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Abstract—Ultra-dense network deployment has been proposed
as a key technique for achieving capacity goals in the fifth-
generation (5G) mobile communication system. However, the
deployment of smaller cells inevitably leads to more frequent
handovers, thus making mobility management more challenging
and reducing the capacity gains offered by the dense network
deployment. In order to fully reap the gains for mobile users
in such a network environment, we propose an intelligent dual
connectivity mechanism for mobility management through deep
learning-based mobility prediction. We first use LSTM (Long
Short Term Memory) algorithm, one of deep learning algorithms,
to learn every user equipment’s (UE’s) mobility pattern from
its historical trajectories and predict its movement trends in
the future. Based on the corresponding prediction results, the
network will judge whether a handover is required for the UE.
For the handover case, a dual connection will be established
for the related UE. Thus, the UE can get the radio signal from
two base stations in the handover process. Simulation results
verify that the proposed intelligent dual connectivity mechanism
can significantly improve the quality of service of mobile users
in the handover process while guaranteeing the network energy
efficiency.

Index Terms—Deep Learning, LSTM, Mobility Prediction,
Mobility Management, Dual Connectivity, Ultra-Dense Network

I. INTRODUCTION

The fifth-generation (5G) mobile communication system
is expected to offer 1000-fold capacity increase compared
with the current 4G deployments, aiming at providing higher
data rates and lower end-to-end delay while supporting high-
mobility users [1]. To this end, ultra-dense network deploy-
ment has been proposed as a key technology for achieving the
capacity goal [2]. Compared with the conventional networks,
ultra-dense networks consist of a large number of small
cells, so as to offer higher throughput for static users [3],
while simultaneously bring challenging issues for moving
users [4]. Within ultra-dense networks, user equipment(UE)
in the mobility will frequently cross cells, thus attaching to
different base stations (BSs) to maintain the connection with
the serving BS providing strongest signal strength. In the
formal terminology, the whole procedure from one attached
BS to another is called a handover (HO).

Traditional HO adopts a passive trigger-based strategy,
making the mobile network no prior preparation. This posterior
handover incurs negative impact on both the user side and
the network side. On the user side, since an HO involves

intensive signaling interactions between the UE, serving BS,
target BS, and core networks, it usually leads to large delay
and obvious throughput reduction. On the network side, due
to its realistic loads, one target BS may reject the access
request from handover UEs in its busy period. Therefore, the
impact from both sides will decrease the quality of service
and possibly make the network densification in vain. Hence,
it is critical to design novel mobility management techniques.

There has been a substantial body of researches toward
solving this issue. Recently, it has been proved that human
mobility is predictable to some extent. Song et al. [5] quantita-
tively analyze the regularity of the moving trajectory using the
information theory. They find that the user mobility contains
93% potential predictability by calculating the conditional
entropy of the position sequence of one user’s history motion,
which illustrates the feasibility of learning users’ mobility pat-
terns through their history trajectory information. The authors
in [6] propose an adaptive HO Hysteresis Margin (HHM)
method to reduce the number of HOs. They use the predefined
Reference Signal Received Quality (RSRQ) threshold and
path-loss factor to adjust the HHM. The work in [7] studies
the HO process in two-tier macrocell-femtocell networks and
proposes a representative cost function-based algorithm, where
the function considers a weighted sum of parameters related to
UE speed, cell load and the number of user connections. Then,
the cost function results are integrated into a typical Received
Signal Strength (RSS)-based procedure as an adaptive factor to
change the HHM. The work in [8] introduces the fuzzy logic
to analyze and adjust the HO parameters. However, due to the
flaws of fuzzy logic itself, there are some inaccurate variable
descriptions in the calculation process, making the results
somewhat subjective. In a word, the aforementioned threshold-
tuning based algorithms lack systematic methodologies to op-
timize the HO-related parameters, which may hinder practical
applications. Another type of HO optimization strategies is
based on the user’s mobility status. The authors in [9] propose
a time-to-trigger parameter selection policy by assuming that
the user’s trajectory is already known and trying to balance
the handover failure probability and the ping-pong effect. The
authors in [10] put forward an approach for the prediction
of user’s movement direction and residence time in the target
cell to reduce unnecessary HOs. However, the prediction result
in [10] is obtained based on the current value only rather
than the complete history information, which decreases the
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prediction accuracy. In summary, the results in the literature
poorly leverage the merits in users’ historical mobility and lack
a more comprehensive combination between the prediction
results and the HO procedure.

In order to improve the HO performance of mobile users in
ultra-dense networks, this paper proposes an intelligent dual
connectivity mechanism for mobility management by taking
advantage of deep learning-based mobility prediction [11]
[12]. On one hand, we use LSTM (Long Short Term Memory)
scheme to fully learn the user’s mobile patterns from its history
trajectories and predict its movement trends in the future. On
the other hand, based on the mobility prediction results for a
UE, the network will start a dual connection between the UE
and two BSs (e.g., one serving BS and one BS for potential
HO). Therefore, some preparation could be made in advance
and the practical HO could be executed more efficiently.

This paper is organized as follows. In Section II, we describe
the proposed intelligent dual connectivity mechanism in detail.
Section III introduces the LSTM algorithm which we used for
mobility prediction. Section IV presents the simulation results
from different aspects. Section V concludes this paper.

II. DUAL CONNECTIVITY METHOD

A simplified schematic diagram of the proposed dual con-
nectivity architecture is illustrated in Fig. 1. The moving UE
is simultaneously connected to its source BS (serving BS)
and target BS. The serving BS contains both user-plane and
control-plane connection, while the target BS only transmits
user-plane messages. Therefore, for each dual-connected UE,
there is only a single connection toward the mobility man-
agement entity (MME), through the S1 interface that links
the serving BS to the core network (CN). However, the two
BSs can exchange radio resource control (RRC) configuration
messages via X2 link, which may be a wired or wireless
backhaul. Fig. 2 describes the specific process of the proposed
dual connectivity mechanism.

S1-MME

MME-SGW

Internet

Source BS Target BS

Fig. 1. A simplified architecture of dual connectivity

Basically, the user mobility model can be trained in advance
from the user’s history position data. Also when a mobile UE
is under service, the network (e.g., the mobility management
entity, MME) can make a prediction about its future position at
a certain moment based on the historical records. The training
and prediction process can be accomplished by LSTM-based
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Fig. 2. The concrete process of dual connectivity

deep learning scheme, which will be explained with details in
the next section. According to the spatial distribution of BSs
and the prediction result, the MME evaluates future RSS of
the UE and determine its best serving BS at that time, which
will lead to two situations. If there is no change of the best
serving BS for the UE, indicating that no HO is needed, then
the MME takes no action. Otherwise, the MME will check
the load status of the target BS and judge whether or not to
trigger a dual connection. If yes, the MME informs the source
BS to prepare for the dual connectivity.

However, due to the strong randomness of users’ mobility,
the prediction cannot be completely accurate sometimes. In
order to avoid the energy loss caused by unnecessary dual
connection, we establish a protection mechanism to deal with
any wrong prediction. Specifically, the dual-connected UE
continuously monitors the RSS of its source BS and target BS.
Thus, the UE could judge whether it is heading to the dual-
connected target cell and inform the MME of its measurement
result. Meanwhile, the MME will further re-train its prediction
algorithm based on the UE report. When the conventional
HO conditions are satisfied, the UE will execute the HO to
its target cell, after which the connection with the original
serving BS will be released and the target BS will become the
UE’s new serving BS. Then the UE maintains this strongest
connection with the current serving BS. On the contrary, if
the RSS from the target BS stays at a low level, the prediction
is likely to be wrong, then the UE reports the error message
to network and deletes the dual connection with the predicted
BS immediately.

III. DEEP LEARNING WITH LSTM SCHEME

Within the framework of deep learning, recurrent neural
network (RNN) has been widely used in time-series prediction.
However, it’s difficult for conventional RNN to make an
accurate prediction when it needs to remember long-term
memories. Therefore, the LSTM has been proposed to solve
the problem of long-dependency. In particular, the LSTM
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network is composed of multiple copies of basic memory
blocks and each memory block contains a memory cell and
three types of gates (input gate, output gate, and forget
gate). The memory cell is the key component of LSTM and
responsible for information transfer at different time steps.
Meanwhile, the three gates, each of which contains a sigmoid
layer to optionally pass information through, are responsible
for protecting and controlling the cell state. Specifically, the
input gate controls which part of the input will be utilized to
update the cell state. Similarly, the forget gate controls which
part of the old cell state will be thrown away, while the output
gate determines which part of the new cell state will be output.

𝐶𝑡−1

ℎ𝑡−1

𝑓𝑡 𝑖𝑡 𝑜𝑡

ℎ𝑡
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Fig. 3. LSTM memory block architecture

As shown in Fig. 3, for the memory block at time step
t, we use ft, it, and ot to represent the forget, input and
output gates respectively. Assume that xt and ht represent the
input and output at the current time step, ht−1 is the output
at the previous time step, σ represents the sigmoid activation
function, then the values of the three gates can be calculated
as:

ft = σ(Wf · [ht−1, xt] + bf ) (1)

it = σ(Wi · [ht−1, xt] + bi) (2)

ot = σ(Wo · [ht−1, xt] + bo) (3)

where Wf , Wi, Wo, bf , bi, bo are corresponding weight
matrices and variable biases of the three gates.

Then the process of updating information through the gate
structure can be divided into three steps. Firstly, multiplying
the value of forget gate ft by the old cell state Ct−1 decides
which part of the previous cell state Ct−1 should be thrown
away. Then, let us update the information in the cell state by
multiplying the value of input gate it by the new candidate
memory cell value C̃t:

C̃t = tanh(Wc · [ht−1, xt] + bc) (4)

Ct = ft ∗ Ct−1 + it ∗ C̃t (5)

where Wc, bc represent the weight matrix and variable bias
of the memory cell. Finally, multiplying the output gate ot by
the updated cell state Ct through a tanh function leads to the
output value ht:

ht = ot ∗ tanh(Ct) (6)

The output ht and cell state value Ct will be passed to the
memory block at the next time step.

LSTM

LSTM

LSTM

𝑥0

LSTM

LSTM

LSTM

𝑥1

LSTM

LSTM

LSTM

𝑥2

LSTM

LSTM

LSTM

𝑥𝑡

…

…

…

…

𝑂𝑡𝑂2𝑂1𝑂0

Layer-3

Layer-2

Layer-1

…

LSTM

LSTM

LSTM

𝑥

𝑂

Unfold

Fig. 4. The unfold structure of a three-layer LSTM neural network
which we used in our work

A deep recurrent neural network can be formed by stacking
multiple hidden layers. Fig. 4 shows the unfold structure of
a three-layer LSTM network, which we use for the task of
mobility prediction in our work. The first LSTM layer takes a
two-dimension position sequence as input and feeds the output
to the second layer, which in turn feeds its output to the last
LSTM layer to get the final result at each time step.

IV. PERFORMANCE EVALUATION AND SIMULATION
RESULTS

A. Dataset and Simulation Environment

There have been some discoveries on fundamental statistical
properties of human mobility [13], [14], such as heavy-tail
flights and pause-times, heterogeneously bounded mobility
areas, and etc. Based on these properties, a number of mobility
models have been proposed to generate similar trajectories
in real life [15]–[17]. Taking comprehensive consideration of
both practicality and complexity of these models, we refer
to the Self-Similar Least-Action Human Walk (SLAW) [16]
and the SMOOTH model [17] to generate our mobility data.
Specifically, we generate exclusive mobility pattern for each
user and capture their location for 12 hours at one-minute
granularity in the simulation area of 4000m*4000m each day.
At the same time, we consider a single-tier downlink cellular
network where the BSs are distributed according to the Poisson
Point Process with a density λ. Fig. 5 shows the simulation
area and the trajectory of a single user. For the sake of
simplicity, we use BPSK for modulation and demodulation.
In addition, the channel bandwidth, the noise power, the path-
loss exponent, and the transmission power of each BS is 10
MHz, 10−13 W, α = 4, 250 mW, respectively.

B. Mobility Prediction Results

We use the three-layer LSTM network discussed in Section
III to build exclusive prediction model for each user. We
take the user’s two-dimensional position coordinates of 720
minutes as input and push the time-series forward one minute
as standard output. Then the user’s position at the next minute
can be predicted by the trained model with current and
historical position data. The prediction result and the spatial
distribution of BSs will be utilized to determine whether an
HO is needed in the next minute. We measure the LSTM
performance by the HO prediction accuracy which is defined
as the ratio of the number of accurately predicted HOs to the
number of actual HOs. In order to compare the prediction
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Fig. 5. The simulation area(4000m*4000m) with cell density λ = 1
and the trajectory of a single user in a day. The red dotted line
describes the trajectory of the user. The gray dots and blue triangles
represent hotspots and BSs, respectively. The Voronoi lattice marks
the approximate reception area of each BS.

performance at different speeds, we consider the following
three types of UEs: low-speed with 1m/s, medium-speed with
4m/s, and high-speed with 8m/s. We train different LSTM
models for nine users, every three of them have the same
speed.

Fig. 6. Handover prediction results

The average handover prediction accuracy of different speed
is shown in Fig. 6(a). It can be observed from Fig. 6(a), with
the increase of cell density, the average handover prediction
accuracy of low-speed users always maintains at about 0.95,
while the accuracy of the other groups decreases, especially for
the high-speed group. This is consist with our intuition, since
high speed inevitably leads to mutations in the position data at
one-minute granularity. These mutations may result in some
deviation in prediction, making it more difficult to predict
handover when the coverage of cell is decreasing. Thus, we
believe there should be a special mechanism to guarantee the

handover of high-speed users, which will be learned as the
future work. The following simulation will only consider the
case of v=1m/s. Fig. 6(b) further shows the specific number
of actual HOs and accurate predicted HOs of the user with
v=1m/s at different cell densities, and indicates that LSTM
can predict most of the actual HOs.

C. Performance

In this section, we present our simulation results to validate
the advantage of our proposed intelligent dual connectivity
over conventional handover. Therefore, we only consider the
actual handover process in the trajectory data up to 720
minutes. For comparison purposes, we also take account of
the ideal dual connectivity, which implies each handover can
be predicted successfully.

Fig. 7. Average throughput and BER in the HO process (v = 1m/s)

Fig. 7(a) presents the average throughput of the UE in the
HO process. It can be observed that at the same cell density,
the actual dual connectivity achieves much higher throughput
than the single connectivity, and slightly less than the ideal
dual connectivity. This is because, during the HO process, the
RSS from the serving BS will gradually decrease as the UE
moves away from it. However, the UE can get increasing signal
from its target BS at the same time if the dual connectivity
has been established successfully in advance.

The bit error rate (BER) of our proposed mechanism is
shown in Fig. 7(b). For a dual-connected UE, we assume its
BER is the product of the BERs of both attached BSs, since the
error happens only when the signals for both connected BSs
are wrong. As expected, the actual dual connectivity yields
significantly lower BER than the single connectivity when the
cell density is less than 30/km2. As the cell density increases,
the difference in BER gradually becomes more narrow. This
is because densely deployed BSs have already made the BER
of single connection rather low so that the gain from dual
connectivity is not obvious.



5

Fig. 8. Energy efficiency in the HO process (v = 1m/s)

In Fig. 8, we evaluate the performance of network energy
efficiency (EE), which is defined as the ratio of traffic rate to
the energy consumption. In general, the EE increases first and
gradually reaches saturation with the increase of cell density.
At the same time, both actual and ideal dual connectivity
yield some EE improvement to single connectivity, indicating
that the throughput gain from dual connectivity is enough to
fully compensate for the extra energy consumption. Thus the
proposed dual connectivity mechanism has a positive effect in
terms of the energy efficiency.

Fig. 9. Comparison of dual connectivity and single connectivity on
throughput, bit error rate, and energy efficiency

Fig. 9 intuitively shows the gains of dual connectivity in
terms of throughput, BER, and EE. It can be observed that
the gains increase first and then decrease as the cell density
increases. This is because the high cell density environment
has already achieved good performance, thus making the dual
connectivity gains not obvious. For a dual-connected UE, it
can get at least 85% throughput gain and up to 40% BER
gain in most cases. Meanwhile, the energy efficiency is also
slightly improved, especially when the cell density is between
10/km2 and 15/km2. This means the proposed mechanism can
bring significant benefits for mobile users in handover process
while guaranteeing the network energy efficiency.

V. CONCLUSION

In this paper, we have proposed an intelligent dual con-
nectivity mechanism for mobility management in single-tier
dense cellular networks. We have used LSTM scheme to
learn the user’s mobile patterns from its historical trajectories
and predicted its movement trends in the future. We have
shown high handover prediction accuracy for low-speed and
medium-speed users. Based on extensive simulations, we have
also verified that the intelligent dual connectivity can bring
significant gains in both throughput and bit error rate, thereby
improving the QoS of mobile users, while guaranteeing the
network energy efficiency. For future work, we will evaluate
the performance of our intelligent dual connectivity mecha-
nism on real data. We will also extend the dual-connection to
multi-connection and introduce the reinforcement learning to
control the connection strategy.
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