

AUTONOMOUS VEHICLE SCHEDULING AT INTERSECTIONS BASED ON

PRODUCTION LINE TECHNIQUE

A Thesis

Presented

to the Faculty of

California State University Dominguez Hills

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

 Computer Science

by

Nasser Aloufi

Spring 2018

ii

ACKNOWLEDGEMENTS

I would like to thank all the professors that contributed their times and knowledges to

educate me and make me a better person. I am grateful to my mother, father, brothers,

and sisters who have provided me with all kinds of support in my life. Special thanks to

the Department Chair Dr. Mohsen Beheshti, and to my professor Dr. Amlan Chatterjee

for being professional and sharing their knowledge about my research topic. Thank you

Bonnie for your sweet soul, encouragement, and making me smile ^_^.

iii

TABLE OF CONTENTS

PAGE

ACKNOWLEDGEMENTS ... ii

TABLE OF CONTENTS ... iii

LIST OF TABLES ... iv

LIST OF FIGURES ...v

ABSTRACT ... vi

CHAPTER

1. INTRODUCTION. ..1

Background Survey ..3

2. PROBLEM DESCRIPTION AND METHODOLOGY ..6

Testing Current Model ...9

3. THE PROPOSED SYSTEM ...13

Related Problems and Solutions ..15

Simulation and Result ..19

4. CONCLUSION AND FUTURE WORK ...30

REFERENCES ..31

APPENDICES ..37

A: QUEUE FLOW CODE ...38

B: AIM TESTING CODE ..45

C: PRODUCTION LINE SCHEDULING CODE ...61

iv

LIST OF TABLES

 PAGE

1. Features and Initial Data ..20

2. Lane A1 and A2 Instances ..23

3. Lane B1 and B2 Instances...25

4. Turn Predictions For Lane A1 and Lane A2 ...27

5. Turn Predictions For Lane B1 and Lane B2 ...28

6. First Five Vehicles ..28

v

LIST OF FIGURES

 PAGE

1. Stages of automation ...2

2. Process for AIM driver agent to make a reservation ..5

3. The structure of the current system ...7

4. Phases of proposed research methodology ...9

5. Point of collision between vehicles A and B ..10

6. Expected number of potential collisions for every vehicle ...11

7. The waiting time for every vehicle ...12

8. The architecture of the proposed system ..13

9. Production line intersection ..14

10. Algorithm of our system ..15

11. Varying speed between two intersections ..16

12. The intersection flow before and after applying the average speed17

13. Areas of changing the speed ..17

14. The vehicle in yellow triangle is going to make a right turn when K=318

15. Experiment virtual intersection ..20

ABSTRACT

This thesis considers the problem of scheduling autonomous vehicles at

intersections. A new system is proposed which is more efficient and could replace the

recently introduced Autonomous Intersection Management (AIM) model. The proposed

system is based on the production line technique. The environment of the intersection,

vehicles position, speeds, and turning are specified and determined in advance. The goal

of the proposed system is to eliminate vehicle’s collision and reduce the waiting time to

cross the intersection. Three different patterns of traffic flow towards the intersection

have been tested. The system requires less waiting time, compared to the other models,

including the random case where the flow is unpredictable. The K-Nearest Neighbors

(KNN) algorithm has been used to predict vehicles making a right turn at the intersection.

The experimental results show there is no chance of collision inside the intersection using

the proposed model; however, the system might require more space in the traffic lane for

some specific traffic patterns.

1

CHAPTER 1

INTRODUCTION

There has been a steady increase in the number of vehicles on roads for the last

few decades. This has led to a surge in traffic congestion that has resulted in increased

delays in travel time. With the advent of technology in vehicles leading to automation,

problems related to traffic congestion can be addressed using novel methods. In the near

future vehicles are expected to be completely autonomous. The necessity of creating

autonomous vehicles and intelligent transportation systems is more relevant than ever

before. An infrastructure for such an intelligent system can be created by making vehicles

interact with each other and adjusting their routes according to the traffic flow.

The development of autonomous vehicles has six stages (SAE, 2016). Stage 1 is

the “no automation” phase, where a human being is responsible for all the driving tasks

without involving any automation. Stage 2 is the “driver assistance” phase, where the

system is responsible for the simple tasks such as steering and acceleration or

deceleration. The “partial automation” is the third stage. This phase is a continuation of

stage 2 with some additional features such as cruise control and lane centering. Stage 4 is

the “conditional automation” phase, where the autonomous driving system performs all

tasks; however, a human being should be standing by, in case anything goes wrong. Stage

5 is the “high automation” phase, where the vehicle operates autonomously in all

conditions inside the domain of traffic management. Any scenario that happens in this

domain, the vehicle should be able to handle it autonomously. Finally, we have the

2

“complete automation” stage where human intervention is not needed. In this phase, the

system’s performance is equivalent to that of a human being in all scenarios without any

constraints.

It is expected that all vehicles will reach the full automation stage and work

without any human intervention by the year 2035 (Bimbraw, 2015). The Institute of

Electrical and Electronics Engineers (IEEE) claims that driverless vehicles will be the

most viable form of intelligent transportation. They estimate that up to 75% of all

vehicles around the world will be autonomous by the year 2040 (IEEE News Releases

2012). The sequence of the stages as described above is shown below in Figure 1.

Figure 1. Stages of automation. Developed by thesis’s author.

3

In the recent years (specifically after 2008), many researches have contributed to

overcome the issues of developing a scheduling system for autonomous vehicles. In the

following section, we discuss some of the relevant contributions.

Background Survey

In 2008, Defense Advanced Research Projects Agency (DARPA) organized an

event which required teams to build autonomous vehicles that have the ability to drive in

traffic, make maneuvers, and park. This was the first event where autonomous vehicles

make interaction between manned and unmanned vehicles in a real environment

(Archive.darpa.mil, 2017). VisLab in Italy contributed significant amount of research in

the area of autonomous vehicles. They made numerous advance driver assistance systems

(Chen et al., 2009; Cerri et al., 2010; Medici et al., 2008; Bertozzi, Broggi, & Fascioli,

2006), and created prototype vehicles such as ARGO (Bertozzi et al., 1998), TerraMax

(Chen et al., 2009; Braid et al., 2006; Chen et al., 2008) and BRAiVE (Bombini et al.,

2009; Grisleri & Fedriga, 2010).

In 2013, an Italian team consisting of four scientists made a long trip experiment

with four autonomous vehicles (Bertozzi et al., 2013). The trip took place from Italy to

China crossing more than 15,000 km for three consecutive months. The result of their

experiment revealed three major challenges: (1) the autonomous vehicle had issues while

making maneuvers; (2) being one of the few vehicles that follow the street rules might

cause a long waiting time; (3) it is hard to combine autonomous with non-autonomous

vehicles in the same environment.

4

An intersection algorithm model based on Mixed-Integer Linear Program (MILP)

controller has been proposed (Fayazi et al., 2017). The contributions of this research

were: (1) an algorithm that predicts vehicle arrivals; (2) applying mixed-integer linear

program; (3) developing a simulation based on the proposed MILP controller. For

maneuvering and changing lanes, a politely change lane (PCL) technique has been

proposed (Hu et al., 2012). The main goal of PCL is to provide safety and efficiency

while maneuvering and changing lanes.

In 2013, a self-organizing control framework for driverless vehicles was proposed

based on the cooperative control framework and intersections as agent systems

(Mladenovic & Abbas, 2013). The distributed intelligence was used to get the vehicle’s

velocity. The priority level system determines the first vehicle that passes the intersection

and then adjusts the velocity of the following vehicle. The complexity of the scheduling

problem has been studied using simulation based on the AIM framework (Yan et al.,

2014). In this method, the problem of autonomous vehicles scheduling has been

converted to a single machine scheduling problem; this fact has been used to prove that it

is an NP-hard problem.

A new intersection control mechanism called Autonomous Intersection

Management (AIM) was proposed (Dresner & Stone, 2008). The research results propose

making a smart intersection controlling system, which would lead to vehicles’ flow being

more efficient than the current situation (traffic signals and stop signs). In this

framework, the drivers and the designed intersections should be treated as agents. The

system could have more than one agent resulting in a Multi Agent Systems (MAS).

5

Figure 2. Process for AIM driver agent to make a reservation. Adapted from “A

multiagent approach to autonomous intersection management” by Dresner. K,

and Stone. P, 2008, Journal of artificial intelligence research, 31, p. 597.

The MAS includes all the interacting elements in the environment such as drivers,

pedestrians, speeds, and road signs. Whenever a vehicle wants to reserve a place in the

intersection, it sends a request to the intersection manager, and the intersection manager

takes an action by either accepting or rejecting the vehicle’s request. Figure 2 shows the

functionality of the AIM system.

6

CHAPTER 2

PROBLEM DESCRIPTION AND METHODOLOGY

It requires a complex mechanism to make all vehicles go through an intersection

safely. We need to take into account the speed, timing, distance, the chance of collision,

and the appropriate response needed in case of a collision. In AIM and similar systems,

the vehicle sends a request to the intersection manager asking for permission to go

through the intersection. The intersection manager must make one of the following

decisions: (1) accept vehicle’s request (when the vehicle meets the requirements); (2)

reject vehicle’s request (when the vehicle fails to meet all the requirements). The rejected

request has two options too: (a) requires the vehicle to accelerate or decelerate (in this

case the vehicle should send a new request to the intersection manager); (b) requires the

vehicle to stop due to requirements failure. Figure 3 shows a general overview of the

current scheduling model.

7

Figure 3. The structure of the current system. Developed by thesis’s author.

It is evident that the current scheduling model has major problems related to

waiting time and chance of collision. Requiring vehicles to send requests few hundred

meters before approaching the intersection causes a critical time situation. There are

some conditions where stopping the vehicle completely is necessary. That happens

whenever Vx(T,S,P,D) = Vz(T,S,P,D); where: T is the time of approaching a specific

point in the intersection, S is the speed of the vehicle, P is the meeting point in the

intersection, and D is the distance to that point from the current location. In addition,

scheduling vehicles with a total processing time that is more than the given limited time

is hard to solve. Consider we have two sets of vehicles that are going through a shared

point in the intersection: Set 1 has a number of vehicles given by V{V1, V2, V3……Vn},

where each vehicle needs a certain amount of time to pass the shared point M{M1, M2,

M3……Mn}. Set 2 has a number of vehicles given by H{H1, H2, H3……Hn}, and the

respective times to pass the intersection are S{S1, S2, S3……Sn}. Let us assume Set 1

8

arrived to the intersection before Set 2, and the intersection manager assigned time

constraints for each set to pass the intersection (T(X) for the first set, and T(Y) for the

second set). In this case, whenever ∑ 𝑀𝑖𝑛
𝑖=1 > T(X), the waiting inside the intersection

for T(Y) is inevitable.

In the proposed research methods, we build virtual intersections to analyze the

current scheduling model. The chosen programming language for implementing the

algorithms is Java. We start by calculating the waiting time and chance of collisions of

the current model. Next, we propose our system and develop it. In the next stage, we test

three patterns of the flow. The goal of creating these three patterns is to test different

scenarios and to expand our research domain so that we can apply the proposed system to

real-world intersection environment. Then, we compare the results with that of our

proposed model. Figure 4 shows the general structure of our research. The key difference

between the current model and our model is that the current model requires vehicle to

send the request prior to making any scheduling reservation decision. However, in our

system the potential location for the vehicles and the entire scheduling pattern is done

before receiving the requests from vehicles to cross the intersection arrives.

9

Figure 4. Phases of proposed research methodology. Developed by thesis’s author.

Testing Current Model

Traffic congestion is directly proportional to an increase in the case of the

intersection manager requiring vehicles to stop; this is prevalent in big cities with

considerable traffic and can potentially make the system inefficient. Figure 5 shows one

of the conditions that causes traffic congestion. Let us consider an example and assume

that we have two vehicles. Vehicle A is going to the east side with a speed of 80 mph,

and vehicle B is going to the west side with the same speed. Both have the same distance

to the intersection, 600 ft. Both have sent requests to the intersection manager requesting

to go through the intersection. The intersection manager calculated the characteristics and

the conditions of the two vehicles and came to the conclusion that both vehicles will

approach the same point at the same time, specifically after 5.11 seconds. To avoid the

collision, the intersection manager has two options, as we stated before: either rejects the

10

requests and asks vehicle A or B to change its speed; or simply asks one of them to stop

in order to avoid the collision.

Figure 5. Point of collision between vehicles A and B. Developed by thesis’s author.

The associated problem is that during rush hour, when the intersection gets

hundreds or thousands of requests, the chances of collisions increase, leading to more

stop requests and waiting times. We simulated an environment to reflect this model in

order to calculate the chance of collisions that each vehicle might have. The simulated

intersection has the following characteristics:

1. Two directions (One direction is going from north to south and the other one is

going from west to east.).

11

2. Each side of the intersection can occupy 722 vehicles in total.

3. All vehicles have the same speed 100 mph.

After executing the simulation 100 times, the experimental results show that with

an increase in the number of vehicles, the number of expected collisions and waiting

times also increase. With 50 vehicles in the intersection, the number of expected

collisions is shown to be one for each vehicle. The number of collisions go up to three

when we consider 200 vehicles. With 300 vehicles, the number of collisions increased to

4.3 for each vehicle. Similar outcome is also observed for the waiting time; the waiting

time increases with the number of vehicles. The waiting time is calculated to be 85

seconds per vehicle when we consider 50 vehicles inside the intersection. Then it

increased to 320 seconds per vehicle when we consider 200 vehicles. Finally, with 300

vehicles, the waiting time is 515 seconds per vehicle. Figure 6 and Figure 7 show the

number of collisions and waiting times respectively.

Figure 6. Expected number of potential collisions for every vehicle. Developed by

thesis’s author.

12

Figure 7. The waiting time for every vehicle. Developed by thesis’s author.

Increasing and decreasing the speed is not an option when the intersection gets

enormous requests because there are other vehicles in the vicinity. With vehicles in front

and behind of a vehicle under consideration to be requested to change the speed, fixing

the problem in this manner would lead to problems and potential collisions with the other

vehicles. In summary, with an increase in the number of vehicles approaching the

intersection, the chances of collision also increase, thereby leading to more stopping time.

13

CHAPTER 3

THE PROPOSED SYSTEM

In the old model, the scheduling process starts after receiving the vehicle’s

request (Figure 3). In the proposed method, we flipped the current approach and created

another model where the scheduling should be set up in the intersection prior to receiving

any request. Our technique is based on the production line system where every position

(or container) in the line is reserved for a specific item.

Figure 8 shows the architecture of our system where the intersection’s spots

should be fixed as the first step. We prepare the intersection by making containers that

are based on the length of the vehicles. Once we fix the vehicles’ position, enter timing,

and the speed of the lanes, then vehicles can send requests to the intersection manager.

Figure 9 shows the complete design; where S1 is the minimum accepted speed, S2 the

maximum accepted speed, “spin” is the timing where the lane is open.

Figure 8. The architecture of the proposed system. Developed by thesis’s author.

14

Figure 9. Production line intersection. Developed by thesis’s author.

A timer is used to switch between lanes. If lane A is open at any moment, lane B

should be closed at that instant. A setpoint system for generating setpoints for the

Proportional Integral Derivative (PID) controllers was proposed (Au, Quinlan, & Stone,

2012). The purpose of the system is to make sure that the vehicle arrives at the exact

expected time with the exact expected speed. However, the system doesn’t guarantee the

arrival time of the vehicle to a specific point, so it’s not ideal where an unexpected

latency can cause a catastrophic result. We took that into consideration, and instead of

applying one specific speed value, we applied S1 and S2 which are the minimum and

maximum speed. Any vehicle that has this range of speed should be accepted. Figure 10

shows the algorithm of our system.

15

Figure 10. Algorithm of our system. Developed by thesis’s author.

Related Problems and Solutions

There are three problems that can occur using the initial design. The first potential

problem can occur because of the speed variation. After applying S1 and S2, vehicles

speed can vary, thereby leading vehicles to collide after a certain distance. Let us assume

we set up the entering speed for lane A to 60 mph as a minimum speed (S1), and to 65

mph as a maximum speed (S2). Two vehicles (V1 and V2) sent requests to enter the

intersection. V1 came first with a 61 mph speed, and V2 came after it with a 64 mph

speed. The problem is that after a certain distance, V2 will approach V1 and collide with

it.

The second problem can happen when the vehicle enters an intersection with one

speed range while the following intersection requires a different speed range. Let us

assume we have two intersections, one after another. The first intersection accepts

16

vehicles with any speed between 60–65 mph, and the second one accepts vehicles with

102.5–107.5 mph as a speed range. The problem now is to make those two intersections

compatible so that they become connected into one system. Figure 11. Shows this

problem.

Figure 11. Varying speed between two intersections. Developed by thesis’s author.

The third potential problem is regarding the ability of a vehicle to make a right

turn. The system must produce a container that makes a right turn, and it should do it

safely to avoid collision with other vehicles.

To solve the first problem, we applied an average speed value. This average speed

should be applied to every vehicle as soon as it enters the intersection (Avg = (S1+S2)/2).

The goal of the average speed is to ensure that each vehicle stays in its given container

without jumping to another one. Figure 12 shows the problem before and after applying

the average speed.

17

Figure 12. The intersection flow before and after applying the average speed. Developed

by thesis’s author.

To solve the second problem, we created increasing and decreasing speed areas.

The intersection manager asks all the vehicles to either increase or decrease the speed

depending on the speed of the next intersection. S = Ep1 + (Tp2- Ep1); where: Ep is the

exit speed of the intersection. Tp is the entering speed of the following intersection.

Figure 13 shows how the increasing speed works.

Figure 13. Areas of changing the speed. Developed by thesis’s author.

18

Regarding the third problem, where we need to handle vehicles making a right

turn, we designed a classifier using the K-nearest neighbor (KNN) technique. Using the

classifier, the intersection can produce right turn containers based on specific features we

would like to apply. Some of the features that we could apply for the KNN are: day, time,

population of the city, event happening in the area, and so on. For our KNN we used the

Euclidean distance function:

The classifier is used to calculate the possibility of making a right turn for the next

container (vehicle). Figure 14 shows an example of the KNN method.

Figure 14. The vehicle in the yellow triangle is going to make a right turn when K=3.

Developed by thesis’s author.

19

Simulation and Result

To evaluate our proposed techniques, we made a virtual intersection with the

following features:

1. Vehicles are coming from four different directions:

A1: from east to west.

A2: from west to east.

B1: from north to west.

B2: from west to north.

2. The speeds of the arriving vehicles ranged between 60–65 mph.

3. The length of every container is 26.2467 ft.

4. The running time for the intersection is one minute.

5. The system produces one container for every opening lane.

6. Gates A1 and A2 should open together while gates B1 and B2 closed.

7. Gates B1 and B2 should open together while gates A1 and A2 closed.

8. Every lane has 60 containers in total.

Figure 15 shows an illustration of the virtual intersection that we built for the experiment.

For predicting the expected right turn in the KNN we need to create initial testing data

(Table 1) in order to start training the system.

20

Figure 15. Experiment virtual intersection. Developed by thesis’s author.

Table 1

Features and Initial Data

 Day Hour Event in the area Class of turn

1 9 0 +

3 10 0 +

4 8 0 +

3 8 0 +

4 10 0 +

2 20 1 -

5 19 1 -

1 4 1 -

2 7 1 -

Note. Developed by thesis’s author.

21

In Table 1, days are numbered from 1 (Monday) to 5 (Friday). Hours use a 24

format. Event in the area is “0” if there is an event in the area of the intersection and “1”

if there is no event. The “+” means the vehicle is going to make a right turn, while the “-”

means the vehicle is moving in a straight direction.

We also created three different patterns for the flow of the coming vehicles. There

are two goals of these three patterns. First, we want to calculate the waiting time for

every flow. Second, we want to calculate the required space for each pattern. The first

pattern represents the best case where the flow matches the opening and the closing times

of the intersection. The second pattern represents the worst case of the flow where

vehicles keep coming even if the intersection is closed. The third and final pattern

represents the random (normal) case where the flow is unpredictable. Each of the three

patterns has the follow features: (1) it has 60 spots; (2) accepts only one request per spot;

(3) runs for one minute. For the patterns, we got different results based on the flow

toward the intersection. For all of the results below: “1” represents a request, “0”

represents no request.

In the best case, the total waiting time is always zero. This is simply because the

pattern of the flow matches the intersection’s requirements. The opening time matches

the requests in all cases. The flow pattern in this case is: [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0]. We don’t need to arrange the flow in such case; hence the

arriving times in one minute run: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30,

32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58].

22

In the second case the flow is constant (worst-case): [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. The arriving times for this pattern in one minute run: [0,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,

28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,

52, 53, 54, 55, 56, 57, 58, 59]. In this pattern, arranging arriving times to match the

intersection’s requirements is time consuming. The average waiting time is about 164.84

seconds per vehicle, and the arranged flow in one minute is: [0, 2, 4, 6, 8, 10, 12, 14, 16,

18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64,

66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108,

110, 112, 114, 116, 118]. The major issue with this constant pattern is not only the high

waiting time, but also we need to increase the space by 100% to arrange the vehicles.

The last pattern represents the random case where the flow is unpredictable. The

proposed system results are very promising since the average waiting time is less than the

old models. In our model, the total waiting time for the random case is only 35 seconds

compared to 101 seconds in the old model. A one minute random set for such pattern

would be: [1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1,

0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1], and the arriving

times for the corresponding set: [0, 1, 3, 4, 5, 9, 11, 13, 15, 17, 18, 21, 24, 26, 28, 30, 32,

33, 34, 36, 38, 41, 43, 48, 50, 52, 53, 57, 58, 59]. The arranged flow for this set would be:

[0, 0, 1, 0, 3, 0, 4, 0, 5, 0, 9, 0, 11, 0, 13, 0, 15, 0, 17, 0, 18, 0, 21, 0, 24, 0, 26, 0, 28, 0,

23

30, 0, 32, 0, 33, 0, 34, 0, 36, 0, 38, 0, 41, 0, 43, 0, 48, 0, 50, 0, 52, 0, 53, 0, 57, 0, 58, 0,

59]. The average waiting time for this set is only 6.76 seconds per vehicle.

To sum up results, the first pattern has 0 waiting time and 0 additional space. In

the second pattern, the time and space increase by 100%. In the third pattern (random

flow), the result of the waiting time depends on the number of requests: (a) 0 if the

number of requests is less than or equal to the giving spots; (b) ((n-30) /30*100) if the

number of requests is more than the given spots. The “n” in the previous equation is the

number of requests, and 30 indicates the number of spots available to be occupied.

For predicting the right turn, whenever a new vehicle comes to the lane, the KNN

classifier calculates the features (day, hour, event) and predicts whether or not the vehicle

makes a right turn. The resulting data of the entered vehicle will be added to the classifier

so it helps to predict the next generated spot. Table 2 and Table 3 show the instances for

the four lanes, while Table 4 and Table 5 show the right turn predictions.

Table 2

Lane A1 and A2 Instances

Day Hour Event in the area

3 3 0

1 5 0

2 11 0

5 10 0

4 1 0

24
Table Continued

Day Hour Event in the area

1 23 0

2 13 0

2 18 1

3 14 1

2 8 1

4 6 1

1 21 1

2 3 0

4 15 0

4 22 1

4 22 0

3 8 1

2 21 0

3 0 1

1 20 0

4 12 0

1 3 1

1 7 1

1 23 1

2 2 1

25
Table Continued

Day Hour Event in the area

4 6 0

2 0 1

3 16 0

2 1 1

4 11 0

Note. Developed by thesis’s author.

Table 3

Lane B1 and B2 Instances

Day Hour Event in the area

1 8 0

4 12 0

5 2 1

4 3 1

4 12 0

2 1 0

2 13 0

26
Table Continued

Day Hour Event in the area

4 20 1

3 18 1

5 16 0

2 1 0

5 3 0

5 9 0

3 11 1

4 2 1

2 9 0

2 9 0

5 19 1

3 11 1

3 18 1

2 16 1

5 15 1

3 11 1

4 17 1

3 16 1

3 22 1

5 23 0

27
Table Continued

Day Hour Event in the area

2 12 1

2 11 0

5 19 1

Note. Developed by thesis’s author.

Table 4

Turn Predictions For Lane A1 And Lane A2

1 2 3 4 5 6 7 8 9 10

- - + + - - + - + +

11 12 13 14 15 16 17 18 19 20

+ - - + - - + - - -

21 22 23 24 25 26 27 28 29 30

+ - + - - + - + - +

Note. Developed by thesis’s author.

 28

Table 5

Turn Predictions For Lane B1 And Lane B2

1 2 3 4 5 6 7 8 9 10

+ + - - + - + - - -

11 12 13 14 15 16 17 18 19 20

- - + + - + + - + -

21 22 23 24 25 26 27 28 29 30

- - + - - - - + + -

Note. Developed by thesis’s author.

Table 6 shows the complete data of the first five vehicles in each lane. We can see

that the vehicles within the matched lanes have the same arriving and exiting times.

Table 6

First Five Vehicles

Vehicle ID Lane Arrive Time Right

Turn

Exit Time

123 A1 0.0 No 17.179657557103365

206 A2 0.0 No 17.179657557103365

301 B1 1.0 Yes 18.179657557103365

413 B2 1.0 Yes 18.179657557103365

 29
Table Continued

Vehicle ID Lane Arrive Time Right

Turn

Exit Time

106 A1 2.0 No 19.179657557103365

224 A2 2.0 No 19.179657557103365

306 B1 3.0 Yes 20.179657557103365

405 B2 3.0 Yes 20.179657557103365

115 A1 4.0 Yes 21.179657557103365

200 A2 4.0 Yes 21.179657557103365

324 B1 5.0 No 22.179657557103365

355 B2 5.0 No 22.179657557103365

109 A1 6.0 Yes 23.179657557103365

213 A2 6.0 Yes 23.179657557103365

311 B1 7.0 No 24.179657557103365

418 B2 7.0 No 24.179657557103365

105 A1 8.0 No 25.179657557103365

222 A2 8.0 No 25.179657557103365

313 B1 9.0 Yes 26.179657557103365

418 B2 9.0 Yes 26.179657557103365

Note. Developed by thesis’s author.

30

CHAPTER 4

CONCLUSION AND FUTURE WORK

In this thesis, we proposed a novel scheduling system that is based on the

production line technique. In the proposed model, the intersection environment should be

set up prior to the vehicles’ arrival at the intersection. The goal of our system is to reduce

the waiting time for the vehicles and to eliminate the chance of collision inside the

intersection. Extensive simulations were carried out to evaluate three different traffic

flow patterns (average, worst, and random). The K-Nearest Neighbor (KNN) method was

used to predict the right turn vehicles. The results show that the proposed model provides

high efficiency in the case of average and random pattern traffic flow. However, using

extra space is still an issue in the worst-case traffic flow pattern; in this case the space

always increases by 100%.

Our future work would consist of end-to-end scheduling of vehicles for the entire

route. This is similar to the systems that airlines follow, where the route, speed, and time

of departure and arrival are all set up and determined well in advance of taking off. For

the next version of our model, we plan to incorporate the Internet of Things (IoT)

paradigm including the sensors and data mining technology that can be used to determine

the vehicles’ arriving time precisely.

REFERENCES

32

REFERENCES

Au, T. C., Quinlan, M., & Stone, P. (2012). Setpoint scheduling for autonomous vehicle

controllers. In Robotics and Automation (ICRA), 2012 IEEE International

Conference (pp. 2055-2060). IEEE.

Bertozzi, M., Broggi, A., Coati, A., & Fedriga, A. I. (2013). A 13,000 km intercontinental

trip with driverless vehicles: The VIAC experiment. IEEE Intelligent

Transportation Systems Magazine, 5(1), 28-41.

Bertozzi, M., Broggi, A., Conte, G., Fascioli, R., & Fascioli, R. (1998). Vision-based

Automated Vehicle Guidance: the experience of the ARGO vehicle. Elservier:

AMsterdam, The Netherlands.

Bertozzi, M., Broggi, A., Fascioli, A. (2006). VisLab and the evolution of vision-based

UGVs. Computer, 39(12), 31-38.

Bimbraw, K. 2015. Autonomous cars: Past, present and future a review of the

developments in the last century, the present scenario and the expected future of

autonomous vehicle technology. In Informatics in Control, Automation and

Robotics (ICINCO), 2015 12th International Conference on (Vol. 1, pp. 191-198).

IEEE.

Bombini, L., Cattani, S., Cerri, P., Fedriga, R. I., Felisa, M., & Porta, P. P. (2009). Test-

bed for Unified Perception & Decision Architecture. In Advanced Microsystems

for Automotive Applications 2009 (pp. 287-298). Springer, Berlin, Heidelberg.

Braid, D., Broggi, A., & Schmiedel, G. (2006). The TerraMax autonomous

vehicle. Journal of Field Robotics, 23(9), 693-708.

33

Cerri, P., Gatti, L., Mazzei, L., Pigoni, F., & Jung, H. G. (2010). Day and night pedestrian

detection using cascade adaboost system. In Intelligent Transportation Systems

(ITSC), 2010 13th International IEEE Conference on (pp. 1843-1848). IEEE.

Chatterjee, A. (2014). Parallel algorithms for counting problems on graphs using graphics

processing units.

Chatterjee, A., Aceves, A., Dungca, R., Flores, H., & Giddens, K. (2016, September).

Classification of wearable computing: A survey of electronic assistive technology

and future design. In Research in Computational Intelligence and Communication

Networks (ICRCICN), 2016 Second International Conference on (pp. 22-27).

IEEE.

Chatterjee, A., Levan, M., Lanham, C., Zerrudo, M., Nelson, M., & Radhakrishnan, S.

(2016, September). Exploiting topological structures for graph compression based

on quadtrees. In Research in Computational Intelligence and Communication

Networks (ICRCICN), 2016 Second International Conference on (pp. 192-197).

IEEE.

Chatterjee, A., Levan, M., Lanham, C., & Zerrudo, M. (2017, April). Job scheduling in

cloud datacenters using enhanced particle swarm optimization. In Convergence in

Technology (I2CT), 2017 2nd International Conference for (pp. 895-900). IEEE.

Chatterjee, A., Radhakrishnan, S., & Antonio, J. K. (2012, May). Counting problems on

graphs: GPU storage and parallel computing techniques. In Parallel and

Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2012

IEEE 26th International (pp. 804-812). IEEE.

34

Chatterjee, A., Radhakrishnan, S., & Antonio, J. K. (2013). Data structures and

algorithms for counting problems on graphs using gpu. International Journal of

Networking and Computing, 3(2), 264-288.

Chen, Y. L., Sundareswaran, V., Anderson, C., Broggi, A., Grisleri, P., Porta, P. P., ... &

Beck, J. (2008). Terramax™: Team oshkosh urban robot. Journal of Field

Robotics, 25(10), 841-860.

Chen, Y. L., Sundareswaran, V., Anderson, C., Broggi, A., Grisleri, P., Porta, P. P., ... &

Beck, J. (2009). Terramax: Team oshkosh urban robot. In The DARPA Urban

Challenge (pp. 595-622). Springer, Berlin, Heidelberg.

Dresner, K., & Stone, P. (2008). A multiagent approach to autonomous intersection

management. Journal of artificial intelligence research, 31, 591-656.

Fayazi, S. A., Vahidi, A., & Luckow, A. (2017). Optimal scheduling of autonomous

vehicle arrivals at intelligent intersections via MILP. In American Control

Conference (ACC), 2017 (pp. 4920-4925). IEEE.

Grisleri, P., & Fedriga, I. (2010). The braive autonomous ground vehicle platform. IFAC

Proceedings Volumes, 43(16), 497-502.

Hasan, K. S., Chatterjee, A., Radhakrishnan, S., & Antonio, J. K. (2014, September).

Performance prediction model and analysis for compute-intensive tasks on GPUs.

In IFIP International Conference on Network and Parallel Computing (pp. 612-

617). Springer, Berlin, Heidelberg.

Hasan, K. S., Chatterjee, A., Radhakrishnan, S., & Antonio, J. K. (2014). Performance

prediction model and analysis for compute-intensive tasks on GPUs. In IFIP

35

International Conference on Network and Parallel Computing (pp. 612-617).

Springer, Berlin, Heidelberg.

Hu, J., Kong, L., Shu, W., & Wu, M. Y. (2012). Scheduling of connected autonomous

vehicles on highway lanes. In Global Communications Conference

(GLOBECOM), 2012 IEEE (pp. 5556-5561). IEEE.

IEEE News Releases. (2012), IEEE news release. Retrieved from

http://www.ieee.org/about/news/2012/5september_2_2012.html

 Accessed at 1 Nov. 2017

Medici, P., Caraffi, C., Cardarelli, E., Porta, P. P., & Ghisio, G. (2008). Real time road

signs classification. In Vehicular Electronics and Safety, 2008. ICVES 2008. IEEE

International Conference (pp. 253-258). IEEE.

Mladenovic, M. N., & Abbas, M. M. (2013). Self-organizing control framework for

driverless vehicles. In Intelligent Transportation Systems-(ITSC), 2013 16th

International IEEE Conference on (pp. 2076-2081). IEEE.

Nelson, M., Radhakrishnan, S., Chatterjee, A., & Sekharan, C. N. (2015). On

compressing massive streaming graphs with Quadtrees. In Big Data (Big Data),

2015 IEEE International Conference on (pp. 2409-2417). IEEE.

Nelson, M., Radhakrishnan, S., Chatterjee, A., & Sekharan, C. N. (2017, December).

Queryable compression on streaming social networks. In Big Data (Big Data),

2017 IEEE International Conference on (pp. 988-993). IEEE.

http://www.ieee.org/about/news/2012/5september_2_2012.html

36

SAE On-Road Automated Vehicle Standards Committee. (2014). Taxonomy and

definitions for terms related to on-road motor vehicle automated driving

systems. SAE International..

Urban Challenge. (2007). DARPA grand challenge webmaster. Retrieved from

http://archive.darpa.mil/grandchallenge.

Accessed at 4 Nov.2017

Yan, F., Wu, J., & Dridi, M. (2014). A scheduling model and complexity proof for

autonomous vehicle sequencing problem at isolated intersections. In Service

Operations and Logistics, and Informatics (SOLI), 2014 IEEE International

Conference on (pp. 78-83). IEEE.

http://archive.darpa.mil/grandchallenge

APPENDICES

APPENDIX A

QUEUE FLOW CODING

39

package vflow2;

import java.util.ArrayList;

import java.util.*;

import java.util.Random;

public class VFlow2 {

 public static void main(String[] args) {

 System.out.println("The third pattern");

 int MaxQueueLong =720;

 int NumberofVehicles = 60; about

 double average=0.0;

 int runningTestingLoop =1;

 for(int test=0;test<runningTestingLoop;test++)

 {

 vehicle2 [] vehicle = new vehicle2[MaxQueueLong

 List <Integer> ArrangedArriving = new ArrayList();

 List <Integer> OriginalArriving = new ArrayList();

 List <Integer> TempArray = new ArrayList <Integer>(); //for temporary saving the

arriving times in order

 List <Integer> Road = new ArrayList();

 int newcount = 0;

 int ranking=0;

 int timesofLooping = 0;

 for(int loop=0;loop<=timesofLooping;loop++) //to insert the vehicle info

 {

 // 1 means there is a request

 for(int i=0;i<MaxQueueLong;i++) //this is the time

 {

 Road.add(randInt(0,1));

 // OriginalArriving.add(randInt(0,1));

 }

40

 System.out.println("The Original Road requests "+ Road);

 List <Integer> OrOr = new ArrayList();

 for(int ii=0;ii<Road.size();ii++)

 {

 if(Road.get(ii)==1)

 {

 ArrangedArriving.add(ii);

 vehicle[newcount] = new vehicle2();

 vehicle[newcount].setArrTime(ii);

 vehicle[newcount].setRank(ranking);

 ranking++;

 newcount++;

 } //ArrangedArriving.add(1);

 }

 }

 System.out.println("--");

 System.out.print("Explanation: The arrival time (the ranking)");

 System.out.print("\n");

 for(int jj=0;jj<newcount;jj++)

 {

 System.out.print(vehicle[jj].getArrTime()+ "("+ vehicle[jj].getRank()+")");

 }

 // Now let's make the arranged array

 List <Integer> ArrangedArray = new ArrayList <Integer>();

 // 1 means there is a request

 int cc=0;

 for(int i=0;i<newcount;i++){ //this is the time

 ArrangedArray.add(ArrangedArriving.get(i)); //take one arriving car

 ArrangedArray.add(0); // then add zero next to it

 }

41

 System.out.println("\n\nThe Arranged Array "+ ArrangedArray);

 int xc=2; // to jump from one position to anothr in the arranged array

 int ss2=0;

 for(int qq=0;qq<newcount;qq++)

 {

 int temp1=vehicle[qq].getArrTime();

 int temp2 = ArrangedArray.get(ss2);

 int ind = ArrangedArray.indexOf(temp2);

 ss2+=2;

 vehicle[qq].setArrAfter(ind); //we sat the vehicles positions after arranging

them...we will use that later to find the differences

 }

 // System.out.println("\n\nThe vehicles arriving times and after arranging time ");

 double countWaiting=0.0;

 double temp=0.0;

 for(int list=0;list<NumberofVehicles;list++) // we took only the determined number of

vehicles

 {

 //to set waiting for each vehicle

 // now we chick the position of the vehicle in the orrignal array and in the arranged

one

 if(vehicle[list].getArrTime() > vehicle[list].getArrAfter())

 {

 // vehicle[list].setVehicleWaiting(vehicle[list].getArrTime() -

vehicle[list].getArrAfter());

 vehicle[list].setVehicleWaiting(0);

 }

 else if (vehicle[list].getArrTime() < vehicle[list].getArrAfter())

 {

 vehicle[list].setVehicleWaiting(vehicle[list].getArrAfter() -

vehicle[list].getArrTime());

 }

 else

 //if it didn't move and stayed at the same position in both arrays

 {

42

 vehicle[list].setVehicleWaiting(0);

 }

 // open the following one to see the calculation of the waiting time

 System.out.println("Vehicle number:" + list +". Arrival and leaving time: " +

vehicle[list].getArrTime()+ "----" + vehicle[list].getArrAfter() + " the waiting time:" +

vehicle[list].getVehicleWaiting());

 // countWaiting=(countWaiting*5.5880)+vehicle[list].getVehicleWaiting(); // we

collect the waiting time for every vehicle

 countWaiting=countWaiting+vehicle[list].getVehicleWaiting(); // we collect the

waiting time for every vehicle

 }

 // System.out.println("\nThe count waiting " + countWaiting);

 // double AverageWaitingTime=(countWaiting*5.5880)/NumberofVehicles;

 temp = (countWaiting*5.5880); //here

 System.out.println("\nThe total waiting time for this loop is: " + temp + " seconds");

 System.out.println("\nThe average waiting time for this loop is: " +

(temp/NumberofVehicles) + " seconds per vehicle");

 average= average + (temp/NumberofVehicles); //add the aversge of this run to the

total average

 }

 System.out.println("\nThe average waiting time for WHOLE RUN is: " +

average/runningTestingLoop + " seconds per vehicle");

 }

 public static int randInt(int min, int max)

 {

 Random rand = new Random();

 int randomNum = rand.nextInt((max - min) + 1) + min;

 return randomNum;

 }

}

/*

 * To change this license header, choose License Headers in Project Properties.

43

 * To change this template file, choose Tools | Templates

 * and open the template in the editor.

 */

package vflow2;

import static java.time.Clock.system;

import java.util.*;

/**

 *

 * @author User1

 */

public class vehicle2 {

 int a;

 int arivingTime;

 int VehicleRank; //The rank (position) of the arrival vehicle in the queue

 int VehicleTimeAfter;

 int VehicletotalWaiting;

 public void setArrTime(int ar){ //We didn't use this...It's just an experiment

 this.arivingTime=ar;

 }

 public int getArrTime(){

 return this.arivingTime;

 }

 public void setRank(int rank){ // Ranking before sorting

 this.VehicleRank=rank;

 }

 public int getRank(){

 return this.VehicleRank;

 }

 public void setArrAfter(int timeAfter){ // Ranking before sorting

 this.VehicleTimeAfter=timeAfter;

 }

 public int getArrAfter(){

 return this.VehicleTimeAfter;

 }

44

 public void setVehicleWaiting(int vw){ //We didn't use this...It's just an experiment

 this.VehicletotalWaiting=vw;

 }

 public int getVehicleWaiting(){

 return this.VehicletotalWaiting;

 }

}

APPENDIX B

AIM TESTING CODE

46

package play1;

import java.util.ArrayList;

import java.util.Collections;

import java.util.List;

import java.util.Random;

public class tr4 {

 static double DistanceBP = 26.2467; //Distance between two points in the graph

feet

 static int numberofcars = 50; //maximum number 19*38

 //double totalFinal;

 static int numberofTestLoops = 1;

 static int numberofcarsX2 =numberofcars*2; //because of the diagonal, we

calculated every collide twice

 //static double Total=ErrorsCount/TotalofMeetings*100;

 static double totalFinal;

 static double collectmyloops=0.0;

 //static double collectmyaccidents=0.0;

 static double CumErr=0.0;

 public static void main(String[] args) {

 double myloop=0.0;

 // double ErrorsCount=0.0;

 double TotalofMeetings=0.0;

 double TotalWaiting=0.0;

 double collectmyaccidents=0.0;

 for(int count=1;count<=numberofTestLoops;count++) {

 double ErrorsCount=0.0;

 double CompleteHeight = 100.0; //foot

 double CompleteWidth = 100.0; //foot

 double The20percentofH = (CompleteHeight*(20.0/100.0));

 double The20percentofW = (CompleteWidth*(20.0/100.0));

47

 System.out.println("The total height is : " + CompleteHeight);

 System.out.println("The total width is : " + CompleteWidth);

 System.out.println("20% of the width " + CompleteHeight + " is " +

The20percentofH);

 System.out.println("20% of the height " + CompleteWidth + " is " +

The20percentofW + "\n");

 // Initialize cars

 Car3 [] Cars = new Car3[numberofcars];

 for(int CreatRandom=0;CreatRandom<Cars.length;CreatRandom++)

 {

 // System.out.println("Cars. length" + Cars.length);

 Cars[CreatRandom] = new Car3();

 Cars[CreatRandom].setId(CreatRandom);

 Cars[CreatRandom].setSpeed(randInt(100,100)); //We sat their speed to

100 only

 }

 // we prepare to put them in positions (x,y)

 //Make positions' arrays for vehicles going from west to east

 List<Integer> listX1 = new ArrayList<>();

 for (int c1=1; c1<=38; c1++) { // to 38 because 39 is where the line

base, and 1 because 0 is the base line too

 listX1.add(c1);

 }

 List<Integer> listY1 = new ArrayList<>();

 for (int c2=40; c2<=58; c2++) {

 listY1.add(c2);

 }

 Collections.shuffle(listY1); // just to distribute them randomly in

different lanes

 List<Integer> listX2 = new ArrayList<>();

 for (int c2=40; c2<=58; c2++) {

 listX2.add(c2);

48

 }

 Collections.shuffle(listX2); // just to distribute them randomly in

different lanes

 List<Integer> listY2 = new ArrayList<>();

 for (int c1=1; c1<=38; c1++) { // to 38 because 39 is where the line

base, and 1 because 0 is the base line too

 listY2.add(c1);

 }

 int ir2=0;

 int ir4=0;

 int ir3=0;

 int ir5=0;

 int z=0;

 // we put them in directions and

 //We made it balance. Half of them goes through X axes and others through Y

axes

 for(int counter1=0;counter1<Cars.length/2;counter1++)

 {

 Cars[counter1].setDirection(0); // going through the x axes

 Cars[counter1].setTheX(listX1.get(ir2)); //set the X

 Cars[counter1].setTheY(listY1.get(ir4)); //set the Y

 ir2=ir2+1; //move to the next x cordinate

 if (ir2==38)

 {

 ir2=0; // this is to go back to the first

position in the suffle set

 // ir2=ir2+1; //pick the next one from the

suffle set.

 ir4=ir4+1; // move to the next y cordinate

 }

 }

49

 for(int counter2=Cars.length/2;

counter2<Cars.length;counter2++)

 {

 Cars[counter2].setDirection(1); // going through the

y axes

 //Cars[counter0].setTheX(listX1.get(ir2)); //set the

X

 Cars[counter2].setTheX(listX2.get(ir3));

 Cars[counter2].setTheY(listY2.get(ir5));

 ir5=ir5+1;

 //z=z+1;

 //ir3=ir3+1;

 if(ir5==38)

 {

 //ir3=ir3+1; //here

 ir5=0;

 if(ir3<18

){

 ir3=ir3+1;

 }

 }

 }

 // now lert's figure out the arriving times to the points that the vehicles

moving in the x axes will meet

 for(int count3=0; count3<Cars.length;count3++)

 {

 int w = Cars[count3].getTheX(); //intial value = 15

 int li = Cars[count3].getTheY(); // = 45

 System.out.print("\nThe meeting axes for car "

+(count3) + "("+ Cars[count3].getTheX() +","+ Cars[count3].getTheY() +")"+" are ");

 for (int v= 0;v<Cars.length;v++)

 {

 int searchXp=Cars[v].getTheX(); // The

second loop (when v=0) the value = 47

50

 int searchYp=Cars[v].getTheY(); //

= 30

 if

((w<searchXp&&searchXp>=40&&searchYp<=39)) //make it >39 // change li=39 to

 {

 System.out.print(" x:"+ searchXp

+"("+TimetoArrive(searchXp,w,Cars[count3].convFPS())+")");

 Cars[count3].addPoint(searchXp); //

add the location axes to the vehicle's list

 Cars[count3].addmCars(v); // add the

cars that will meet /we don't need this anymore I guess

 Cars[count3].addMymap(v,

TimetoArrive(searchXp,w,Cars[count3].convFPS())); // Cars[0] (1, 5.66690)

 Cars[count3].addArriving(TimetoArrive(searchXp,w,Cars[count3].convFPS()));

//add the point reaching time

 //TotalofMeetings++;

 }

 if

((li<searchYp&&searchYp>=40&&w>=39)) // make it 40

 {

 System.out.print(" y:"+ searchYp

+"("+TimetoArrive(searchYp,li,Cars[count3].convFPS())+")");

 Cars[count3].addPoint(searchYp);

 Cars[count3].addmCars(v); // add the

cars that will meet

 Cars[count3].addMymap(v,

TimetoArrive(searchYp,li,Cars[count3].convFPS()));

 Cars[count3].addArriving(TimetoArrive(searchYp,li,Cars[count3].convFPS()));

 //TotalofMeetings++;

 }

 }

51

 for(int list=0;list<Cars.length;list++)

 {

 //+ " Y:" + Cars[list].getTheY()

 // System.out.println("vehicle number " + Cars[list].getId() +" Direction "

+Cars[list].getDirection() + " X:" + Cars[list].getTheX()+ " Y:" + Cars[list].getTheY());

 }

 }

 /***/

System.out.println("\n\nThe indexes cars that car 1 will meet : " + Cars[0].getmCars());

 System.out.println("Meeting points for car 1 : " +

Cars[0].getPoints());

 System.out.println("Arriving times for car 1 to these points

: " + Cars[0].getArriving());

 System.out.println("How long the car will stay in any point

: " + Cars[0].getPoOccTime());

 for (int op0=0;op0<numberofcars;op0++)

 {

 //we got all the cars that the current car will meet

 for(int op1=0;op1<Cars.length;op1++)

 {

if(Cars[op0].getDirection()==0&&Cars[op1].getDirection()==1)

 {

 System.out.println("\n Car"+(op0)+ "

["+Cars[op0].getTheX()+","+ Cars[op0].getTheY()+"]");

 double CarR =

TimetoArrive(Cars[op1].getTheX(),Cars[op0].getTheX(),Cars[op0].convFPS());

52

 double LeavingPT = CarR+Cars[op0].getPoOccTime();

//the leaving time for car1

 double CarR2 =

TimetoArrive(Cars[op0].getTheY(),Cars[op1].getTheY(),Cars[op1].convFPS());

 double LeavingPT2 =

CarR2+Cars[op1].getPoOccTime(); ////the leaving time for car2

 double TempVariable1 = Cars[op0].getMymap(op1);

//the arriving time for car1

 double TempVariable2 = Cars[op1].getMymap(op0);

//the arriving time for car2

 System.out.print(" compare "+TempVariable1 +" - "+

LeavingPT +" with " +TempVariable2+" - "+ LeavingPT2);

if(TempVariable1>LeavingPT2||LeavingPT<TempVariable2) //if any car left before the

arrival of the other car, then there is no error

 {

 System.out.println(" = No Error");

 TotalofMeetings++;

 System.out.println("\n");

 }

 else {

 System.out.println(" = There is an Error");

 ErrorsCount++;

 TotalofMeetings++;

 TotalWaiting= TotalWaiting+(146.667/26.2467);

//speed is 100MPH

 System.out.print(" Vehicles locations: ("

+Cars[op0].getTheX()+ ","+Cars[op0].getTheY()+")" + " and (" + Cars[op1].getTheX() +

"," +Cars[op1].getTheY()+")");

 double GetTheVehicleCurrentWaitingTime

= Cars[op0].getWaiting();

 //int AddToTheVehicleWaitingtime=

Cars[op0].setWaiting(GetTheVehicleCurrentWaitingTime+5.58);

 System.out.print(" my waaaaaating after

this meeting"+ Cars[op0].getWaiting());

 System.out.println("\n");

53

 for(int iii=0;iii<Cars.length;iii++) //add

waiting times to the vehicles behind

 {

 if

(Cars[iii].getTheX()<=Cars[op0].getTheX()&&Cars[iii].getTheY()==Cars[op0].getTheY

()) //any vehicle with the same Y but less X will get a waiting time

 {

 double

GetTheLinesVehicleCurrentWaitingTime = Cars[iii].getWaiting();

Cars[iii].setWaiting(GetTheLinesVehicleCurrentWaitingTime+5.58);

 }

 }

 }

 //TotalofMeetings++;

 }

if(Cars[op0].getDirection()==1&&Cars[op1].getDirection()==0)

 {

 System.out.println("\n Car"+(op0));

 System.out.println("\n Car"+(op0)+ "

["+Cars[op0].getTheX()+","+ Cars[op0].getTheY()+"]");

 double CarR =

TimetoArrive(Cars[op1].getTheY(),Cars[op0].getTheY(),Cars[op0].convFPS());

 double LeavingPT = CarR+Cars[op0].getPoOccTime();

//the leaving time for car1

 double CarR2 =

TimetoArrive(Cars[op0].getTheX(),Cars[op1].getTheX(),Cars[op1].convFPS());

 double LeavingPT2 =

CarR2+Cars[op1].getPoOccTime(); ////the leaving time for car2

 double TempVariable1 = Cars[op0].getMymap(op1);

//the arriving time for car1

 double TempVariable2 = Cars[op1].getMymap(op0);

//the arriving time for car2

54

 //Compare the arriving and leaving times for the two cars

 System.out.print(" compare "+TempVariable1 +" - "+

LeavingPT +" with " +TempVariable2+" - "+ LeavingPT2);

if(TempVariable1>LeavingPT2||LeavingPT<TempVariable2)

 {

 System.out.println(" = No Error");

 TotalofMeetings++;

 System.out.println("\n");

 }

 else {

 System.out.println(" = There is an Error");

 ErrorsCount++;

 TotalofMeetings++;

 TotalWaiting= TotalWaiting+(146.667/26.2467);

 System.out.print(" Vehicles locations: ("

+Cars[op0].getTheX()+ ","+Cars[op0].getTheY()+")" + " and (" + Cars[op1].getTheX() +

"," +Cars[op1].getTheY()+")");

 double GetTheVehicleCurrentWaitingTime2 =

Cars[op0].getWaiting();

Cars[op0].setWaiting(GetTheVehicleCurrentWaitingTime2+5.58);

 System.out.print(" my waaaaaating after

this meeting"+ Cars[op0].getWaiting());

 System.out.println("\n");

 for(int iii2=0;iii2<Cars.length;iii2++) //add

waiting times to the vehicles behind

 {

 if

(Cars[iii2].getTheX()==Cars[op0].getTheX()&&Cars[iii2].getTheY()<=Cars[op0].getTh

eY()) //any vehicle with the same Y but less X will get a waiting time

 {

 double

GetTheLinesVehicleCurrentWaitingTime2 = Cars[iii2].getWaiting();

Cars[iii2].setWaiting(GetTheLinesVehicleCurrentWaitingTime2+5.58);

 }

 }

 }

55

 }

 }

 }

 myloop=((double)ErrorsCount/2.00)/(double)

numberofcars *100.00; // divided by 2 because I count them twice before

System.out.println("***

");

 // System.out.println("This "+ count +" Loop Result:

"+myloop+ "% Error Rate");

 System.out.println("\n");

 System.out.println("AVERAGE EXPECTED

ACCIDENTS "+((ErrorsCount/2.00)/numberofcars) + " for " + numberofcars + " cars");

 //but we only took the average

 collectmyaccidents = collectmyaccidents

+((ErrorsCount/2.00)/numberofcars);

 // System.out.println("\n");

 // System.out.println("DIVIDED BY NUMBER OF CARS

"+(ErrorsCount/2.00)/numberofcars);

 System.out.println("\n");

 // CumErr=CumErr+myloop;

 int finalcountwaiting;

 double collect=0.0;

 for(int cw=0;cw<Cars.length;cw++)

 {

 collect = collect+Cars[cw].getWaiting();

 }

56

 System.out.println("\n THE COLLECTED

WAITING TIMES IS " + collect/2.0 + " SECONDS"); //because they are two sides...only

one of the wait

 System.out.println("\n");

 System.out.println("\n THE AVERAGE

WAITING TIMES FOR THIS LOOP IS " + (collect/2.0)/numberofcars + " SECONDS

PER VEHICLE"); // all of them now because the study is to take into account the total

number of cars in the intersection

 System.out.println("\n");

 collectmyloops =

collectmyloops+((collect/2.0)/numberofcars);

 //System.out.println("AVERAGE EXPECTED

ACCIDENTS "+((ErrorsCount/2.00)/numberofcars) + " for " + numberofcars + " cars");

 //but we only took the average

 // collectmyaccidents = collectmyaccidents

+((ErrorsCount/2.00)/numberofcars);

 } //finish the loop

 System.out.println("***

****");

 System.out.println("***

****");

 System.out.println("***

****");

 System.out.println("***

****");

 System.out.println("***

****");

 System.out.println("The Final Average waiting for the WHOLE RUN : "

+collectmyloops/(double)numberofTestLoops + " SECONDS PER VEHICLE");

57

 System.out.println("The Final Average expected collisions for the

WHOLE RUN : " +collectmyaccidents/(double)numberofTestLoops + " PER

VEHICLE");

 }

 public static int randInt(int min, int max)

 {

 Random rand = new Random();

 int randomNum = rand.nextInt((max - min) + 1) + min;

 return randomNum;

 }

 public static double TimetoArrive(int a, int b, int c)

 {

 // a and b are x and y

 // c is the speed

 double Seconds = (((a-b)*DistanceBP)/c) ; //how long does it take a car to

arrive to the meeting point;

 return Seconds;

 }

}

package play1;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.Map;

public class Car3 {

 private int speed; // the speed of the car

 private int feetPerSecond; // convert from mile/hour to feet/second

58

 private int TheX;

 private int TheY;

 private int id;

 private double CarWaiting;

 private int Direction; //0 going to the X axes , 1 going to the Y axes

 private int TheMeetingPoints;

 private double PoOccTime; //the time the car needs to occupy a point

 private ArrayList<Integer> mpoints = new ArrayList<Integer>(); //the meeting

points

 private ArrayList<Integer> mcars = new ArrayList<Integer>(); //the meeting cars

 private ArrayList<Double> TheArrivingTime = new ArrayList<Double>(); //at

what time the car will arrive

 private HashMap<Integer, Double> myMap = new HashMap <Integer,

Double>();

 //private ArrayList<Integer> mcars2 = new ArrayList<Integer>(); //the meeting

cars

 //myMap.put(courseID, scores);

 // 1 , 2 , 5.7952

 public int setSpeed(int s) {

 this.speed=s;

 return s;

 }

 public int getSpeed() {

 return this.speed;

 }

 public int setId(int id) {

 this.id=id;

 return id;

 }

 public int getId() {

 return this.id;

 }

public double setWaiting(double wait) {

 this.CarWaiting=wait;

 return wait;

 }

59

 public double getWaiting() {

 return this.CarWaiting;

 }

 public int convFPS(){

 this.feetPerSecond = (((speed*5280)/60)/60);

 return feetPerSecond; //convert from mile to feet

 }

 public void setTheX(int x){

 this.TheX=x;

 }

 public int getTheX(){

 return this.TheX;

 }

 public void setTheY(int y){

 this.TheY=y;

 }

 public int getTheY(){

 return this.TheY;

 }

 public void setDirection(int d){

 this.Direction=d;

 }

 public int getDirection(){

 return this.Direction;

 }

 public void addmCars(int a){

 this.mcars.add(a);

 }

 public ArrayList<Integer> getmCars(){

 return this.mcars;

 }

 public void addPoint(int a1){

 this.mpoints.add(a1);

 }

 public ArrayList<Integer> getPoints(){

 return this.mpoints;

 }

60

 public void addArriving(Double a2){

 this.TheArrivingTime.add(a2);

 }

 public ArrayList<Double> getArriving(){

 return this.TheArrivingTime;

 }

 public void addMymap(int a3, double b3){

 this.myMap.put(a3,b3);

 }

 public Double getMymap(int w){

 return this.myMap.get(w);

 }

 public double getPoOccTime(){

 return this.PoOccTime =26.2467/this.convFPS();

 }

}

APPENDIX C

 PRODUCTION LINE SCHEDULING CODE

62

package play2;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileWriter;

import java.io.IOException;

import java.io.PrintWriter;

import java.util.*;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.io.PrintWriter;

import java.nio.charset.StandardCharsets;

import java.nio.file.Files;

import java.nio.file.Paths;

import java.util.*;

63

import javax.swing.JOptionPane;

//import play2.KNN.Turn;

import play2.KNN.DistanceComparator;

import play2.KNN.Result;

import static jdk.nashorn.tools.ShellFunctions.input;

//import play1.Car;

// The K nearest neighbor code has been modified to match the needs:

// imported from DR NOUREDDIN SADAWI

 //http://www.imperial.ac.uk/people/n.sadawi

// https://github.com/nsadawi/KNN

// https://www.youtube.com/channel/UCNYv4HA3WjV3gZGLfBehRWQ

public class tr2

{

 static int numberofSpots=60;

 static double MinLaneA1Speed=60.00;

 static double MaxLaneA1Speed=65.00;

 static double MinLaneA2Speed=60.00;

 static double MaxLaneA2Speed=65.00;

 static double MinLaneB1Speed=60.00;

64

 static double MaxLaneB1peed=65.00;

 static double MinLaneB2Speed=60.00;

 static double MaxLaneB2peed=65.00;

 static int LaneB1Speed=10;

 static double SpotsLength=26.2467; // 8 meter

 static int SpotOccupation;

 static int RightTurnForA=2;

 static int RightTurnForB=3; // 100 means there is nothing

 double ErrorsCount=0.0;

 double LoopResult=0.0;

 int CompleteHeight = 100;

 int CompleteWidth = 100;

 int The20percentofH = (int)(CompleteHeight*(20.0f/100.0f));

 int The20percentofW = (int)(CompleteWidth*(20.0f/100.0f));

 public static void main(String[] args) throws

InterruptedException,FileNotFoundException, IOException

65

 {

 Car2 [] A1 = new Car2[numberofSpots/2]; //Lane A1 // % by 2

because only half of the spots will be occupied

 Car2 [] A2 = new Car2[numberofSpots/2]; //Lane A2

 Car2 [] B1 = new Car2[numberofSpots/2]; //Lane B1

 Car2 [] B2 = new Car2[numberofSpots/2]; //Lane B1

 //Lane A1 saving arrays

 List<Double> ArrivaltimesArray = new ArrayList<>();

 List<Double> StayingtimesArray = new ArrayList<>();

 List<Double> ExitingtimesArray = new ArrayList<>();

 List<Double> ExitingtimesArrayTurn = new ArrayList<>();

 List<Integer> RightTurnArray = new ArrayList<>();

 List<String> RightTTurnArray = new ArrayList<>();

 // List<Integer> A1 = new ArrayList<>();

66

 //Lane A2 saving arrays

 List<Double> ArrivaltimesArrayA2 = new ArrayList<>();

 List<Double> StayingtimesArrayA2 = new ArrayList<>();

 List<Double> ExitingtimesArrayA2 = new ArrayList<>();

 List<Double> ExitingtimesArrayTurnA2 = new ArrayList<>();

 List<Integer> RightTurnArrayA2 = new ArrayList<>();

 List<String> RightTTurnArrayA2 = new ArrayList<>();

 //Lane B1 saving arrays

 List<Double> ArrivaltimesArray2 = new ArrayList<>();

 List<Double> StayingtimesArray2 = new ArrayList<>();

 List<Double> ExitingtimesArray2 = new ArrayList<>();

 List<Double> ExitingtimesArrayTurn2 = new ArrayList<>();

 List<Integer> RightTurnArray2 = new ArrayList<>();

 List<String> RightTTurnArray2 = new ArrayList<>();

 //Lane B2 saving arrays

 List<Double> ArrivaltimesArrayB2 = new ArrayList<>();

 List<Double> StayingtimesArrayB2 = new ArrayList<>();

 List<Double> ExitingtimesArrayB2 = new ArrayList<>();

 List<Double> ExitingtimesArrayTurnB2 = new ArrayList<>();

67

 List<Integer> RightTurnArrayB2 = new ArrayList<>();

 List<String> RightTTurnArrayB2 = new ArrayList<>();

 //A1 seconds when its open

 List<Integer> listSeconds = new ArrayList<>();

 for (int ir=0; ir<=59; ir+=2) {

 listSeconds.add(ir);

 }

 // Collections.shuffle(listSeconds); //to enter 1 car per 1 second, if we

didn't use the shuffle at all andinstead we generate a random number again we might take

the same number again

 //A1 vehicles ID

 List<Integer> A1Names = new ArrayList<>();

 for (int A1N=100; A1N<=129; A1N++) {

 A1Names.add(A1N);

 }

 Collections.shuffle(A1Names);

 //A2 vehicles Names

 List<Integer> A2Names = new ArrayList<>();

68

 for (int A2N=200; A2N<=229; A2N++) {

 A2Names.add(A2N);

 }

 Collections.shuffle(A2Names);

 //A2

 List<Integer> listSecondsA2 = new ArrayList<>();

 for (int irA2=0; irA2<=59; irA2+=2) {

 listSecondsA2.add(irA2);

 }

 //B1

 List<Integer> listSeconds2 = new ArrayList<>();

 for (int ir2=1; ir2<=59; ir2+=2) {

 listSeconds2.add(ir2);

 }

 //B1 names

 List<Integer> B1Names = new ArrayList<>();

69

 for (int B1N=300; B1N<=329; B1N++) {

 B1Names.add(B1N);

 }

 Collections.shuffle(B1Names);

 //B2

 List<Integer> listSecondsB2 = new ArrayList<>();

 for (int irB2=1; irB2<=59; irB2+=2) {

 listSecondsB2.add(irB2);

 }

 //Collections.shuffle(listSecondsB2); //to enter 1 car per 1 second, if we

didn't use the shuffle they might take the same value again

 //B1 names

 List<Integer> B2Names = new ArrayList<>();

 for (int B2N=400; B2N<=429; B2N++) {

 B2Names.add(B2N);

 }

 Collections.shuffle(B2Names);

70

 //A1

 for(int CreatRandom=0;CreatRandom<A1.length;CreatRandom++)

 {

 // if rightturnforA ==1; then go here

 {

 A1[CreatRandom] = new Car2();

 A1[CreatRandom].setSpeed(randInt(60,65));

 A1[CreatRandom].setDirection(01);

 A1[CreatRandom].setEntering(0);

 A1[CreatRandom].setTurn(RightTurnForA);

 A1[CreatRandom].setVID(A1Names.get(CreatRandom));

A1[CreatRandom].setGateArrivalTime(listSeconds.get(CreatRandom));

71

A1[CreatRandom].setStayingTime((26.2467*numberofSpots)/91.66667); //time =

distance/speed the 91.66667 is the converting of 62.5 MPH to foot per second

A1[CreatRandom].setExitTime(A1[CreatRandom].getGateArrivalTime()+

A1[CreatRandom].getStayingTime());

ArrivaltimesArray.add(A1[CreatRandom].getGateArrivalTime());

StayingtimesArray.add(A1[CreatRandom].getStayingTime());

 ExitingtimesArray.add(A1[CreatRandom].getExitTime());

ExitingtimesArrayTurn.add(A1[CreatRandom].getExitTime());

 RightTurnArray.add(A1[CreatRandom].getTurn());

 A1[CreatRandom].setDay(randInt(1,5));

 A1[CreatRandom].setHour(randInt(0,23));

 A1[CreatRandom].setEvent(randInt(0,1));

 // Read the entire file in

72

 List<String> myFileLines =

Files.readAllLines(Paths.get("C:\\Users\\User1\\Desktop\\Research\\The

Paper\\instnces.txt"));

 // Remove any blank lines

 for (int i = myFileLines.size() - 1; i >= 0; i--) {

 if (myFileLines.get(i).isEmpty()) {

 myFileLines.remove(i);

 }

 }

 // Declare you 2d array with the amount of lines that were read

from the file

 int[][] intArray = new int[myFileLines.size()][];

 // Iterate through each row to determine the number of columns

 for (int i = 0; i < myFileLines.size(); i++) {

 // Split the line by spaces

 String[] splitLine = myFileLines.get(i).split("\\s");

 // Declare the number of columns in the row from the split

 intArray[i] = new int[splitLine.length];

73

 for (int j = 0; j < splitLine.length; j++) {

 // Convert each String element to an integer

 intArray[i][j] = Integer.parseInt(splitLine[j]);

 // dataarray[i][j] = Integer.parseInt(splitLine[j]);

 // dataarray

 }

 }

 // Print the integer array

 for (int[] row : intArray) {

 for (int col : row) {

 System.out.printf("%5d ", col);

 }

 System.out.println();

 }

 // Read the entire file in

 // Read the the turning file file in

 List<String> myFileLinesTurn =

Files.readAllLines(Paths.get("C:\\Users\\User1\\Desktop\\Research\\The

Paper\\Turn.txt"));

74

 File file = new File("C:\\Users\\User1\\Desktop\\Research\\The

Paper\\Turn.txt");

 Scanner input = new Scanner(file);

 List<String> list0 = new ArrayList<String>();

 while (input.hasNextLine()) {

 list0.add(input.nextLine());

 }

 System.out.println("The classification of the new vehicle: "+"\n");

 //System.out.println(intArray[1][1]);

 int k = 3;// # of neighbours

 //list to save turn data

 List<Turn> turnList = new ArrayList<Turn>();

 //list to save distance result

 List<Result> resultList = new ArrayList<Result>();

 // add turn data to turnList

 int dayy = A1[CreatRandom].getDay();

 int hourr = A1[CreatRandom].getHour();

75

 int eventt= A1[CreatRandom].getEvent();

 int intialloop = myFileLines.size() - 1; //add to this whenever

a new element added

 // int intialloop = CreatRandom

 int innerintialloop = 0;

 int[] query = {dayy,hourr,eventt};

 clearfileInstance();

 for (int loop1=0;loop1<=intialloop;loop1++)

 {

 for(int loop2=0;loop2<=innerintialloop;loop2++)

 {

 WriteInstance(intArray [loop1][loop2],intArray

[loop1][loop2+1],intArray [loop1][loop2+2]);

 }

 }

 WriteInstance(query[0],query[1],query[2]);

76

 //because different types

 for(int aabb = 0; aabb <list0.size(); aabb++)

 {

 // System.out.println(list0.get(aabb));

 turnList.add(new

Turn(intArray[aabb],(list0.get(aabb))));

 }

 //find disnaces

 for(Turn turn : turnList){

 double dist = 0.0;

 for(int j = 0; j < turn.turnAttributes.length;

j++){

 dist +=

Math.pow(turn.turnAttributes[j] - query[j], 2) ;

 //System.out.print(turn.turnAttributes[j]+" ");

 }

 double distance = Math.sqrt(dist);

77

 resultList.add(new

Result(distance,turn.turnSign));

 //System.out.println(distance);

 }

 //System.out.println(resultList);

 Collections.sort(resultList, new

DistanceComparator());

 String[] ss = new String[k];

 for(int x = 0; x < k; x++){

 System.out.println(resultList.get(x).distance+" ("+ resultList.get(x).turnSign+

")");

 //get classes of k nearest instances (turn

names) from the list into an array

 ss[x] = resultList.get(x).turnSign;

 }

 String majClass = findMajorityClass(ss);

 System.out.println("The class of the new vehicle is :

("+majClass+")");

 //System.out.println("The [K] is : "+k+"");

78

 WriteTurn(majClass);

 A1[CreatRandom].setTTurn(majClass);

 RightTTurnArray.add(A1[CreatRandom].getTTurn());

 // WriteK(k);

 }

 }

 //A2

 for(int

CreatRandomA2=0;CreatRandomA2<A2.length;CreatRandomA2++)

 {

 {

 A2[CreatRandomA2] = new Car2();

 A2[CreatRandomA2].setSpeed(randInt(60,65));

 A2[CreatRandomA2].setDirection(02);

 A2[CreatRandomA2].setEntering(0);

79

 A2[CreatRandomA2].setTurn(RightTurnForA);

A2[CreatRandomA2].setVID(A2Names.get(CreatRandomA2));

A2[CreatRandomA2].setGateArrivalTime(listSecondsA2.get(CreatRandomA2));

A2[CreatRandomA2].setStayingTime((26.2467*numberofSpots)/91.66667); //time =

distance/speed the 91.66667 is the converting of 62.5 MPH to foot per second

A2[CreatRandomA2].setExitTime(A2[CreatRandomA2].getGateArrivalTime()+

A2[CreatRandomA2].getStayingTime());

ArrivaltimesArrayA2.add(A2[CreatRandomA2].getGateArrivalTime());

StayingtimesArrayA2.add(A2[CreatRandomA2].getStayingTime());

ExitingtimesArrayA2.add(A2[CreatRandomA2].getExitTime());

ExitingtimesArrayTurnA2.add(A2[CreatRandomA2].getExitTime());

 RightTurnArrayA2.add(A2[CreatRandomA2].getTurn());

80

A2[CreatRandomA2].setDay(A1[CreatRandomA2].getDay());

A2[CreatRandomA2].setHour(A1[CreatRandomA2].getHour());

A2[CreatRandomA2].setEvent(A1[CreatRandomA2].getEvent());

A2[CreatRandomA2].setTTurn(A1[CreatRandomA2].getTTurn());

 RightTTurnArrayA2.add(A2[CreatRandomA2].getTTurn());

 }

 }

 //B1

 for(int CreatRandom2=0;CreatRandom2<B1.length;CreatRandom2++)

 {

 //we could use the % but we have an issue with the 0

 {

 B1[CreatRandom2] = new Car2();

 B1[CreatRandom2].setSpeed(randInt(60,65));

81

 B1[CreatRandom2].setDirection(11);

 B1[CreatRandom2].setEntering(0);

 B1[CreatRandom2].setTurn(RightTurnForB);

B1[CreatRandom2].setVID(B1Names.get(CreatRandom2));

B1[CreatRandom2].setGateArrivalTime(listSeconds2.get(CreatRandom2));

B1[CreatRandom2].setStayingTime((26.2467*numberofSpots)/91.66667); //time =

distance/speed the 91.66667 is the converting of 62.5 MPH to foot per second

B1[CreatRandom2].setExitTime(B1[CreatRandom2].getGateArrivalTime()+

B1[CreatRandom2].getStayingTime());

ArrivaltimesArray2.add(B1[CreatRandom2].getGateArrivalTime());

StayingtimesArray2.add(B1[CreatRandom2].getStayingTime());

ExitingtimesArray2.add(B1[CreatRandom2].getExitTime());

ExitingtimesArrayTurnA2.add(B1[CreatRandom2].getExitTime());

 RightTurnArray2.add(B1[CreatRandom2].getTurn());

82

 B1[CreatRandom2].setDay(randInt(1,5));

 B1[CreatRandom2].setHour(randInt(0,23));

 B1[CreatRandom2].setEvent(randInt(0,1));

 // Read the entire file in

 List<String> myFileLinesB =

Files.readAllLines(Paths.get("C:\\Users\\User1\\Desktop\\Research\\The

Paper\\instncesB.txt"));

 // Remove any blank lines

 for (int i = myFileLinesB.size() - 1; i >= 0; i--) {

 if (myFileLinesB.get(i).isEmpty()) {

 myFileLinesB.remove(i);

 }

 }

 // Declare you 2d array with the amount of lines that were

read from the file

 int[][] intArrayB = new int[myFileLinesB.size()][];

83

 // Iterate through each row to determine the number of

columns

 for (int i = 0; i < myFileLinesB.size(); i++) {

 // Split the line by spaces

 String[] splitLine = myFileLinesB.get(i).split("\\s");

 // Declare the number of columns in the row from the

split

 intArrayB[i] = new int[splitLine.length];

 for (int j = 0; j < splitLine.length; j++) {

 // Convert each String element to an integer

 intArrayB[i][j] = Integer.parseInt(splitLine[j]);

 // dataarray[i][j] = Integer.parseInt(splitLine[j]);

 // dataarray

 }

 }

 // Print the integer array

 for (int[] row : intArrayB) {

 for (int col : row) {

 System.out.printf("%5d ", col);

 }

84

 System.out.println();

 }

 // Read the entire file in

 // Read the the turning file file in

 List<String> myFileLinesTurn =

Files.readAllLines(Paths.get("C:\\Users\\User1\\Desktop\\Research\\The

Paper\\TurnB.txt"));

 File file = new

File("C:\\Users\\User1\\Desktop\\Research\\The Paper\\TurnB.txt");

 Scanner input = new Scanner(file);

 List<String> list0 = new ArrayList<String>();

 while (input.hasNextLine()) {

 list0.add(input.nextLine());

 }

 System.out.println("The classification of the new vehicle:

"+"\n");

 //System.out.println(intArray[1][1]);

85

 int k = 3;// # of neighbours

 //list to save turn data

 List<Turn> turnList = new

ArrayList<Turn>();

 //list to save distance result

 List<Result> resultList = new

ArrayList<Result>();

 // add Turn data to turnList

 int dayy = B1[CreatRandom2].getDay();

 int hourr = B1[CreatRandom2].getHour();

 int eventt= B1[CreatRandom2].getEvent();

 int intialloop = myFileLinesB.size() - 1; //add to this

whenever a new element added

 // int intialloop = CreatRandom

 int innerintialloop = 0;

 int[] query = {dayy,hourr,eventt};

 clearfileInstanceB();

86

 for (int loop1=0;loop1<=intialloop;loop1++)

 {

 for(int loop2=0;loop2<=innerintialloop;loop2++)

 {

 WriteInstanceB(intArrayB

[loop1][loop2],intArrayB [loop1][loop2+1],intArrayB [loop1][loop2+2]);

 }

 }

 WriteInstanceB(query[0],query[1],query[2]);

 //because different types

 for(int aabb = 0; aabb <list0.size(); aabb++)

 {

 // System.out.println(list0.get(aabb));

 turnList.add(new

Turn(intArrayB[aabb],(list0.get(aabb))));

 }

87

 //find disnaces

 for(Turn turn : turnList){

 double dist = 0.0;

 for(int j = 0; j <

turn.turnAttributes.length; j++){

 dist +=

Math.pow(turn.turnAttributes[j] - query[j], 2) ;

 //System.out.print(turn.turnAttributes[j]+" ");

 }

 double distance = Math.sqrt(dist);

 resultList.add(new

Result(distance,turn.turnSign));

 //System.out.println(distance);

 }

 //System.out.println(resultList);

 Collections.sort(resultList, new

DistanceComparator());

 String[] ss = new String[k];

 for(int x = 0; x < k; x++){

88

 System.out.println(resultList.get(x).distance+" ("+ resultList.get(x).turnSign+

")");

 //get classes of k nearest instances

(turn names) from the list into an array

 ss[x] = resultList.get(x).turnSign;

 }

 String majClass = findMajorityClass(ss);

 System.out.println("The class of the new

vehicle is : ("+majClass+")");

 //System.out.println("The [K] is : "+k+"");

 WriteTurnB(majClass);

 B1[CreatRandom2].setTTurn(majClass);

 RightTTurnArray2.add(

B1[CreatRandom2].getTTurn());

 // WriteK(k);

 }

89

 }

 for(int

CreatRandomB2=0;CreatRandomB2<B2.length;CreatRandomB2++)

 {

 {

 B2[CreatRandomB2] = new Car2();

 B2[CreatRandomB2].setSpeed(randInt(60,65));

 B2[CreatRandomB2].setDirection(12);

 B2[CreatRandomB2].setEntering(0);

 B2[CreatRandomB2].setTurn(RightTurnForB);

B2[CreatRandomB2].setVID(B2Names.get(CreatRandomB2));

B2[CreatRandomB2].setGateArrivalTime(listSecondsB2.get(CreatRandomB2));

B2[CreatRandomB2].setStayingTime((26.2467*numberofSpots)/91.66667); //time =

distance/speed the 91.66667 is the converting of 62.5 MPH to foot per second

90

B2[CreatRandomB2].setExitTime(B2[CreatRandomB2].getGateArrivalTime()+

B2[CreatRandomB2].getStayingTime());

ArrivaltimesArrayB2.add(B2[CreatRandomB2].getGateArrivalTime());

StayingtimesArrayB2.add(B2[CreatRandomB2].getStayingTime());

ExitingtimesArrayB2.add(B2[CreatRandomB2].getExitTime());

ExitingtimesArrayTurnB2.add(B2[CreatRandomB2].getExitTime());

 RightTurnArrayB2.add(B2[CreatRandomB2].getTurn());

B2[CreatRandomB2].setDay(B1[CreatRandomB2].getDay());

B2[CreatRandomB2].setHour(B1[CreatRandomB2].getHour());

B2[CreatRandomB2].setEvent(B1[CreatRandomB2].getEvent());

B2[CreatRandomB2].setTTurn(B1[CreatRandomB2].getTTurn());

91

 RightTTurnArrayB2.add(B2[CreatRandomB2].getTTurn());

 }

 }

 System.out.println("The arrival times for the vehicles on A1 axes

are: "+ ArrivaltimesArray + " ");

 System.out.println("The staying times for the vehicles on A1 axes

are: "+ StayingtimesArray + " ");

 System.out.println("The Exiting times for the vehicles on A1 axes

are: "+ ExitingtimesArray + " ");

 System.out.println("Right turn arry for the vehicles on A1 axes

are: "+ RightTTurnArray + " ");

 System.out.println("A1 IDs are are: "+ A1Names + " ");

 System.out.println("");

 // System.out.println();

 System.out.println("The arrival times for the vehicles on A2 axes

are: "+ ArrivaltimesArrayA2 + " ");

92

 System.out.println("The staying times for the vehicles on A2 axes

are: "+ StayingtimesArrayA2 + " ");

 System.out.println("The Exiting times for the vehicles on A2 axes

are: "+ ExitingtimesArrayA2 + " ");

 System.out.println("The right turn arry for the vehicles on A2

axes are: "+ RightTTurnArrayA2 + " ");

 System.out.println("A2 IDs are are: "+ A2Names + " ");

 System.out.println("");

 System.out.println("The arrival times for the vehicles on B1 axes

are: "+ ArrivaltimesArray2 + " ");

 System.out.println("The staying times for the vehicles on B1 axes

are: "+ StayingtimesArray2 + " ");

 System.out.println("The Exiting times for the vehicles on B1 axes

are: "+ ExitingtimesArray2 + " ");

 System.out.println("The right turn arry for the vehicles on B1

axes are: "+ RightTTurnArray2 + " ");

 System.out.println("B1 IDs are are: "+ B1Names + " ");

 System.out.println("");

 System.out.println("The arrival times for the vehicles on B2 axes

are: "+ ArrivaltimesArrayB2 + " ");

93

 System.out.println("The staying times for the vehicles on B2 axes

are: "+ StayingtimesArrayB2 + " ");

 System.out.println("The Exiting times for the vehicles on B2 axes

are: "+ ExitingtimesArrayB2 + " ");

 System.out.println("The right turn arry for the vehicles on B2

axes are: "+ RightTTurnArrayB2 + " ");

 System.out.println("B2 IDs are are: "+ B2Names + " ");

 System.out.println("");

 int timet= 1 * 0; // Convert to seconds

 long delay = timet * 1000; //5000 milliseconds equal to(5 seconds).

 do

 {

 // int minutes = timet / 60;

 int seconds = timet % 60;

 System.out.println(seconds + " second(s)");

 // IF IT MEETS THE LANE REQUIREMENTS for LANE A

94

 // Arriving time requirement

 //go to change names ONLY

 if(timet%2==0){

 int countForRightTurn=0;

 for(int

CheckEnteryGate=0;CheckEnteryGate<A1.length;CheckEnteryGate++)

 {

if((A1[CheckEnteryGate].getSpeed()>=MinLaneA1Speed&A1[CheckEnteryGate].getSp

eed()<=MaxLaneA1Speed) && A1[CheckEnteryGate].getEntering()==0 &&

A1[CheckEnteryGate].getGateArrivalTime()==seconds)

 {

 if(A1[CheckEnteryGate].getTTurn().equals("+"))

 {

 //System.out.println("The right turn Vehicle");

95

 //double oldA1speed = A1[CheckEnteryGate].getSpeed();

// This just to show the old speed which rnge between 60-65

A1[CheckEnteryGate].setSpeed(((MaxLaneA1Speed+MinLaneA1Speed)/2.00));

 A1[CheckEnteryGate].setEntering(1);

 System.out.println("Right turn vehicle " +

A1[CheckEnteryGate].getVID() + " has entered the intersection through lane [A1] with

speed of " + A1[CheckEnteryGate].getSpeed());

 //" with time

"+A1[CheckEnteryGate].getGateArrivalTime() + this shows the entering time

 }

 else

 {

 //double oldA1speed =

A1[CheckEnteryGate].getSpeed(); // This just to show the old speed which rnge

between 60-65

A1[CheckEnteryGate].setSpeed(((MaxLaneA1Speed+MinLaneA1Speed)/2.00));

96

 A1[CheckEnteryGate].setEntering(1);

 System.out.println("Vehicle " +

A1[CheckEnteryGate].getVID() + " has entered the intersection through lane [A1] with

speed of " + A1[CheckEnteryGate].getSpeed());

 //countForRightTurn++;

 //System.out.println("Roundedddd-------

"+(int) Math.ceil((A2[CheckEnteryGate].getExitTime()))+" exit time "

+A1[CheckEnteryGate].getExitTime());

 }

 }

 for(int

CheckEnteryGate2=0;CheckEnteryGate2<A1.length;CheckEnteryGate2++)

 {

 //if((int)A1[CheckEnteryGate2].getExitTime()==(int)seconds+1)

 if(((int) Math.ceil((A1[CheckEnteryGate2].getExitTime())) ==

seconds) & ((A1[CheckEnteryGate2].getEntering()==1)))

 {

 // System.out.println("second now "

 A1[CheckEnteryGate2].setEntering(2);

97

 System.out.println("Vehicle "

+A1[CheckEnteryGate2].getVID()+ " has left the intersection's lane [A1] ");

 }

 }

 //the last curly braclet

 }

 for(int

CheckEnteryGateA2=0;CheckEnteryGateA2<A2.length;CheckEnteryGateA2++)

 {

if((A2[CheckEnteryGateA2].getSpeed()>=MinLaneA2Speed&A2[CheckEnteryGateA2].

getSpeed()<=MaxLaneA2Speed) && A2[CheckEnteryGateA2].getEntering()==0 &&

A2[CheckEnteryGateA2].getGateArrivalTime()==seconds)

 {

 if(A2[CheckEnteryGateA2].getTTurn().equals("+"))

 {

98

 //System.out.println("The right turn Vehicle");

 //double oldA1speed = A1[CheckEnteryGate].getSpeed();

// This just to show the old speed which rnge between 60-65

A2[CheckEnteryGateA2].setSpeed(((MaxLaneA2Speed+MinLaneA2Speed)/2.00));

 A2[CheckEnteryGateA2].setEntering(1);

 System.out.println("Right turn vehicle " +

A2[CheckEnteryGateA2].getVID() +" has entered the intersection through lane [A2] with

speed of " + A2[CheckEnteryGateA2].getSpeed());

 }

 else

 {

A2[CheckEnteryGateA2].setSpeed(((MaxLaneA2Speed+MinLaneA2Speed)/2.00));

 A2[CheckEnteryGateA2].setEntering(1);

 //System.out.println("Vehicle " + CheckEnteryGateA2 + " has

entered the intersection through lane A2 ");

99

 System.out.println("Vehicle " +

A2[CheckEnteryGateA2].getVID() + " has entered the intersection through lane [A2]

with speed of " + A2[CheckEnteryGateA2].getSpeed());

 }

 }

 for(int

CheckEnteryGateA22=0;CheckEnteryGateA22<A2.length;CheckEnteryGateA22++)

 {

 if(((int) Math.ceil((A2[CheckEnteryGateA22].getExitTime())) ==

seconds) & ((A2[CheckEnteryGateA22].getEntering()==1)))

 {

 A2[CheckEnteryGateA22].setEntering(2); //left the

intersection

 System.out.println("Vehicle "

+A2[CheckEnteryGateA22].getVID()+ " has left the intersection's lane [A2] ");

 }

 }

 }

100

 }

 if(timet%2==1){

 for(int

CheckEnteryGate1=0;CheckEnteryGate1<B1.length;CheckEnteryGate1++)

 {

if((B1[CheckEnteryGate1].getSpeed()>=MinLaneB1Speed&B1[CheckEnteryGate1].getS

peed()<=MaxLaneB1peed) && B1[CheckEnteryGate1].getEntering()==0 &&

B1[CheckEnteryGate1].getGateArrivalTime()==seconds)

 {

 if(B1[CheckEnteryGate1].getTTurn().equals("+"))

 {

 //System.out.println("The right turn Vehicle");

 //double oldA1speed = A1[CheckEnteryGate].getSpeed();

// This just to show the old speed which rnge between 60-65

B1[CheckEnteryGate1].setSpeed(((MaxLaneB1peed+MinLaneB1Speed)/2.00));

101

 B1[CheckEnteryGate1].setEntering(1);

 System.out.println("Right turn Vehicle " +

B1[CheckEnteryGate1].getVID() + " has entered the intersection through lane [B1] with

speed of " + B1[CheckEnteryGate1].getSpeed());

 }

 else

 {

B1[CheckEnteryGate1].setSpeed(((MaxLaneB1peed+MinLaneB1Speed)/2.00));

 B1[CheckEnteryGate1].setEntering(1);

 //System.out.println("Vehicle " + CheckEnteryGateA2 + " has

entered the intersection through lane A2 ");

 System.out.println("Vehicle " + B1[CheckEnteryGate1].getVID()

+ " has entered the intersection through lane [B1] with speed of " +

B1[CheckEnteryGate1].getSpeed());

 }

 }

102

 for(int

CheckEnteryGate3=0;CheckEnteryGate3<B1.length;CheckEnteryGate3++)

 {

 if(((int) Math.ceil((B1[CheckEnteryGate3].getExitTime())) ==

seconds) & ((B1[CheckEnteryGate3].getEntering()==1)))

 {

 B1[CheckEnteryGate3].setEntering(2);

 //System.out.println("Vehicle " +CheckEnteryGate3+ " has

left the intersection's lane B1 ");

 System.out.println("Vehicle "

+B1[CheckEnteryGate3].getVID()+ " has left the intersection's lane [B1] ");

 }

 }

 }

 for(int

CheckEnteryGateB2=0;CheckEnteryGateB2<B2.length;CheckEnteryGateB2++)

 {

103

if((B2[CheckEnteryGateB2].getSpeed()>=MinLaneB2Speed&B2[CheckEnteryGateB2].

getSpeed()<=MaxLaneB2peed) && B2[CheckEnteryGateB2].getEntering()==0 &&

B2[CheckEnteryGateB2].getGateArrivalTime()==seconds)

 {

 if(B2[CheckEnteryGateB2].getTTurn().equals("+"))

 {

 //System.out.println("The right turn Vehicle");

 //double oldA1speed = A1[CheckEnteryGate].getSpeed();

// This just to show the old speed which rnge between 60-65

B2[CheckEnteryGateB2].setSpeed(((MaxLaneB2peed+MinLaneB2Speed)/2.00));

 B2[CheckEnteryGateB2].setEntering(1);

 System.out.println("Right turn Vehicle " +

B2[CheckEnteryGateB2].getVID() + " has entered the intersection through lane [B2]

with speed of " + B2[CheckEnteryGateB2].getSpeed());

 }

104

 else

 {

B2[CheckEnteryGateB2].setSpeed(((MaxLaneB2peed+MinLaneB2Speed)/2.00));

 B2[CheckEnteryGateB2].setEntering(1);

 //System.out.println("Vehicle " + CheckEnteryGateA2 + " has

entered the intersection through lane A2 ");

 System.out.println("Vehicle " +

B2[CheckEnteryGateB2].getVID() + " has entered the intersection through lane [B2]

with speed of " + B2[CheckEnteryGateB2].getSpeed());

 }

 }

 for(int

CheckEnteryGateB22=0;CheckEnteryGateB22<B2.length;CheckEnteryGateB22++)

 {

 if(((int) Math.ceil((B2[CheckEnteryGateB22].getExitTime())) ==

seconds) & ((B2[CheckEnteryGateB22].getEntering()==1)))

 {

105

 B2[CheckEnteryGateB22].setEntering(2); //left the

intersection

 System.out.println("Vehicle "

+B2[CheckEnteryGateB22].getVID()+ " has left the intersection's lane [B2] ");

 }

 }

 }

 }

 Thread.sleep(1000);

 timet = timet + 1;

 delay = delay + 1000;

 System.out.println(" ");

 }

 while (delay != 60000);{

 System.out.println("Time's Up!");

106

 }

 }

 public static int randInt(int min, int max)

 {

 Random rand = new Random();

 int randomNum = rand.nextInt((max - min) + 1) + min;

 return randomNum;

 }

 public static double SpeedPerfoot(double a)

 {

 // a and b are x and y

107

 // c is the speed

 double Spf = (((a*5280)/60)/60); // 1 mile equal to 5280 feet. then convert to

minutes , then convert to seconds

 return Spf;

 }

 static class Turn {

 int[] turnAttributes;

 String turnSign;

 public Turn(int[] turnAttributes, String turnSign){

 this.turnSign = turnSign;

 this.turnAttributes = turnAttributes;

 }

 }

 //simple class to model results (distance + class)

 static class Result {

 double distance;

 String turnSign;

 public Result(double distance, String turnSign){

 this.turnSign = turnSign;

108

 this.distance = distance;

 }

 }

 //simple comparator class used to compare results via distances

 static class DistanceComparator implements Comparator<Result> {

 @Override

 public int compare(Result a, Result b) {

 return a.distance < b.distance ? -1 : a.distance == b.distance

? 0 : 1;

 }

 }

 private static String findMajorityClass(String[] array)

 {

 //add the String array to a HashSet to get unique String values

 Set<String> h = new HashSet<String>(Arrays.asList(array));

 //convert the HashSet back to array

 String[] uniqueValues = h.toArray(new String[0]);

 //counts for unique strings

 int[] counts = new int[uniqueValues.length];

109

 // loop thru unique strings and count how many times they appear

in origianl array

 for (int i = 0; i < uniqueValues.length; i++) {

 for (int j = 0; j < array.length; j++) {

 if(array[j].equals(uniqueValues[i])){

 counts[i]++;

 }

 }

 }

 for (int i = 0; i < counts.length; i++)

 {

 if (i==0)

 {

 System.out.println("Number of points making a right turn :

"+ counts[i]);

 }

 else

 {

 System.out.println("Number of points going ahead : "+ counts[i]);

110

 }

 }

 int max = counts[0];

 for (int counter = 1; counter < counts.length; counter++) {

 if (counts[counter] > max) {

 max = counts[counter];

 }

 }

 // how many times max appears

 //we know that max will appear at least once in counts

 //so the value of freq will be 1 at minimum after this loop

 int freq = 0;

 for (int counter = 0; counter < counts.length; counter++) {

 if (counts[counter] == max) {

 freq++;

 }

 }

 //index of most freq value if we have only one mode

111

 int index = -1;

 if(freq==1){

 for (int counter = 0; counter < counts.length; counter++) {

 if (counts[counter] == max) {

 index = counter;

 break;

 }

 }

 //System.out.println("one majority class, index is: "+index);

 return uniqueValues[index];

 } else{//we have multiple modes

 int[] ix = new int[freq];//array of indices of modes

 System.out.println("multiple majority classes: "+freq+"

classes");

 int ixi = 0;

 for (int counter = 0; counter < counts.length; counter++) {

 if (counts[counter] == max) {

 ix[ixi] = counter;//save index of each max

count value

 ixi++; // increase index of ix array

 }

 }

112

 for (int counter = 0; counter < ix.length; counter++)

 System.out.println("class index: "+ix[counter]);

 //now choose one at random

 Random generator = new Random();

 //get random number 0 <= rIndex < size of ix

 int rIndex = generator.nextInt(ix.length);

 System.out.println("random index: "+rIndex);

 int nIndex = ix[rIndex];

 //return unique value at that index

 return uniqueValues[nIndex];

 }

 }

 private static double meanOfArray(double[] m) {

 double sum = 0.0;

 for (int j = 0; j < m.length; j++){

 sum += m[j];

113

 }

 return sum/m.length;

 }

public static void WriteInstance(int a,int b, int c)

{

try { // this is for monitoring runtime Exception within the block

 String content = (String.valueOf(a)); // content to write into the file

 String content2 = (String.valueOf(b));

 String content3 = (String.valueOf(c));

 File file = new File("C:\\Users\\User1\\Desktop\\Research\\The

Paper\\instnces.txt"); // here file not created here

 // if file doesnt exists, then create it

 if (!file.exists()) { // checks whether the file is Exist or not

 file.createNewFile(); // here if file not exist new file created

 }

 FileWriter fw = new FileWriter(file.getAbsoluteFile(), true); // creating

fileWriter object with the file

114

 BufferedWriter bw = new BufferedWriter(fw); // creating bufferWriter which is

used to write the content into the file

 // PrintWriter bwn = new PrintWriter(file); //This to delete the previous content

of the file and write a new one

 bw.write(content); // write method is used to write the given content into the file

 bw.write(" ");

 bw.write(content2);

 bw.write(" ");

 bw.write(content3);

 bw.newLine();

 bw.close(); // Closes the stream, flushing it first. Once the stream has been

closed, further write() or flush() invocations will cause an IOException to be thrown.

Closing a previously closed stream has no effect.

 System.out.println("Done write Instances");

} catch (IOException e) { // if any exception occurs it will catch

 e.printStackTrace();

}

115

}

public static void clearfileInstance()

{

try { // this is for monitoring runtime Exception within the block

 File file = new File("C:\\Users\\User1\\Desktop\\Research\\The

Paper\\instnces.txt"); // here file not created here

 // if file doesnt exists, then create it

 if (!file.exists()) { // checks whether the file is Exist or not

 file.createNewFile(); // here if file not exist new file created

 }

 FileWriter fw = new FileWriter(file.getAbsoluteFile(), true); // creating

fileWriter object with the file

 BufferedWriter bw = new BufferedWriter(fw); // creating bufferWriter which is

used to write the content into the file

 PrintWriter bwn = new PrintWriter(file); //This to delete the previous content

of the file and write a new one

116

 // bw.write(" ");

 bw.close(); // Closes the stream, flushing it first. Once the stream has been

closed, further write() or flush() invocations will cause an IOException to be thrown.

Closing a previously closed stream has no effect.

 System.out.println("Done deleting previous Instances");

} catch (IOException e) { // if any exception occurs it will catch

 e.printStackTrace();

}

}

public static void WriteTurn(String a)

{

try { // this is for monitoring runtime Exception within the block

117

 String content = (String.valueOf(a)); // content to write into the file

 //String content2 = (String.valueOf(b));

// String content3 = (String.valueOf(c));

 File file = new File("C:\\Users\\User1\\Desktop\\Research\\The

Paper\\Turn.txt"); // here file not created here

 // if file doesnt exists, then create it

 if (!file.exists()) { // checks whether the file is Exist or not

 file.createNewFile(); // here if file not exist new file created

 }

 FileWriter fw3 = new FileWriter(file.getAbsoluteFile(), true); // creating

fileWriter object with the file

 BufferedWriter bw3 = new BufferedWriter(fw3); // creating bufferWriter which

is used to write the content into the file

 // PrintWriter bwn = new PrintWriter(file); //This to delete the previous content

of the file and write a new one

 //bw.newLine();

 bw3.newLine();

 bw3.write(content); // write method is used to write the given content into the

file

 //bw.write(" ");

118

 //bw.write(content2);

 // bw.write(" ");

 //bw.write(content3);

 bw3.close(); // Closes the stream, flushing it first. Once the stream has been

closed, further write() or flush() invocations will cause an IOException to be thrown.

Closing a previously closed stream has no effect.

 System.out.println("Done write Turn");

} catch (IOException e) { // if any exception occurs it will catch

 e.printStackTrace();

}

}

public static void clearfileTurns()

{

try { // this is for monitoring runtime Exception within the block

119

 File file = new File("C:\\Users\\User1\\Desktop\\Research\\The

Paper\\Turns.txt"); // here file not created here

 // if file doesnt exists, then create it

 if (!file.exists()) { // checks whether the file is Exist or not

 file.createNewFile(); // here if file not exist new file created

 }

 FileWriter fw = new FileWriter(file.getAbsoluteFile(), true); // creating

fileWriter object with the file

 BufferedWriter bw = new BufferedWriter(fw); // creating bufferWriter which is

used to write the content into the file

 PrintWriter bwn = new PrintWriter(file); //This to delete the previous content

of the file and write a new one

 // bw.write(" ");

 bw.close(); // Closes the stream, flushing it first. Once the stream has been

closed, further write() or flush() invocations will cause an IOException to be thrown.

Closing a previously closed stream has no effect.

120

 System.out.println("Done deleting previous turns");

} catch (IOException e) { // if any exception occurs it will catch

 e.printStackTrace();

}

}

//b stuff

public static void WriteInstanceB(int a,int b, int c)

{

try { // this is for monitoring runtime Exception within the block

String content = (String.valueOf(a)); // content to write into the file

String content2 = (String.valueOf(b));

String content3 = (String.valueOf(c));

121

 File file = new File("C:\\Users\\User1\\Desktop\\Research\\The

Paper\\instncesB.txt"); // here file not created here

 // if file doesnt exists, then create it

 if (!file.exists()) { // checks whether the file is Exist or not

 file.createNewFile(); // here if file not exist new file created

 }

 FileWriter fwb = new FileWriter(file.getAbsoluteFile(), true); // creating

fileWriter object with the file

 BufferedWriter bwb = new BufferedWriter(fwb); // creating bufferWriter which

is used to write the content into the file

// PrintWriter bwn = new PrintWriter(file); //This to delete the previous content

of the file and write a new one

 bwb.write(content); // write method is used to write the given content into the file

 bwb.write(" ");

 bwb.write(content2);

 bwb.write(" ");

 bwb.write(content3);

 bwb.newLine();

122

 bwb.close(); // Closes the stream, flushing it first. Once the stream has been

closed, further write() or flush() invocations will cause an IOException to be thrown.

Closing a previously closed stream has no effect.

 System.out.println("Done write Instances");

} catch (IOException e) { // if any exception occurs it will catch

 e.printStackTrace();

}

}

public static void clearfileInstanceB()

{

try { // this is for monitoring runtime Exception within the block

 File file = new File("C:\\Users\\User1\\Desktop\\Research\\The

Paper\\instncesB.txt"); // here file not created here

123

 // if file doesnt exists, then create it

 if (!file.exists()) { // checks whether the file is Exist or not

 file.createNewFile(); // here if file not exist new file created

 }

 FileWriter fwb2 = new FileWriter(file.getAbsoluteFile(), true); // creating

fileWriter object with the file

 BufferedWriter bwb2 = new BufferedWriter(fwb2); // creating bufferWriter

which is used to write the content into the file

PrintWriter bwnb2 = new PrintWriter(file); //This to delete the previous content

of the file and write a new one

// bw.write(" ");

 bwb2.close(); // Closes the stream, flushing it first. Once the stream has been

closed, further write() or flush() invocations will cause an IOException to be thrown.

Closing a previously closed stream has no effect.

 System.out.println("Done deleting previous Instances");

} catch (IOException e) { // if any exception occurs it will catch

 e.printStackTrace();

124

}

}

public static void WriteTurnB(String a)

{

try { // this is for monitoring runtime Exception within the block

String content = (String.valueOf(a)); // content to write into the file

//String content2 = (String.valueOf(b));

//String content3 = (String.valueOf(c));

 File file = new File("C:\\Users\\User1\\Desktop\\Research\\The

Paper\\TurnB.txt"); // here file not created here

 // if file doesnt exists, then create it

 if (!file.exists()) { // checks whether the file is Exist or not

 file.createNewFile(); // here if file not exist new file created

 }

125

 FileWriter fw4 = new FileWriter(file.getAbsoluteFile(), true); // creating

fileWriter object with the file

 BufferedWriter bw4 = new BufferedWriter(fw4); // creating bufferWriter which

is used to write the content into the file

// PrintWriter bwn = new PrintWriter(file); //This to delete the previous content

of the file and write a new one

 //bw.newLine();

 bw4.newLine();

 bw4.write(content); // write method is used to write the given content into the file

 //bw.write(" ");

 //bw.write(content2);

// bw.write(" ");

 //bw.write(content3);

 bw4.close(); // Closes the stream, flushing it first. Once the stream has been

closed, further write() or flush() invocations will cause an IOException to be thrown.

Closing a previously closed stream has no effect.

 System.out.println("Done write Turn");

} catch (IOException e) { // if any exception occurs it will catch

 e.printStackTrace();

}

126

}

public static void clearfileTurnsB()

{

try { // this is for monitoring runtime Exception within the block

 File file = new File("C:\\Users\\User1\\Desktop\\Research\\The

Paper\\TurnsB.txt"); // here file not created here

 // if file doesnt exists, then create it

 if (!file.exists()) { // checks whether the file is Exist or not

 file.createNewFile(); // here if file not exist new file created

 }

 FileWriter fw = new FileWriter(file.getAbsoluteFile(), true); // creating fileWriter

object with the file

127

 BufferedWriter bw = new BufferedWriter(fw); // creating bufferWriter which is

used to write the content into the file

PrintWriter bwn = new PrintWriter(file); //This to delete the previous content of

the file and write a new one

// bw.write(" ");

 bw.close(); // Closes the stream, flushing it first. Once the stream has been

closed, further write() or flush() invocations will cause an IOException to be thrown.

Closing a previously closed stream has no effect.

 System.out.println("Done deleting previous turns");

} catch (IOException e) { // if any exception occurs it will catch

 e.printStackTrace();

}

}

} //End of the whole class

128

package play2;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.Map;

public class Car2 {

 private double speed; // the speed of the car

 //private int feetPerSecond; // convert from mile/hour to feet/second

 private int TheX;

 private int TheY;

 private int TheEntering; // 0 not entered 1 entered 2 left

 private int VehicleId;

 private double TheArrival;

 private int Direction; //01 going to the A1 ,02 going to the A2, 11 going to

the B1 , 12 going to the B2

 private int RightTurn; //Right turn number -1 if there is no right turn

 private double TheStayingTime;

129

 private double TheExitingTime;

 private int TDay;

 private int THour;

 private int TEvent;

 private String TTurn;

 public double setSpeed(double s) {

 this.speed=s;

 return s;

 }

 public double getSpeed() {

 return this.speed;

 }

 public void setTheX(int x){

 this.TheX=x;

 }

 public int getTheX(){

 return this.TheX;

130

 }

 public void setTheY(int y){

 this.TheY=y;

 }

 public int getTheY(){

 return this.TheY;

 }

 public void setDirection(int d){

 this.Direction=d;

 }

 public int getDirection(){

 return this.Direction;

 }

 public void setTurn(int t){

 this.RightTurn=t;

 }

 public int getTurn(){

 return this.RightTurn;

 }

131

 public void setVID(int vid){

 this.VehicleId=vid;

 }

 public int getVID(){

 return this.VehicleId;

 }

 public void setDay(int day){

 this.TDay=day;

 }

 public int getDay(){

 return this.TDay;

 }

 public void setHour(int hour){

 this.THour=hour;

 }

 public int getHour(){

 return this.THour;

132

 }

 public void setEvent(int event){

 this.TEvent=event;

 }

 public int getEvent(){

 return this.TEvent;

 }

 public void setTTurn(String tturn){

 this.TTurn=tturn;

 }

 public String getTTurn(){

 return this.TTurn;

 }

 public void setEntering(int en){

 this.TheEntering=en;

 }

 public int getEntering(){

133

 return this.TheEntering;

 }

 public void setGateArrivalTime(double ar){

 this.TheArrival=ar;

 }

 public double getGateArrivalTime(){

 return this.TheArrival;

 }

 public void setStayingTime(double st){

 this.TheStayingTime=st;

 }

 public double getStayingTime(){

 return this.TheStayingTime;

 }

 public void setExitTime(double ex){

 this.TheExitingTime=ex;

 }

134

 public double getExitTime(){

 return this.TheExitingTime;

 }

}

