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Abstract—This paper introduces a method for unsupervised
tokenization of Controller Area Network (CAN) data payloads
using bit level transition analysis and a greedy grouping strategy.
The primary goal of this proposal is to extract individual time
series which have been concatenated together before transmission
onto a vehicle’s CAN bus. This process is necessary because
the documentation for how to properly extract data from a
network may not always be available; passenger vehicle CAN
configurations are protected as trade secrets. At least one major
manufacturer has also been found to deliberately misconfigure
their documented extraction methods. Thus, this proposal serves
as a critical enabler for robust third-party security auditing and
intrusion detection systems which do not rely on manufacturers
sharing confidential information.

Index Terms—Controller Area Network, CAN, embedded sys-
tems, Cyber Physical, Lexical Analysis, Reverse Engineering,
Passenger Vehicles

I. INTRODUCTION

Current production vehicles are becoming as much software

as they are hardware. Their networks now feature optional

persistent Internet connections and are complex enough to

support emerging technologies such as autonomous driving

and Vehicle-to-Everything (V2X) applications [1]. Mass pro-

duction of vehicles with Internet accessible computers capable

of controlling all aspects of the vehicle makes incorporating

and validating defense in depth cyber security techniques a

practical necessity.

Bug bounty programs, Cyber Emergency Response Teams

(CERT), and widely attended ’hacker’ conferences are all

strong evidence that independent research is an essential part

of developing and validating robust cyber security practices.

We assume that the computing systems and networks used

in the automotive industry are no exception to needing third
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party security auditing to establish and improve robust defense

in depth security measures. Third party research also ensures

that accidental or deliberate network flaws such as the 2015

Volkswagen emission scandal are identified and corrected

more quickly [2]. To that end, we intend the methods presented

in this paper to address the absence of a CAN payload tok-

enization technique. Without an effective payload tokenization

technique, third party research is limited to manual reverse

engineering a small set of vehicles and hoping those are rep-

resentative of the broader market, using methods which ignore

the useful information present in CAN payloads, or somehow

gain access to confidential manufacturer specifications.

II. BACKGROUND

A. Automated Network Traffic Reverse Engineering

The concept of automated protocol reverse engineering

using observed network traffic is an active area of research.

However, practically all published research is focused on

analyzing a heterogeneous mix of text-based application layer

protocols with the goal of facilitating deep packet inspection

[3]–[7]. The approach presented in this paper is based on

analyzing payloads of a single known protocol-Controller Area

Network (CAN)-which is not text-based. The key difference

is the difficulty of lexical analysis.

We propose the difference between translating sentences

written using Japanese Katakana and English is a reasonable

analogy to the difference between existing research and the

problem addressed by this paper. Automated translation of

either language certainly shares similarities once the words in

a sentence and their ordering have been identified. However,

with text-based network protocols and English there is a

finite set of delimiters that are almost always present between

‘words’. Thus, the lexical analysis phase proposed in [3]–[7]

and related work is almost always a trivial process using a

set of delimiter characters known a priori. Sentences written

with Japanese Katakana and CAN payloads do not use explicit
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delimiters. This makes ‘word’ discovery non-trivial in these

contexts.

The approach proposed by Markovitz and Wool is the only

published method found to address the problem of automated

reverse engineering of CAN protocol payloads [10]. Markovitz

and Wool proposed a brute force search followed by heuristic

selection using the number of unique values present in each

time series considered. The authors reported that this lexical

analysis method had poor accuracy using self generated net-

work data. Thus, the reverse engineering pipeline presented

in this paper is assumed to be the first proposal for robust

automated reverse engineering of non-text network protocol

payloads.

B. Tokenization

The term tokenization is taken from compiler design in

computer science. Compilers are the software which converts

a program into a series of operations that can run on computer

hardware [8]. Lexical analysis is the first step of a compiler

which uses human readable programming code as an input.

The tokenization process identifies the individual logical units,

or tokens, that code consists of. For example, the following

program code results in the nine tokens ‘for’, ‘x’, ‘in’, ‘range’,

‘(’, ‘0’, ‘,’, ‘10’, ‘)’:

for x in range(0, 10)

If the f and o in the token ‘for’ are incorrectly separated

during tokenization, then the following steps in the compiler

will fail. The compilation should also fail if the tokens ‘for’

and ‘x’ are not separated during tokenization.

We define the tokenization of CAN data as the process of

identifying the logically distinct time series present within

message payloads using the same arbitration ID. The term

time series is taken from the National Institute of Science and

Technology (NIST) definition of a univariate sequence of val-

ues ordered by the time observed [9]. Examples of time series

in a vehicle might be measurements by an Electronic Control

Unit (ECU) monitoring the front right wheel’s rotations per

minute (RPM), steering wheel angle, or engine RPM. We will

refer to individual time series extracted through tokenization

simply as signals for the remainder of this paper.

As an example, imagine the RPM signal for two of a

vehicle’s wheels and a checksum are all contained in the set

of 64-bit payloads using a CAN arbitration ID of 0xA15. The

two RPM measurements and checksum are 8-bit signals. A

possible tokenization would be the set of start and stop indices:

(0, 7), (8, 15), (56, 63). The bit positions 16 through 55 are

padding bits which are consistently 1 or 0 in every observed

payload using ID 0xA15. Figure 1 depicts this hypothetical

tokenization scenario.

We empirically found that tokenization is necessary to

correctly interpret CAN message payloads. This is because a

series of payloads using a shared arbitration ID often contains

multiple sensor readings concatenated together. This obser-

vation is echoed by other third party CAN research findings

[10], [11]. Thus, we define the input of CAN tokenization as

Fig. 1. Example of a CAN payload tokenization

a series of chronologically-ordered CAN message payloads

present in a sample of CAN network traffic which share the

same arbitration ID. We assume payloads for each ID always

use the same bit-width (e.g., the payload is always 64-bits) and

logical formatting. This assumption is based on our empirical

analysis of eight vehicles produced for the United Sates market

and the findings of Miller and Valasek [11]. The output of

CAN tokenization is the set of bit positions within the payload

that bound each logically-distinct signal.

Correct payload tokenization and classification of CAN sig-

nals enables a broad range of findings. For example, extracting

the brake pedal position signal from a CAN bus is sufficient

to identify who is driving the vehicle out of a population

of known drivers [12]. Using the signal type, transmission

frequency, and other features may be sufficient to fingerprint

specific Electronic Control Unit (ECU) hardware in a similar

fashion. Automating the process of fingerprinting particular

ECUs could lead to rapidly, passively, and cheaply identifying

vehicles affected by published ECU firmware vulnerabilities.

Again, the first step to achieving such results is the tokeniza-

tion of CAN payloads.

III. RESEARCH METHOD

A. Transition Analysis

The goal of this initial CAN payload tokenization proposal

is to correctly extract continuous numerical signals transmitted

over a vehicle’s CAN bus. We assume the preponderance of

payloads produced in production CAN networks are mostly

comprised of continuous and categorical data. This assumption

is again based on empirical research of eight production vehi-

cles and the work done by Miller and Valasek [11]. Extracting

continuous numerical signals from a heterogeneous population

of continuous and categorical signals achieves three important

objectives. First, it provides the continuous numerical signals

as a ready-to-analyze output. Second, removing these signals

reduces the bit width of the remaining payload segments

which need to be tokenized. Third, removing continuous data

from observed CAN payloads allows methods targeted for the

tokenization of categorical data to operate with the assumption

that the data set is a homogeneous population of categorical

data.

The reason continuous numerical signals can and should

be targeted first is because there’s a predictable relationship

between bit positions used to convey continuous numerical

data. Numerical data can be represented with a binary protocol

like CAN using a range of encoding schemes such as unsigned

values or signed values using two’s compliment, one’s com-

pliment, signed magnitude, and more. The common feature

of these various encoding schemes is the notion that bits are



TABLE I
EXAMPLE BOOLEAN MATRIX OF PAYLOADS FOR A SINGLE ARB ID

Observation
Bit Position

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 1 0

3 0 0 0 0 0 0 1 1

4 0 0 0 0 0 1 0 0

5 0 0 0 0 0 1 0 1

6 0 0 0 0 0 1 1 0

7 0 0 0 0 0 1 1 1

8 0 0 0 0 1 0 0 0

9 0 0 0 0 1 0 0 1

ordered from a least significant bit (LSB) to a most significant

bit (MSB). The LSB represents the 20’s place and the MSB

represents the 2n−1’s place where n is the bit width being

used.

We empirically found that vehicle sensors sampling contin-

uous real world processes such as velocity, pedal position,

and steering angle many times a second using numerical

data will produce approximately continuous numerical time

series. To say this another way, vehicle sensors measuring

locomotion will report numbers that have small differences

between sequential samples. RPM will not jump between

1,200, 7,000, back down to 2,000, and then 5,000 within

one second unless the engine might be exploding. Rather, a

generally smooth increase from one value to another will be

observed such as 2,000 to 2,032 and then 2,053 RPM.

The use of bit ordering from LSB to MSB and the ap-

proximately continuous numerical nature of signals produced

by locomotion related ECUs causes predictable relationships

to form between neighboring bit positions within CAN pay-

loads. Transition analysis can quantify this predictability for

unsupervised payload tokenization.

A bit position transitions when it flips between 1 and 0

in chronologically-sequenced CAN payloads using the same

arbitration ID and bit width. Bit level transition analysis can

be efficiently calculated by storing observed payloads into an

M ×N boolean matrix. M is the number of row vectors with

one row per observed CAN message payload. N is the bit

width of the payloads with column vectors representing the

relative bit positions within the payloads. See Table I for an

example of a 10 x 8 boolean matrix representing 10 samples

of an 8-bit payload.

By performing an exclusive or (XOR) of each sequential

pair of row vectors in such a boolean matrix, a transition

matrix is the created with M − 1 rows and 1s anywhere a bit

transition occurred. Table II is the transition matrix produced

from Table I. In this example the 0th row vector is XORed

with the 1st row vector.

0 0 0 0 0 0 0 0

⊕ 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

TABLE II
EXAMPLE TRANSITION MATRIX AND TRANSITION AGGREGATION

XOR Result
Bit Position

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

Obs. 0⊕ 1 0 0 0 0 0 0 0 1

Obs. 1⊕ 2 0 0 0 0 0 0 1 1

Obs. 2⊕ 3 0 0 0 0 0 0 0 1

Obs. 3⊕ 4 0 0 0 0 0 1 1 1

Obs. 4⊕ 5 0 0 0 0 0 0 0 1

Obs. 5⊕ 6 0 0 0 0 0 0 1 1

Obs. 6⊕ 7 0 0 0 0 0 0 0 1

Obs. 7⊕ 8 0 0 0 0 1 1 1 1

Obs. 8⊕ 9 0 0 0 0 0 0 0 1

TANG 0 0 0 0 1 2 4 9

The 1st row vector is XORed with the 2nd row vector and

so on for all sequential row vectors in the boolean matrix.

Summing the 1s in each column vector (bit position) of

the transition matrix produces a 1 × N row vector. For the

remainder of this proposal this summary row vector will be

referred to as a Transition Aggregation N-Gram (TANG).

B. Greedy Bit-Position Grouping

Bit positions with the largest transition count in a TANG

might be the LSB of a numerical signal within the CAN

payloads. If a LSB and its neighboring bit positions represent

a monotonically-decreasing gradient of transition counts in

a TANG, this is evidence that they belong to the same

continuous numerical signal. This behavior is demonstrated in

the TANG produced from Table I. Bit position 20 was the LSB

of the bit positions representing the unsigned integer sequence

counting from 0 in row 0 to 9 in row 9.

Algorithm 1 presents a greedy strategy for clustering bit

positions suspected of being a continuous numerical signal

using TANGs. The benefits of this greedy approach are the

ability to work with the univariate format of TANGs, no

requirement to specify the number of signals in a payload,

and no reliance on heuristics or a priori knowledge of the

CAN payload. It is possible to implement Algorithm 1 without

sorting a copy of the TANG or using nested loops; however,

this slightly more inefficient version is presented to allow for

a conceptually straightforward written explanation.

Algorithm 1 begins by sorting a TANG by observed transi-

tion count on line 6. This sorted list of bit positions is placed

in a stack (a last in-first out data structure) with bit positions

that transitioned the most frequently at the top of the stack.

The stack is iteratively popped on lines 9 and 10 until all bit

positions have been considered. When a bit position is popped

from the top of the stack, the conditional statement on line 11

uses the ‘complete’ list to check if it is already clustered. If

not, the assumption is made that this bit position is the least

significant bit (LSB) of a signal. Lines 12 through 15 create

a new cluster with this bit position.

The nested loop on lines 16 through 21 then consider

all bit positions on the left-hand or right-hand side (endian

dependent) of the new LSB. These neighbor bit positions

are added to the new cluster of bit positions while they



Algorithm 1 Greedy Payload Tokenization Using Its TANG

Require: A 2xN matrix with one row of bit position indices

and a corresponding row for the TANG. The columns

represent the 0th to n-1 bit positions of a particular

arbitration ID’s CAN payloads.

1: if data payload is assumed to use big-endian then

2: offset ← −1
3: else

4: offset ← 1
5: end if

6: stack ← sort by transition count(TANG)
7: clusters ← [ ]
8: complete ← [ ]
9: while stack not empty do

10: current ← stack.pop

11: if current.index not in complete then

12: cluster ← [ ]
13: cluster.append(current)

14: complete.append(current.index)

15: neighbor ← TANG[current.index + offset]

16: while neighbor.transitions ≤ current.transitions do

17: cluster.append(neighbor)

18: complete.append(neighbor.index)

19: current ← neighbor

20: neighbor ← TANG[neighbor.index + offset]

21: end while

22: clusters.append(cluster)

23: end if

24: end while

25: return clusters

represent a monotonically-decreasing gradient of transition

values in the TANG. The ‘less than or equal’ transition count

comparison on line 16 could be replaced with an adjustable

maximum difference threshold. Once all bit positions have

been considered, the clusters are returned as output. Each

cluster of bit positions represent an educated guess about

where continuous numerical signals exist in the arbitration

ID’s payloads. The maximum difference threshold method was

used when producing findings and examples for this paper.

IV. FINDINGS

A. Anecdotal Results of Greedy CAN Payload Tokenization

In this section several anecdotal examples of TANGs and the

results of Algorithm 1 are presented based upon approximately

10 minutes of CAN network traffic collected from a 2012

model year minivan being operated in city driving conditions.

This vehicle is one of eight model year 2008 or later passenger

vehicles studied. This sample population of vehicles includes

sedans, sport utility vehicles, pickup trucks, and minivans.

These vehicles used traditional gasoline internal combustion

or hybrid powertrains; no diesel vehicles were studied. Two

vehicles were equipped with a manual transmission. While the

CAN network in each vehicle studied is at least superficially

unique, we found Algorithm 1 achieved similar success across

Fig. 2. An Example of an Easily Tokenized Payload

Fig. 3. A Payload With Two Time Series Concatenated Together

all of the vehicles. Due to space limitations, only anecdotal

results from one vehicle will be presented.

These findings are deliberately presented as anecdotal re-

sults as opposed to a qualitative evaluation using synthesized

data. Providing specific qualitative performance statistics for

Algorithm 1 using synthetic (but known) CAN traffic is

unhelpful at best and misleading at worst. The fundamental

problem being addressed by this paper is a lack of a priori

knowledge of the CAN network beyond the CAN protocol

specification. Creating a testbed CAN network and explicitly

or implicitly claiming it is representative of all production ve-

hicle CAN networks for the purposes of validating Algorithm

1 is a non-trivial claim. Unfortunately, further exploring the

interesting problem of creating a sufficiently ‘representative’

CAN network is also beyond the scope and length limits of

this paper.

Figures 2 and 3 are examples of CAN payloads with

continuous numerical signals targeted by Algorithm 1. With

the exception of the bottom plot in each figure, these plots

represent each logically distinct time series present in the

payloads of the listed arbitration IDs. These time series plots

represent a non-overlapping subset of bit positions present in

the total payload size shown in the TANG plot at the bottom

of each figure. The vertical axis of these time series plots is

the unsigned integer interpretation for the indicated cluster of

bit positions within each payload. The horizontal axis is the

chronological index of the payloads observed in the sample.



Fig. 4. An Example of Tokenization Consistency and Time Series Similarities

Thus, these time series plots can be read from left to right as

the unsigned integer value that cluster of bit positions took on

as time progressed in the driving sample.

The TANG plot at the bottom of each figure is a graphical

representation of the TANG for the listed arbitration ID. The

vertical axis of this TANG plot is the min-max normalized

transition count (transitions divided by total observations) for

each bit position in the eight byte payloads. Higher values

on this vertical axis indicate the bit position marked by the

horizontal axis transitioned more frequently. The horizontal

axis indicates the total bit positions in the series of observed

payloads.

Vertical dashed lines indicate the most significant bit (MSB)

of a signal identified by Algorithm 1. The LSB of each signal

is not explicitly identified to avoid clutter. However, both the

LSB and MSB are explicitly listed in the sub-title of each time

series plot. Grey points in the TANG plot indicate possible

padding bits observed in the CAN data sample; these bit

positions never transitioned in the driving sample.

Figure 4 is an example of how time series similar to those

seen Fig. 2 and Fig. 3 are consistently tokenized by Algorithm

1 across multiple arbitration IDs in a production vehicle. We

found the phenomenon of similar time series being present to

occur in all eight vehicles studied.

V. FUTURE WORK

In the future we will present an unsupervised pipeline for

identifying and clustering continuous numerical signals ex-

pected to be correctly tokenized by the proposed tokenization

strategy. This pipeline was used to generate the signal cluster

in Fig. 4. The pipeline will be used to rapidly produce a

large data set of accurately tokenized time series present in

production CAN networks. That empirical data set will be

used to formulate a ‘gold standard’ labeled data set as part

of a proposal for robust validation of tokenization or intrusion

detection algorithms for cyber-physical systems using CAN.

VI. CONCLUSION

This paper introduced the idea of CAN payload tokenization

and motivated the need for such a pipeline. Section III pro-

posed an efficient method of quantifying predictable bit level

relationships in CAN payloads using Transition Aggregation

N-Grams (TANGs). A greedy strategy was proposed as a proof

of concept for how TANGs can be used to automate CAN

payload tokenization. Section IV presents three examples of

Algorithm 1’s performance with real world CAN data.

Payload tokenization techniques are sorely needed for third-

party research in domains using CAN and similar protocols.

This proposal partially addresses that shortfall.
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