥ILK−(D(n)

(n−1))
−1

A(n)
(n−1)

∥∥
∞
< 1 holds.

By Corollary 2, the achievable SINR region of the downlink Jaboci power allocation is given

by

S
(n)
`k

=

{
ξ`k

∣∣∣∀ξ`k satisfying (4.14)
}
, ∀`k. (4.16)

Remark 1 Due to the monotonicity of the downlink SINR, i.e., (4.6), the nested property of the

achievable SINR region implies that S (n−1)
`k

⊆S
(n)
`k

for n> 1, holds. This means that if ξ`k ∈S
(1)
`k

,

the forward direction becomes feasible. Hence, characterizing the achievable SINR region S
(1)
`k

at the first FB iteration is sufficient to guarantee the feasibility of the overall algorithm.

In the proposed approach, the Jacobi recursion in (4.15) is run in a distributed manner using

feedback as detailed below. When m= 1, BSs initialize δ
(n)
`k,(0)

= 1 in (4.7), ∀`k. Then user `k

measures its local CSI, i.e., β
`k,(n)
`k,(n−1) and ∑i j 6=`k

β
`k,(n)
i j,(n−1). If n = 1, user `k chooses ξ`k ∈S

(1)
`k

. The

power update formula at user `k is then given by the ((`−1)K + k)th row of (4.15),

δ
(n)
`k,(m)

=ξ`k

(
∑i j 6=`k

δ
(n)
i j,(m−1)β

`k,(n)
i j,(n−1)+σ2

)
/β

`k,(n)
`k,(n−1). (4.17)

After the update, user `k feeds back δ
(n)
`k,(m)

to BS `. At the (m+1)th iteration, BSs form the pre-

coders {
√

δ
(n)
`k,(m)

Ṽ(n−1)
`k
} using the fed back {δ (n)

`k,(m)
}. On the downlink reception, user `k updates

its power value by (4.17) and feeds back δ
(n)
`k,(m+1) to BS `. This closed-loop recursion continues

until (4.17) converges. Denoting the converged power scaling factor as δ
(n)
`k

, the downlink power

α
(n)
`k

update follows (4.7). A formal description of the closed-loop Jacobi algorithm is outlined in

Algorithm 1.

22



Algorithm 1 Closed-loop Jacobi iteration for downlink power allocation (P1)

Require: Initialize {Ṽ(n−1)
`k
}, {U(n)

`k
}, {δ (n)

`k,(0)
= 1}, m = 1.

1: Begin iteration

2: BSs transmit in the downlink with the precoders {
√

δ
(n)
`k,(m−1)Ṽ

(n−1)
`k
};

3: if n = 1 and m = 1 then User `k sets ξ`k ∈S
(1)
`k

in (4.16);
4: end if
5: User `k updates δ

(n)
`k,(m)

by (4.17) and feeds back it to BS `;
6: m = m+1 and go to Step 2;
7: Repeat until converge, set δ

(n)
`k

= δ
(n)
`k,(m)

.

8: Set the power α
(n)
`k

at BS ` by (4.7).

4.3 Backward Iteration

The exact same procedures for solving (F1) and (P1) apply to (F2) and (P2). Hence, we briefly

describe their algorithmic procedures.

4.3.1 Precoder Design (F2)

We define the desired signal as
←−
R (n)

`k
, H∗`k,`

Ũ(n)
`k

Ũ(n)∗

`k
H`k,` and interference-plus-noise covari-

ance matrices as
←−
Q (n)

`k
, ∑i j 6=`k

H∗i j,`
Ũ(n)

i j

(
H∗i j,`

Ũ(n)
i j

)∗
+σ2IN , respectively, at the nth backward

iteration, where Ũ(n)
`k

=
√

ω
(n−1)
`k

U(n)
`k

. Then, the problem (F2) is reformulated as

find V(n)
`k

subject to
(←−

Q (n)
`k
− 1

ξ`k

←−
R (n)

`k

)
V(n)
`k

= 000N×d,

‖V(n)
`k
‖F = 1, and rank

(
V(n)
`k

)
= d, ∀`k.

(4.18)

Given the Cholesky decomposition
←−
Q (n)

`k
= M∗M, where M ∈CN×N is an upper triangular matrix,

the solution to (4.18) is given by

V(n)
`k

?
=

M−1ν1:d

(
(M∗)−1←−R (n)

`k
M−1

)
∥∥∥M−1ν1:d

(
(M∗)−1←−R (n)

`k
M−1

)∥∥∥
F

, ∀`k. (4.19)
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Following the same reasoning as (4.6), the precoder in (4.19) does not decrease the uplink SINR

values,

γ
(UL)
`k

(
{ω(n−1)

`k
},V(n−1)

`k

?)
≤ γ

(UL)
`k

(
{ω(n−1)

`k
},V(n)

`k

?)
. (4.20)

4.3.2 Uplink Power Allocation (P2)

Algorithm 2 Closed-loop Jacobi iteration for uplink power allocation (P2)

Require: Initialize {U(n)
`k
}, {Ṽ(n)

`k
}, {ρ(n)

`k,(0)
= 1}, m = 1.

1: Begin iteration
2: if n = 1 then User `k feeds back ξ`k to BS `;
3: end if
4: Users transmit in the uplink with {

√
ρ
(n)
`k,(m−1)Ũ

(n)
`k
};

5: BS ` updates ρ
(n)
`k,(m)

by (4.24) and feeds back it to users `k;
6: m = m+1 and go to Step 4;
7: Repeat until converge and set ρ

(n)
`k

= ρ
(n)
`k,(m)

;

8: Set the power ω
(n)
`k

at user `k by (4.21).

Similar to (P1), we employ the following power update structure

ω
(n)
`k

= ρ
(n)
`k

ω
(n−1)
`k

, (4.21)

where ρ
(n)
`k
∈ R+ is a power scaling factor to be designed. The uplink precoding and com-

bining factor is defined as κ
`k,(n)
i j,(n)

,
∥∥(V(n)

`k

)∗H∗i j,`
Ũ(n)

i j

∥∥2
F , which is related to (4.8) as κ

`k,(n)
i j,(n)

=

β
i j,(n)
`k,(n)

ω
(n−1)
i j

/α
(n)
`k

. Then, the LK conditions in (3.6) are compactly put into a linear system:

B(n)
(n)b

(n) = q, (4.22)
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where q = σ2[ξ11,ξ12, . . . ,ξLK ]
T ∈ RLK×1, b(n) = [ρ

(n)
11

,ρ
(n)
12

, . . . ,ρ
(n)
LK

]T ∈ RLK×1, and

B(n)
(n) =



κ
11,(n)
11,(n)

−κ
11,(n)
12,(n)

ξ11 · · · −κ
11,(n)
LK ,(n)

ξ11

−κ
12,(n)
11,(n)

ξ12 κ
12,(n)
12,(n)

· · · −κ
12,(n)
LK ,(n)

ξ12

... . . . ... · · ·

−κ
LK ,(n)
11,(n)

ξLK −κ
LK ,(n)
12,(n)

ξLK · · · κ
LK ,(n)
LK ,(n)


,

and (P2) is formulated as

find b(n)

subject to B(n)
(n)b

(n) = q and b(n) � 0LK×1.
(4.23)

4.3.3 Feasibility Condition of (4.23)

The feasibility of (P2) in (4.23) is described by the following corollary.

Corollary 3 If the target SINR values {ξ`k} satisfy (4.14), (P2) in (4.23) is also feasible, i.e.,

Rb(n) , {b(n) � 0LK×1|B
(n)
(n)b

(n) = q} is non-empty.

Proof Prior to the precoder update (F2) in the backward iteration, the following equality holds

κ
`k,(n−1)
i j,(n)

= β
i j,(n)
`k,(n−1)ω

(n−1)
i j

/α
(n−1)
`k

, which equals to a matrix equality B(n−1)
(n) =(D1D2A(n)

(n−1)D3D4)
T,

where D1,D2,D3, and D4 ∈ RLK×LK are diagonal matrices with the ((`− 1)K + k)th entry being

ω
(n−1)
`k

, 1/ξ`k , ξ`k, and 1/α
(n−1)
`k

, respectively. Due to Theorem 4, A(n)
(n−1) is SDD. Thus, it is in-

verse positive. Moreover, because D1, D2, D3, and D4 are positive diagonal matrices, there exists

a non-negative solution b(n) such that B(n−1)
(n) b(n) = q is feasible for the target SINR values {ξ`k}.

Optimizing the filters in (F2) updates B(n−1)
(n) to B(n)

(n). Then, by the nested property of the achiev-

able SINR region in (4.20), updating the filters {V(n)
`k
} does not alter the feasibility and, thereby,

B(n)
(n)b

(n)=q has a non-negative solution. This completes the proof.

The Jacobi recursion to solve (4.23) for user `k at BS ` is given by

ρ
(n)
`k,(m)

=ξ`k

(
∑i j 6=`k

ρ
(n)
i j,(m−1)κ

`k,(n)
i j,(n)

+σ2
)
/κ

`k,(n)
`k,(n)

. (4.24)
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Algorithm 3 Proposed Distributed FB SGPM

Require: Initialize {V(0)
`k
}, {U(0)

`k
}, {α(0)

`k
}, and {ω(0)

`k
}.

1: Begin iteration, n = 1

2: Users update {U(n)
`k
} by (4.2) and set {Ũn)

`k
=
√

ω
(n−1)
`k

U(n)
`k
} in the forward iteration;

3: Users update {α(n)
`k
} according to Algorithm 1 and feed back them to BSs;

4: BSs update {V(n)
`k
} by (4.19) and set {Ṽ(n)

`k
=
√

α
(n)
`k

V(n)
`k
} in the backward iteration;

5: BSs update {ω(n)
`k
} according to Algorithm 2 and feed back them to users;

6: n = n+1 and go to Step 2;
7: Repeat until converge.

After the update in (4.24), BS ` feeds back ρ
(n)
`k,(m)

to user `k. By Corollary 3, (4.24) converges to

a feasible solution after a suitable number of the closed-loop iterations. The uplink Jacobi iteration

is outlined in Algorithm 2.

Remark 2 If the target SINR values {ξ`k} are chosen to ensure the feasibility of the forward

SGPM, it is now a direct consequence of Corollary 3 that {ξ`k} also ensures the feasibility of the

backward SGPM. For this reason, the users and BSs share the same {ξ`k} via feedback in Step 2

of Algorithm 2.

The entire operation of the proposed distributed FB SGPM is now outlined in Algorithm 3.

What information is needed and what variables are updated at each iteration are summarized in

Table 4.1.

Table 4.1: Summary of Information and Variables Needed at Each subproblem and each FB
iteration.

Subproblems (F1) (P1) (F2) (P2)

Nodes User `k User `k BS ` BS `

Required information −→
R (n)

`k
,
−→
Q (n)

`k
U(n)
`k

,
−→
R (n)

`k
,
−→
Q (n)

`k

←−
R (n)

`k
,
←−
Q (n)

`k
V(n)
`k

,
←−
R (n)

`k
,
←−
Q (n)

`k

Update U(n−1)
`k

7−→ U(n)
`k

α
(n−1)
`k

7−→ α
(n)
`k

V(n−1)
`k

7−→ V(n)
`k

ω
(n−1)
`k

7−→ ω
(n)
`k

Feedback None User `k

δ
(n)
`k ,(m)−→ BS ` None

If n = m = 1, User `k
ξ`k−→ BS `

BS `
ρ
(n)
`k ,(m)−→ user `k
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Chapter 5

Convergence Analysis

5.1 Convergence of the Proposed Distribute SGPM Algorithm

In general, distributed FB iteration with power allocation does not admit tractable convergence

analysis [SSB+13]. Nevertheless, this is not the case of the proposed distributed algorithm.

Theorem 5 The FB iteration in Algorithm 3 does not increase the total transmit power

∑
`k

α
(n−1)
`k

≥∑
`k

α
(n)
`k

, ∀n > 1,

and it converges to a stationary point.

Proof See Appendix D.

Theorem 5 guarantees the convergence of ∑`k
α
(n)
`k

to a stationary point. The stationary point

is indeed a local optimum because we impose the full-rank precoders and combines in (4.19) and

(4.2), respectively.

5.2 Convergence Speed Analysis

In this section, we further analyze what factors affect the convergence speed of the closed-loop

Jacobi power allocation in Algorithms 1 and 2. We focus on the forward direction, keeping in mind

that the exact same observation can be made for the backward direction. It is shown in [KC96] that
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the error ‖a(n)−a(n)
(m)
‖∞ of the Jacobi recursion in (4.15) is bounded by

∥∥∥a(n)−a(n)
(m)

∥∥∥
∞

≤
∥∥∥∥ILK−

(
D(n)
(n−1)

)−1
A(n)
(n−1)

∥∥∥∥m

∞

. (5.1)

The smaller the value
∥∥ILK−

(
D(n)
(n−1)

)−1
A(n)
(n−1)

∥∥
∞
< 1, the faster the convergence will be. Due to

Remark 1, the feasibility in Corollary 2 implies
∥∥ILK −

(
D(n)
(n−1)

)−1
A(n)
(n−1)

∥∥
∞
< 1. Recalling the

structure of A(n)
(n−1) in (4.10), the following two observations can be made:

(a) The quantity
∥∥ILK −

(
D(n)
(n−1)

)−1
A(n)
(n−1)

∥∥
∞

in (5.1) is proportional to the target SINR val-

ues {ξ`k}, i.e., for fixed {β `k,(n)
i j,(n−1)} in A(n)

(n−1), if ξ`k ≥ ξ ′`k
, we have g

(
{ξ`k},{β

`k,(n)
i j,(n−1)}

)
≥

g
(
{ξ ′`k

},{β `k,(n)
i j,(n−1)}

)
, ∀`k, where g

(
{ξ`k},{β

`k,(n)
i j,(n−1)}

)
,
∥∥ILK−

(
D(n)
(n−1)

)−1
A(n)
(n−1)

∥∥
∞

.

(b) The matrix
(
ILK −

(
D(n)
(n−1)

)−1
A(n)
(n−1)

)
has diagonal entries of zero and its off-diagonal en-

tries are ξ`k

β
`k ,(n)
i j ,(n−1)

β
`k ,(n)
`k ,(n−1)

, ∀`k, i j, where the numerator β
`k,(n)
i j,(n−1) = ‖(U

(n)
`k
)∗H`k,iṼ

(n−1)
i j
‖2

F , i j 6= `k,

corresponds to the interference power at user `k leaked from BS i. Hence, the quantity∥∥ILK−
(
D(n)
(n−1)

)−1
A(n)
(n−1)

∥∥
∞

is proportional to the interference power.

The observations (a) and (b) reveal that the lower the target SINR values {ξ`k} are and the

greater the number of FB iterations to monotonically increase the SINR values in (4.6), a faster

convergence of the Jacobi power allocation results.
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Chapter 6

Practical Aspects

Abstract

In this chapter, we underline some practical aspects of the proposed algorithm.

6.1 Distributed CSI Acquisition

To acquire the local CSI at each FB iteration, a channel estimation phase prior to the exe-

cution of the algorithm is needed. Specifically, in the forward iteration, user `k first estimates

the signal covariance matrix H`k,`Ṽ`kṼ∗`k
H∗`k,`

and the interference-plus-noise covariance matrix

∑
i j 6=`k

H`k,iṼi jṼ∗i j
H∗`k,i

+σ2IM; in the backward iteration, the BS ` estimates its signal covariance ma-

trix
{

H∗`k,`
Ũ`kŨ∗`k

H`k,`

}K
k=1 and the interference-plus-noise covariance matrix ∑

i j 6=`k

H∗i j,`
Ũi jŨ∗i j

Hi j,`

+σ2IN . A practical CSI acquisition method based on orthogonal pilot-assisted channel estima-

tion technique has been independently studied in [BB16]. The user-wise orthogonal pilot signals

in [BB16] is also called “User-specific reference signal" in 4G Long-Term Evolution (LTE) stan-

dards [DPS11, LHZ09]. The structure of the FB CSI acquisition and filter updates is illustrated in

Fig. 6.1. According to Algorithm 3, the FB iterations are carried out until the algorithm converges.

When implemented in practice, however, the total number of iterations is limited by the channel

coherence time. While low-overhead and robust channel estimation issues have to be considered

as well, such matters are outside the scope of our current work.
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Figure 6.1: The structure of FB CSI acquisition.

6.2 Rank Adaptation

In severely interference-limited scenarios (i.e., improper network), a rank adaptation (RA)

mechanism [GKBS15, LH05] can be introduced to enhance the performance of the proposed al-

gorithm by turning down some spatial data streams. A simple RA scheme in the downlink can be

designed by taking the optimality condition in (3.2) and the filter design criterion in (4.1) such that

max
r`k

r`k

subject to
(−→

Q (n)
`k
− 1

ξ`k

−→
R (n)

`k

)
U(n)
`k

= 000M×d,

‖U(n)
`k
‖F = 1, rank

(
U`k

)
= r`k ,

and r`k ≤ d, ∀`k.

(6.1)

Because U(n)
`k

is extracted from the null space of
−→
Q (n)

`k
− 1

ξ`k

−→
R (n)

`k
according to (4.3), i.e., L∗

(
IM−

1
ξ`k

(L∗)−1−→R (n)
`k

L−1
)

LU(n)
`k

= 000M×d in (4.3), the problem in (6.1) is equivalent to finding the first

r`k largest eigenvalues of ((L∗)−1−→R `kL−1). By turning off some eigenmodes of ((L∗)−1−→R `kL−1),

whose eigenvalues are below a tolerance level c > 0, the r`k at user `k can be determined by

r?`k
= Card

(
{i|λi((L∗)−1−→R `kL−1)> c}

)
, (6.2)
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where Card(S ) denotes the cardinality of set S and c is a threshold value. Similarly, in the

backward direction, each BS adjusts the rank of the precoders according to

z?`k
= Card

(
{i|λi((M∗)−1←−R `kM−1)> c}

)
. (6.3)

The proposed Algorithm 3 can easily adopt the above RA approaches by adding: i) one procedure

before Step 2, where each user finds the optimal r?`k
by (6.2) and feeds back it to its serving BS,

and ii) another procedure before Step 4, where each BS finds the optimal z?`k
according to (6.3)

and chooses the smallest value between r?`k
and z?`k

. BSs then feed back the adapted rank values

to corresponding users. These procedures ensure the rank synchronization between the users and

BSs.

However, it should be mentioned that the latter RA scheme demands additional coordination

overhead for the rank synchronization. In addition, the threshold value c in (6.2) and (6.3) must be

pre-determined so that the devised RA ensures a performance improvement, especially, when the

network is improper. We will provide performance insight into the above RA scheme in Chapter

7, while admitting that associated coordination and optimization are subject to further study.

6.3 QoS Adaptation

As aforementioned in Remark 1 and Remark 2, the feasible QoS chosen at the first iteration

guarantees the feasibility of the entire algorithm. Another important property revealed by Remark

1 is that the target QoS value can be also increased along with the FB iterations. This makes sense

because if we let the target SINR at the (n− 1)th FB iteration be ξ
(n−1)
`k

and ξ
(n−1)
`k

∈ S
(n−1)
`k

,

the nested property S
(n−1)
`k

⊆S
(n)
`k

for n > 1, implies that there exists ξ
(n)
`k

such that ξ
(n)
`k
∈S

(n)
`k

and ξ
(n−1)
`k

≤ ξ
(n)
`k

for n > 1. Thus, it is desired that ξ
(n)
`k

chosen close to the upper boundary of

S
(n)
`k

achieves a high feasible QoS level. However, S
(n)
`k

in (4.16) is an open set and one cannot

explicitly define the exact boundary. One simply approach is to find a strict lower bound of the
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upper bound of (4.16). Because σ2 is strictly positive, one can set

ξ
(n)
`k

= β
`k,(n)
`k,(n−1)

/(
∑

i j 6=`k

β
`k,(n)
i j,(n−1)+σ

2

)
, (6.4)

which satisfies ξ
(n)
`k
∈S

(n)
`k

.

One requirement of the QoS adaptation (QA) is that each BS and user need to share the updated

ξ
(n)
`k

per iteration, resulting in large feedback overhead. From the distributed algorithm perspective,

this can be relaxed by updating the target SINR in every ∆ > 1 interval such that ξ
(1+(l−1)∆)
`k

is

updated according to (6.4) for l = 1,2, . . .. We will evaluate the QA scheme, based on (6.4) and

describe its potential performance gain1 in Chapter 7.

1A full investigation and optimization of the decentralized QA solution falls outside the scope of the current thesis.
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Chapter 7

Simulation Results

Abstract

In this section, we evaluate the performance of the proposed distributed FB SGPM in

Algorithm 3. We also explore the extensions of Algorithm 3 by incorporating the distributed

RA and QA schemes proposed in Chapter 6. Throughout the simulation, we assume MCMU

MIMO downlink scenarios where each channel matrix is realized to have i.i.d. entries fol-

lowing C N (0,1) and the noise power is set to σ2 = 1. In the proposed Algorithm 3, each

entry of the precoders {V(0)
`k
} and combiners {U(0)

`k
} follows i.i.d. C N (0,1). The initial

value of power budget ∑`k
α
(0)
`k

is set to 10 dB with equal power allocation. We consider

both proper and improper network configurations for evaluation, in which a MIMO network

becomes proper, if M +N > (LK + 1)d, and improper, otherwise [LY13]1. Throughout the

simulations, we use the integer numbers X and Y to denote the numbers of FB iterations and

Jacobi iterations, respectively.

7.1 Feasibility vs. Target SINR

In Fig. 7.1, we evaluate the feasibility probability across the target SINR value ξ`k for different

network configurations. Because the feasibility of the proposed algorithm is determined if ξ`k ∈
1If a network is proper, the interference could be made arbitrarily small [LY13].

33



2 4 6 8 10
Target SINR (dB)

0

0.2

0.4

0.6

0.8

1

F
e
a
s
ib

ili
ty

 p
ro

b
a
b
ili

ty

N=8,M=8,L=2,K=3,d=2

N=64,M=18,L=4,K=7,d=3

N=16,M=16,L=4,K=3,d=3

Figure 7.1: Feasibility probability vs. target SINR for different networks configurations for X = 1
and Y = 1.

S
(1)
`k

by Remark 1, the feasibility probability is defined by

Pf ({ξ`k}) = Pr

(
LK⋂

`k=11

S
(1)
`k

)
.

If any of S
(1)
`k

is empty, we declare that Algorithm 3 is infeasible. In Fig. 7.1, one proper case,

i.e., N=M=8,L=2,K=3,d=2, and two improper cases, i.e., N=64,M=18,L=4,K=7,d=3

and N=M=16,L=4,K=3,d=3, are evaluated for X = 1 and Y = 1. For the proper network, the

proposed distributed FB SGMP becomes feasible with high probability. However, the feasibility

rate decreases as the network becomes improper and dense. These results provide guidance on

how to choose the target SINR values for a specific network configuration.
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Figure 7.2: Total transmit power vs. required iteration numbers for N =M = 8,L= 2,K = 3,d = 2,
and Y = 3.

7.2 Convergence

In this set of simulations, we evaluate the convergence of Algorithm 3 asserted in Theorem

5. Figs. 7.2 and 7.3 show the total transmit power budget ∑`k
α
(n)
`k

across different numbers of

FB iteration X , while keeping the number of Jacobi iteration constant Y =3. We choose the two

network configurations in Fig. 7.1 for evaluation, one for a proper network with N =M=8,L=

2,K = 3,d = 2, and the other for an improper network with N = 64,M = 18,L= 4,K = 7,d = 3.

The curves are evaluated for three different target SINR values, 2, 3, and 4 dB that are chosen

to be feasible with high probability in Fig. 7.1. Specifically, for both configurations, the total

transmit power values monotonically decrease. The figures clearly show that to guarantee the

same target QoS level, an improper network requires a higher total transmit power. The curves

quickly converge to stationary points when the network is proper, while the convergence become
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Figure 7.3: Total transmit power vs. required iteration numbers for N = 64,M = 18,L = 4,K =
7,d = 3, and Y = 3.

slow for the improper network.

In the next set of simulations, the network configurations are labeled as (N,M,L,K,d,X-Y ) for

brevity. In Fig. 7.4, we evaluate the effects of allocating different numbers of FB iteration X and

Jacobi iteration Y to the power efficiency and SINR guarantees. The target SINR values are set to

0,1,2,3,4, and 5 dB based on the improper configuration N = M = 16,L = 4,K = 3,d = 3 in Fig.

7.1. The curves are evaluated for the 5% SINR outage probability,

Pout({ξ`k}) = Pr

(
LK⋂

`k=11

{
γ
(DL)
`k

< ξ`k

})
= 5%, (7.1)

where γ
(DL)
`k

denotes the achieved downlink SINR value. From Fig. 7.4, it can be seen that increas-

ing the number of Jacobi iteration, while holding the number of FB iteration, allows Algorithm
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Figure 7.4: Total transmit power vs. target SINR for different numbers of FB iteration X and Jacobi
iteration Y .

3 to achieve a higher target SINR value. For instance, when X =10, the proposed algorithm can

achieve up to 5 dB SINR with Y =5, while it only achieves 4.8 dB SINR when Y =3. Moreover,

allocating more number of FB iteration to update precoders and combiners improves the power

efficiency in Fig. 7.4. The same setting applies to Fig. 7.5 except for that the numbers of antennas

increase from N = M = 16 to N = 32,M = 16. From Fig. 7.5, it can be seen that having larger

numbers of BS and user antennas can greatly improve the power efficiency. Both Figs. 7.4 and

7.5 reveal that the power efficiency and the SINR guarantee of the proposed algorithm can be ef-

fectively controlled by properly adjusting the numbers of antennas (N,M) and the numbers of FB

iteration X and Jaboci iteration Y .
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Figure 7.5: Total transmit power vs. target SINR for different numbers of BS antennas N and user
antennas M.

7.3 Power Efficiency vs. Achievable Rate

We demonstrate the improved power efficiency and rate guarantees of the proposed algorithm

by comparing it with prior fully distributed MCMU MIMO precoding and combining techniques,

such as max-SINR [SSB+13], ILM [GCJ11], and WMMSE [SRLH11]. We assume the exact same

proper and improper network configurations as in Figs. 7.2 and 7.3. In Figs. 7.6 and 7.7, the curves

are displayed by evaluating the required total transmit power vs. the achieved rate per user, which

satisfies 5% SINR outage probability in (7.1). Because those benchmark algorithms have differ-

ent objectives, i.e., maximizing weighted sum-rate[SRLH11], maximizing SINR [SSB+13], and

minimizing interference [GCJ11], under the same per-user power constraint, we cannot predefine

the target SINR values for them. Instead we fix the total transmit power values and evaluate the

average achievable rates per user of the benchmarks.
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Figure 7.6: Total transmit power vs. achievable rate for N = M = 8,L = 2,K = 3,d = 2,X =
10,Y = 3.

For the proposed Algorithm 3, we run X=10 FB iterations. For each FB iteration, the downlink

(respectively, uplink) Jacobi iterations occupies Y = 3 (resp., 3) iterations, resulting in a total of

60 (i.e., 10× (3+ 3)) iterations (i.e., channel uses). The same amount of channel use overhead

is assumed for all benchmarks. In Fig. 7.6, the total transmit power values of the benchmarks

are predefined by 0, 1.2, 2.4, 3.6, 4.8, 6.0, and 7.2 dB. If the system is proper, the benchmarks

and the proposed algorithm achieve similar performance, in which the proposed technique shows

a slightly improved power efficiency compared to other benchmarks. However, when the network

becomes dense and improper, the proposed algorithm significantly outperforms the benchmarks as

shown in Fig. 7.7. For instance, in Fig. 7.7, to achieve a rate per user of around 7.2 bit/sec/Hz,

the proposed algorithm only consumes about 10 dB of total transmit power. In contrast, WMMSE

requires around 14 dB of total transmit power to achieve the same rate. The total transmit power
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Figure 7.7: Total transmit power vs. achievable rate for N = 64,M = 18,L = 4,K = 7,d = 3,X =
10,Y = 3.

values for the benchmarks in Fig. 7.7 are predefined by 2, 4, 6, 8, 10, 12, and 14 dB. This reveals

significantly improved power efficiency of Algorithm 3 when the network is improper. It should

be mentioned that WMMSE [SRLH11] in this setting requires a total of LK=40 weight matrices

with each matrix having dimensions 18×64, shared in both downlink and uplink per FB iteration.

This clearly results in impractical feedback overhead.

7.4 RA and QA Exploration

In this set of simulations, we evaluate the RA and QA algorithms in Sections 6.2 and 6.3,

respectively. In Fig. 7.8, a network with N = M = 8, L = 2, and K = 3 is assumed. We fix the

numbers of FB and Jacobi iteration as X = 20 and Y = 10, respectively. Fig. 7.8 demonstrates

total transmit power vs. achievable rate per user satisfying 5% SINR outage probability in (7.1)
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Figure 7.8: Exploration of RA: total transmit power vs. achievable rate for N = 8,M = 8,L =
2,K = 3,X = 20 and Y = 10.

when RA is performed based on (6.2) and (6.3). Each curve is evaluated as the target SINR values

increase from 0 to 5 dB. As seen from Fig. 7.8, when d = 3 (i.e., an improper network), RA can

significantly improve the power efficiency, compared to the case without RA. The improvement of

power efficiency largely relies on the choice of the threshold value c. When d = 2 (i.e., a proper

network), RA, however, rarely improve the power efficiency. This is because sufficient degrees of

freedom are provided for the proposed FB algorithm to coordinate interference when the network

is proper.

In Fig. 7.9, we denote the network configuration as (N,M,L,K,d,Y ) for brevity and demon-

strate the distributed QA algorithm in Section 6.3 for two different network configurations, where

(8,8,2,3,2,10) models a proper network while (16,16,4,3,3,10) models an improper network.

The curves in Fig. 7.9 depict the achieved rate per user vs. FB iteration, which obeys 5% SINR
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Figure 7.9: Exploration of QA with ∆ = 10: achievable rate vs. FB iteration.

outage probability in (7.1). In every ∆ = 10 iterations, the algorithm adaptively adjusts the tar-

get SINR value according to (6.4). Seen from Fig. 7.9, the proposed QA can achieve gradually

increasing achievable rate per user along with the number of FB iterations.
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Chapter 8

Conclusions

This paper studied the general MCMU MIMO precoding and combining SGPM problem. Nec-

essary and sufficient conditions for the optimality of the MCMU MIMO SGPM problem have

been characterized by dividing the original problem into forward and backward SGPM subprob-

lems. The derived optimality conditions offer useful clues for designing a fully distributed FB

SGPM algorithm. The proposed distributed algorithm is based on solving the four fixed-point

equations stemming from the optimality conditions. The sufficient feasibility conditions for the

distributed algorithm have been established by leveraging the matrix inverse-positive theory. We

proposed closed-loop Jacobi power allocation and FB iterative precoder and combiner design al-

gorithms. The convergence of the proposed algorithm was analytically verified. Numerical studies

demonstrated the greatly improved power efficiency of the proposed algorithm for densely popu-

lated improper networks. It was shown that the proposed distributed technique combines power

efficiency and SGPM feasibility to address the convergence and SINR guarantees of the MCMU

MIMO spatial multiplexing systems. Practical issues such as distributed RA and QA were also dis-

cussed. The proposed distributed framework holds great potential to be adopted to next generation

small-cell networks.
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Appendix A

Justification for the considered QoS

The rate formula in (2.2) can be lower-bounded by

R`k =
d

∑
i=1

log
(

λi
(
Id +U∗`k

R`kU`k(U
∗
`k

Q`kU`k)
−1)) (A.1)

≥ log

(
d +

d

∑
i=1

λi
(
U∗`k

R`kU`k(U
∗
`k

Q`kU`k)
−1)) , (A.2)

where the inequality in (A.2) is due to the positive semi-definite property of R`k and Q`k , and it

holds for an arbitrary U`k . Thus, maximizing the r.h.s of (A.2) with respect to U`k does not alter

the inequality in (A.2), yielding

R`k ≥ max
U`k

log

(
d +

d

∑
i=1

λi
(
U∗`k

R`kU`k(U
∗
`k

Q`kU`k)
−1)) (A.3)

= max
U`k

log
(

d + tr
(
U∗`k

R`kU`k(U
∗
`k

Q`kU`k)
−1)), (A.4)

which is equivalent to the following optimization problem

max
U`k

tr
(

U∗`k
R`kU`k(U

∗
`k

Q`kU`k)
−1
)

subject to rank
(
U`k

)
= d.

(A.5)

A solution to the problem in (A.5) is given by [GL14][Algorithm 8.7.1]

U?
`k
= L−1

ν1:d
(
(L∗)−1R`kL−1) , (A.6)
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where Q`k = L∗L is the Cholesky decomposition of Q`k and ν1:d(A) extracts the first d dominant

eigenvectors of a matrix A. Given the solution in (A.6), the following holds

tr
(

U?∗
`k

R`kU?
`k
(U?∗

`k
Q`kU

?
`k
)−1
)

= d

 tr
(

U?∗
`k

R`kU?
`k

)
tr
(

U?∗
`k

Q`kU?
`k

)
 (A.7)

≥ d

 tr
(

U∗`k
R`kU`k

)
tr
(

U∗`k
Q`kU`k

)
 , (A.8)

The equality in (A.7) is due to U?
`k

in (A.6). Substituting U?
`k

for arbitrary U`k leads to (A.8).

Noticing that the trace ratio in (A.8) is the SINR measure in (2.3), the Shannon rate is now lower

bounded by

R`k ≥ log(d(1+ γ`k)). (A.9)

This completes the proof.
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Appendix B

Proof of Theorem 2

The Lagrangian of (3.1) is

L ({λ`k},{α`k},{U`k}), ∑
`k

α`k+∑
`k

λ`k

(
σ

2 + ∑
i j 6=`k

αi j‖U
∗
`k

H`k,iVi j‖
2
F−

α`k

ξ`k

‖U∗`k
H`k,`V̀ k‖

2
F

)
,(B.1)

where {λ`k} are the Lagrangian multipliers. Rearranging the order of the summations in (B.1)

gives

L ({λ`k},{α`k},{U`k}) = ∑
`k

λ`kσ2 +∑
`k

λ`k tr

(
U∗`k

(
α`k
λ`k

IM

+ ∑
i j 6=`k

αi jH`k,iVi jV∗i j
H∗`k,i
− α`k

ξ`k
H`k,`V`kV∗`k

H∗`k,`

)
U`k

)
, (B.2)

where (B.2) comes from the fact that ‖U`k‖2
F = 1,∀`k. From (B.2), the Lagrange dual function

G ({λ`k}) of (3.1) is given by

G ({λ`k}) = min
{α`k},{U`k}

L
(
{λ`k},{α`k},{U`k}

)
, (B.3)

which is always upper bounded by ∑
`k

α`k , i.e.,

G ({λ`k})≤∑
`k

α`k . (B.4)

Next, we show that the KKT conditions of (3.1), which are necessary, are indeed optimal for (3.1)

if the primal problem (3.1) is feasible. The KKT conditions of (3.1) are given by:
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First order necessary condition for U`k ,∀`k:

2λ`k

(
∑

i j 6=`k

αi jH`k,iVi jV
∗
i j

H∗`k,i +σ
2IM−

α`k

ξ`k

H`k,`V`kV∗`k
H∗`k,`

)
U`k = 000M×d. (B.5)

First order necessary condition for α`k ,∀`k:

1+λ`k tr
(

U∗`k
(− 1

ξ`k

H`k,`V`kV∗`k
H∗`K

)U`k

)
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i j 6=`k

λi j tr
(

U∗i j
Hi j,`V`kV∗`k

H∗i j,`
Ui j

)
= 0. (B.6)

Complementary slackness, ∀`k:

λ`k tr

(
U∗`k

(
∑

i j 6=`k

αi jH`k,iVi jV
∗
i j

H∗`k,i +σ
2IM−

α`k

ξ`k

H`k,`V`kV∗`k
H∗`k,`

)
U`k

)
= 0. (B.7)

The Lagrangian multiplier λ`k must be λ`k 6= 0, ∀`k, because otherwise equality in (B.6) does

not hold. By the feasibility of (3.1), there exists a tuple ({U?
`k
},{α?

`k
},{λ ?

`k
}) satisfying the KKT

conditions, such that

G ({λ ?
`k
}) = ∑

`k

λ ?
`k

σ2 +∑
`k

λ ?
`k

tr

(
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∗
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α?
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α?
i j

H`k,iVi jV∗i j
H∗`k,i
−

α?
`k

ξ`k
H`k,`V`kV∗`k
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)
U?
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)
. (B.8)

The duality gap is zero when α?
`k
= λ ?

`k
σ2,∀`k, i.e., G ({λ ?

`k
}) = ∑

`k

α?
`k

, because the second term

on the r.h.s. of (B.8) becomes zero due to (B.7). Therefore, strong duality of (3.1) holds and the

tuple ({U?
`k
},{α?

`k
},{λ ?

`k
= α?

`k
/σ2}) are the primal and dual solutions. Because under strong du-

ality, any pair of primal and dual optimal points must satisfy the KKT conditions [BV04][Chapter

5.5.3], the stationary condition in (B.5) and the complementary slackness in (B.7) are optimality

conditions that imply (3.2) and (3.3), respectively. This completes the proof.
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Appendix C

Proof of Theorem 3

We first show the existence of a joint optimal solution of the SGPM subproblems in (3.1) and

(3.4). Then, the proof for the coincidence between the joint optimal solution and the solution of

(2.7) follows.

Existence of a joint optimal solution

If the original SGPM problem (2.7) is feasible and has an optimal tuple
(
{U?

`k
},{V?

`k
},{α?

`k
}
)

,

substituting it into the forward SGPM subproblem (3.1) will make it feasible. Now, to show the

feasibility of the backward subproblem (3.4), we fix
(
{U?

`k
},{V?

`k
}
)

and formulate the forward

and backward power allocation problems:

min
{α`k}

∑
`k

α`k subject to γ
(DL)
`k

(
{α`k}

)
≥ ξ`k , ∀`k, (C.1)

and

min
{`k}

∑
`k

`k subject to γ
(UL)
`k

(
{`k}

)
≥ ξ`k , ∀`k, (C.2)

respectively. Due to the UD duality between (C.1) and (C.2) [WES06], if we let {ω?
`k
} be the

optimal solution of (C.2) we have the following equality

∑
`k

α
?
`k
= ∑

`k

ω
?
`k
. (C.3)
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This concludes that the backward SGPM problem (3.4) is also feasible for the tuple
(
{U?

`k
},{V?

`k
},

{ω?
`k
}
)

. Hence there exists a joint optimal solution for the forward and backward subproblems.

Coincidence between the optimal solution of (2.7) and the joint optimal solution of (3.1) and

(3.4)

First, we claim that the tuple
(
{U?

`k
},{V?

`k
},{α?

`k
}
)

optimal to (2.7) also jointly optimizes (3.1)

and (3.4). This claim can be shown by contradiction. If the tuple
(
{U?

`k
},{V?

`k
},{α?

`k
}
)

does not

jointly optimize (3.1) and (3.4), there exists at least another tuple, for example,
(
{Ú`k},{V?

`k
},

{ά`k}
)

that lowers the total transmit power of (3.1), i.e., ∑
`k

ά`k ≤ ∑
`k

α?
`k

, meaning that the total

transmit power of (2.7) can be further lowered. This contradicts the assumption that
(
{U?

`k
},{V?

`k
},

{α?
`k
}
)

is optimal for (2.7).

Conversely, we claim that the joint optimal solution of (3.1) and (3.4), denoted as
(
{Uo

`k
},{Vo

`k
},

{αo
`k
}
)

, also optimizes (2.7). First, assume the optimal solution of (2.7) is the tuple
(
{V?

`k
},{U?

`k
},

{α?
`k
}
)

, which is different from
(
{Vo

`k
},{Uo

`k
},{αo

`k
}
)

. This gives ∑`k
α?
`k
≤ ∑`k

αo
`k

for (2.7). If

we insert the tuple
(
{U?

`k
},{V?

`k
},{α?

`k
}
)

into (3.1) the total transmit power will be decreased to

∑
`k

α?
`k
≤ ∑

`k

αo
`k

. Moreover, fixing
(
{U?

`k
},{V?

`k
}
)

in (3.4) results in ∑`k
ω?
`k
= ∑`k

α?
`k
≤ ∑`k

ωo
`k
=

∑`k
αo
`k

due to (C.3). This contradicts the fact that the tuple
(
{Vo

`k
},{Uo

`k
},{αo

`k
}
)

is optimal for

(3.1) and (3.4).

Therefore, the joint optimal solution of (3.1) and (3.4) is equivalent to the optimal solution of

(2.7).
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Appendix D

Proof of Theorem 5

The proof consists of three constituent parts: (i) convergence of the objective, (ii) convergence of

the parameters to a limit point, and (iii) stationary point. We first prove the convergence of the total

transmit power value.

Convergence of the objective

We claim that (F1) and (P1) in the forward direction of the nth FB iteration do not increase the

transmit power budget,

∑
`k

α
(n−1)
`k

≥∑
`k

α
(n)
`k

, ∀n > 1. (D.1)

This claim can be shown as follows. After the filter optimization (F1), the target SINR values

satisfy ξ`k ∈S
(n)
`k

, ∀`k, i.e., Remark 1, and make the initial power allocation a(n)
(0) = 1LK feasible,

i.e.,

A(n)
(n−1)1LK � q. (D.2)

From (4.15), we have for m = 1,

a(n)
(1)=

(
ILK−

(
D(n)
(n−1)

)−1
A(n)
(n−1)

)
1LK+

(
D(n)
(n−1)

)−1
q. (D.3)

Rewriting the inequality in (D.2) as 1LK �
(
ILK −

(
D(n)
(n−1)

)−1A(n)
(n−1)

)
1LK +

(
D(n)
(n−1)

)−1
q leads to

1LK � a(n)
(1) due to (D.3). Because

(
ILK−

(
D(n)
(n−1)

)−1A(n)
(n−1)

)
� 0LK×LK , iterating the Jacobi recur-
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sion in (4.15) results in 1LK � a(n)
(m)

for m≥ 1. Therefore, Algorithm 1 converges to a solution

000LK×1 � a(n) � 1LK. (D.4)

Then Step 8 of Algorithm 1 gives

(
ααα

(n−1)
)T

1LK ≥
(

ααα
(n−1)

)T
a(n) =

(
ααα

(n)
)T

1LK, (D.5)

where ααα(n) = [α
(n)
11

, . . . ,α
(n)
LK

]T and the inequality in (D.5) is due to (D.4). This proves (D.1).

The backward iteration shares the same target SINR values and the same feasibility as the

forward iteration. Hence the precoder design (F2) does not alter its feasibility due to (4.20). More-

over, the uplink power allocation will not increase the total uplink power budget due to the UD

duality in (C.3). Because the total transmit power is bounded above 0, the objective converges.

Convergence of the parameters to a limit point

Suppose the objective has converged to the total transmit power value P? at the lth FB iteration.

We let the achieved solution at the lth FB iteration be {{U(l)
`k
},{V(l)

`k
},{α(l)

`k
},{ω(l)

`k
}}. Because the

proposed Algorithm 3 guarantees that {{U(l)
`k
},{V(l−1)

`k
},{α(l)

`k
}} satisfies (3.3), {{U(l)

`k
},{V(l)

`k
},

{α(l)
`k
}} must also satisfy (3.3); otherwise, the precoder update from {V(l−1)

`k
} to {V(l)

`k
} leads to a

reduced total transmit power value, which contradicts the fact that the total transmit power has con-

verged to P?. Due to the same reason, {{U(l)
`k
},{V(l)

`k
},{ω(l)

`k
}} satisfies (3.6). Provided the latter

setting, we show that {{U(l)
`k
},{V(l)

`k
},{α(l)

`k
},{ω(l)

`k
}} = {{U(l+1)

`k
},{V(l+1)

`k
},{α(l+1)

`k
},{ω(l+1)

`k
}}

below.

At the (l + 1)th forward iteration, the combiner is updated to U(l+1)
`k

according to (4.2). Due

to the convergence of the total transmit power, the updated U(l+1)
`k

leads to the strict equality

A(l+1)
(l) 1LK = q, i.e., (D.2). Otherwise, the proposed algorithm reduces total transmit power by
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(D.5), which is a contradiction. Therefore, the equality A(l+1)
(l) 1LK = q implies,

tr

(
(U(l+1)

`k
)∗
(−→

Q (l+1)
`k
− 1

ξ`k

−→
R (l+1)

`k

)
U(l+1)
`k

)
= 0,∀`k, (D.6)

where
−→
Q (l+1)

`k
, ∑i j 6=`k

H`k,iṼ
(l)
i j

(
H`k,iṼ

(l)
i j

)∗
+ σ2IM and

−→
R (l+1)

`k
, H`k,`Ṽ

(l)
`k

(
H`k,`Ṽ

(l)
`k

)∗
, which

have been defined in Lemma 2. Given the Cholesky decomposition
−→
Q (l+1)

`k
=L∗L, plugging U(l+1)

`k

in (4.2) into (D.6) gives

tr

(
ΓΓΓ
∗
(

IM×M−
1

ξ`k

(L∗)−1−→R (l+1)
`k

L−1
)

ΓΓΓ

)
= 0, (D.7)

where ΓΓΓ, ν1:d

(
1

ξ`k
(L∗)−1−→R (l+1)

`k
L−1

)
∈CM×d . Denoting (ε1,ε2, . . . ,εd) as the d-dominant eigen-

values of 1
ξ`k

(L∗)−1−→R (l+1)
`k

L−1 in descending order, the equality in (D.7) implies that the summa-

tion of the d-dominant eigenvalues of 1
ξ`k

(L∗)−1−→R (l+1)
`k

L−1 is equal to d, i.e., ∑
d
i=1 εi = d. Because

{{U(l)
`k
},{V(l)

`k
},{α(l)

`k
}} satisfies (3.3) for

−→
R (l+1)

`k
and
−→
Q (l+1)

`k
, we have

tr

(
(U(l)

`k
)∗L∗

(
IM×M−

1
ξ`k

(L∗)−1−→R (l+1)
`k

L−1
)

LU(l)
`k

)
=0. (D.8)

Then, (D.8) holds only if U(l)
`k

= U(l+1)
`k

=
L−1ν1:d

(
1

ξ`k
(L∗)−1−→R (l+1)

`k
L−1
)∥∥L−1ν1:d

(
1

ξ`k
(L∗)−1−→R (l+1)

`k
L−1
)∥∥

F

, ∀`k. Hence, after the

combiner update (F1) at the (l+1)th forward iteration, the following holds {{U(l)
`k
},{V(l)

`k
},{α(l)

`k
}}

= {{U(l+1)
`k
},{V(l)

`k
},{α(l)

`k
}}. Moreover, due to U(l)

`k
= U(l+1)

`k
, ∀`k, the power update (P1) at the

(l + 1)th forward iteration must satisfy {{U(l)
`k
},{V(l)

`k
},{α(l)

`k
}} = {{U(l+1)

`k
},{V(l)

`k
},{α(l+1)

`k
}},

i.e., α
(l)
`k

= α
(l+1)
`k

. The proof for V(l+1)
`k

= V(l)
`k

and ω
(l+1)
`k

= ω
(l)
`k
, ∀`k in the backward iteration

follows the exact same procedure as the forward iteration, so we omit it. Therefore, the solution

{{U(l)
`k
},{V(l)

`k
},{α(l)

`k
},{ω(l)

`k
}} is a limit point.
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Stationary point

We need to show that the limit point {{U(l)
`k
},{V(l)

`k
},{α(l)

`k
},{ω(l)

`k
}} satisfies the first-order nec-

essary conditions in (3.2)-(3.3) and (3.5)-(3.6). We have already proved that {{U(l)
`k
},{V(l)

`k
},{α(l)

`k
}}

and {{U(l)
`k
},{V(l)

`k
},{ω(l)

`k
}} satisfy, respectively, (3.3) and (3.6) in Appendix D. In what follows,

we shown that {{U(l)
`k
},{V(l)

`k
},{α(l)

`k
}} satisfies (3.2) and {{U(l)

`k
},{V(l)

`k
},{ω(l)

`k
}} satisfies (3.5).

The former is shown first.

Multiplying
(
U(l)
`k

)∗ to both sides of (3.2) gives

Id−
1

ξ`k

ΛΛΛd×d = 000d×d. (D.9)

The equality in (D.9) holds because U(l)
`k

in (4.2) diagonalizes
−→
R (l)

`k
to
(
U(l)
`k

)∗−→R (l)
`k

U(l)
`k

=ΛΛΛd×d and
−→
Q (l)

`k
to
(
U(l)
`k

)∗−→Q (l)
`k

U(l)
`k

= Id , respectively. For d = 1, 1
ξ`k

ΛΛΛ1×1 = 1 because {{U(l)
`k
},{V(l)

`k
},{α(l)

`k
}}

satisfies (3.3), which is equal to (D.9). For d > 1, we prove that {{U(l)
`k
},{V(l)

`k
},{α(l)

`k
}} satisfies

(3.2) by contradiction. If 1
ξ`k

ΛΛΛd×d is not equal to Id , it means that {{U(l)
`k
},{V(l)

`k
},{α(l)

`k
}} is not

a solution to (3.2). Then, in the next FB iteration, after filter updates, one can decrease the total

transmit power to P′ ≤ P? by (D.1). This contradict with the fact that P? is a limit point. Hence,

1
ξ`k

ΛΛΛd×d = Id and {{U(l)
`k
},{V(l)

`k
},{α(l)

`k
}} is the solution to (3.2). Because the same proof can be

extended to show that the {{U(l)
`k
},{V(l)

`k
},{ω(l)

`k
}} is the solution to (3.5), it is omitted. Therefore,

the proposed algorithm converges to a stationary point. This completes the proof.
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