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Abstract

Source localization is of pivotal importance in several areas such as wireless sensor networks and

Internet of Things (IoT), where the location information can be used for a variety of purposes, e.g.

surveillance, monitoring, tracking, etc. Time Difference of Arrival (TDOA) is one of the well-known

localization approaches where the source broadcasts a signal and a number of receivers record the

arriving time of the transmitted signal. By means of computing the time difference from various receivers,

the source location can be estimated. On the other hand, in the recent few years novel optimization

algorithms have appeared in the literature for (i) processing big data and for (ii) training deep neural

networks. Most of these techniques are enhanced variants of the classical stochastic gradient descent

(SGD) but with additional features that promote faster convergence. In this paper, we compare the

performance of the classical SGD with the novel techniques mentioned above. In addition, we propose

an optimization procedure called RMSProp+AF, which is based on RMSProp algorithm but with the

advantage of incorporating adaptation of the decaying factor. We show through simulations that all of

these techniques—which are commonly used in the machine learning domain—can also be successfully

applied to signal processing problems and are capable of attaining improved convergence and stability.

Finally, it is also shown through simulations that the proposed method can outperform other competing

approaches as both its convergence and stability are superior.

Index Terms

TDOA, localization, optimization, machine learning, RMSProp, RMSProp+AF, DNN

I. INTRODUCTION

Wireless sensor networks (WSN) and Internet of Things (IoT) are both constituted by assort-

ments of interconnected devices with capabilities to (i) communicate with each other and (ii)

http://arxiv.org/abs/1807.04824v1
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interact with their surroundings. WSN are oftentimes regarded as a special case of IoT, where

the devices are homogeneous and can only interface with specific types of devices. On the other

hand, the premise in IoT is that devices could be based on heterogeneous technologies and yet

they should be capable of collaborating and understanding each other in a smart manner. In both

cases, the devices cooperate exchanging information with the aim of accomplishing a set of

tasks. IoT and WSN devices are found in a plethora of applications and across various domains.

Among the several types of information that is utilized by the devices, location/position is of vital

importance as it can be used for monitoring, tracking [1], managing resources, etc. For instance,

in the context of smart cities, the location can be used for identifying available parking spaces

for vehicles. In the domain of Industry 4.0, such information can be exploited for improving the

assignment of spectrum radio resources among the multiple sensors and actuators; thus leveraging

communication reliability. Similarly, position data can be utilized by eNodeBs to enhance the

distribution of resources in future vehicular networks [7]. In logistics and transportation, it is

envisaged that real-time position data would be advantageous for transparent traceability of

products, specially in complex manufacturing process [8]. In the area of healthcare, location

data can be employed to track elderly people. Among the known techniques for estimating the

location of a device, time difference of arrival (TDOA) has proved to be both robust and accurate.

Furthermore, this technique is scalable and self-improvable, i.e. when more anchors (receivers)

are available, these can be exploited to refine the position estimation and thereby mitigating

measurement errors.

On the other hand, several new optimization techniques have emerged in the domains of

(i) big data processing and (i) deep neural networks (DNN) training. Most if not all of these

techniques have their roots in stochastic gradient descent (SGD) but with additional integrated

features that boost convergence and regularize stability. Among such techniques, stochastic

gradient descent with momentum (SGD+M) [3], root mean square propagation (RMSProp)

[4] and adaptive moments (Adam) [5] are some of the most prominent approaches which can

commonly outperform SGD in terms of convergence and accuracy. Form the standpoint of the

authors, many of these techniques can be adapted to improve convergence in position estimation

problem discussed herein.
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II. MOTIVATION

In order to provide real-time and accurate positioning, there is a necessity of counting with

algorithms that are dependable and have fast convergence. This is particularly crucial in ap-

plications where position information is critical. For instance-, under the 4G/5G paradigms,

cellular vehicle–to–everything (C-V2X) is a newly introduced technology that aims to support

short-range vehicular communications. In C-V2X, vehicles broadcast beacon signals containing

their location in order to provide awareness of its presence to neighboring vehicles and thus

preventing accidents. However, in scenarios where global positioning system (GPS) signals are

not available, location information will have to be derived from anchor points such as eNodeBs

or roadside units (RSU). As a consequence, algorithms that can converge rapidly and provide

accurate position information are of pivotal importance for this and other several applications.

In machine learning, training deep neural networks (DNN) with massive amounts of data is

a commonly faced issue. Traditionally, SGD has been the mainstream method to accomplish

such a purpose. However, the gradient in SGD may vary quickly after each iteration due to the

wide variety of each input sample. Therefore, it is very likely that the steps converge slowly

due to the chaotic gradient directions. Furthermore, SGD tends to have unstable update steps in

each iteration and is prone to get trapped in poor local optima. In the recent few years, novel

approaches based on SGD have emerged to address some of the main inconveniences of SGD. To

alleviate the disadvantages of SGD, SDG+M was introduced. SDG+M incorporates knowledge

from previous iterations and combines this information with the current gradient step to keep

the updates stable. By means of this additional mechanism, the speed of learning is also boosted

while chaotic jumps are prevented. RMSProp exponentially weights the past squared gradients by

a forgetting factor in order to control the decaying learning rates. Therefore, RMSProp possesses

outstanding stability and fast convergence. Adam constitutes an improvement of RMSProp. Adam

incorporates momentum in the update rules, specifically for the first and second moments of

the gradient. Additionally, Adam possess a bias correction procedure which compensates for

the initial iterations where the estimations can be poorly predicted. However, due to the many

integrated processes in Adam, convergence can sometimes be affected.

Given the outstanding stability and accuracy of RMSProp, we propose a novel algorithm

called RMSProp with adaptive decaying factor (RMSProp+AF) which adjusts an integrated

exponential weight using knowledge from a short first-in first-out (FIFO) buffer containing
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previous gradients. By means of the proposed mechanism large steps are fostered at the beginning

of the iterative process, which results in augmented convergence. Furthermore, as the iterative

process progresses, the steps are reduced up to certain degree such that the learning rate does not

diminish. We show that the proposed algorithm can outperform other state-of-the art techniques

for the location estimation problem described in this paper.

The paper is structured as follows. In Section II, we define the TDOA model in a vectorized

manner. Section III describes the proposed algorithm RMSProp+AF. Section IV is devoted to

discussing simulation results. Finally, Section V summarizes the conclusions of our work.

III. TDOA MODEL

Consider a system consisting of a set of receivers (anchors) R = {r1, r2, . . . , rN} and a single

transmitter whose position has to be estimated. In addition, the transmitter—at the unknown

location p—is actively broadcasting beacon signals s(t) that are not necessarily known by the

receivers. Furthermore, it is assumed that the receivers are located at known positions p̃i =

[x̃i, ỹi]
T , i = 1, 2, · · · , N . Let zi(t) = hi · s(t− τi) + ηi(t) denote the received signal at receiver

ri ∈ R. The parameter τi represents the time of arrival at the receiver ri. The channel gain at

receiver ri is denoted by hi whereas ηi represents Gaussian noise. When the transmitted signal

s(t) is unknown by the receivers, a viable idea is to remove the incognito signal s(t) by means

of correlation analysis [1]. Thus, the TDOA measurements ∆τij are indirectly estimated by

computing the normalized cross-correlation (NCC) between every pair of signals z̄i(t) and z̄j(t).

To wit, the objective is to find an estimate ∆τ̂ij of the true value ∆τij via NCC, as shown in

(1).
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p(∆d̂ | p) =
1

√
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In (1), πij is a systematic error measurement with Gaussian distribution. The signals z̄i(t) =
h∗

i

|hi|2
zi(t) = s(t−τi)+

h∗

i

|hi|2
ηi(t) and z̄j(t) =

h∗

j

|hj |2
zj(t) = s(t−τj)+

h∗

j

|hj |2
ηj(t) are equalized versions

of the received zi(t) and zj(t). Although the TDOA estimate ∆τ̂ij is computed from the equalized

received signals, the NCC was considered instead of the conventional cross-correlation due its

robustness to gain difference. By exploiting the received signals in a pair-wise manner, both the

unknown transmit time t and the unknown signal s(t) can be removed. Because the underlying

location estimation problem requires using distances, all TDOAs ∆τ̂ij will be converted from

time to range differences as shown in (2).

∆d̂ij = c ·∆τ̂ij

= c · (τi − τj) + c · πij

= di − dj + ǫij

= ‖p− p̃i‖2 − ‖p− p̃j‖2 + ǫij

= g(p, p̃i, p̃j) + ǫij

(2)

with (1 ≤ i < j ≤ N) and ǫij ∼ N (0, σ2
i + σ2

j ). Note that each ∆d̂i,j corresponds to a set of

potential positions p = [x y]T along a hyperbola where the transmitter could be located. It is

therefore necessary at least three anchors in order to obtain an intersection of two hyperbolas. In

addition, note that ∆dij and ∆dji will define the same hyperbola. Thus, for notation simplification

∆d̂m = g(p, p̃i, p̃j) + ǫm (3)

where 1 ≤ m ≤ M , M = N !
2!(N−2)!

and ǫm ∼ N (0, σ2
m). In this paper, the terms TDOA and range

difference will be employed interchangeably [6]. Also, note that range difference between two

receivers is with respect to the transmitter.

Given the observed measurements ∆d̂ = [∆d̂1,2,∆d̂1,3, · · · ,∆d̂N−1,N ]
T , the objective is to

estimate—with the least uncertainty—the true position p of the transmitter. This problem can be

formulated as maximizing the likelihood function [2] shown in (3), where C is the covaraince
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matrix of the measurement errors. The vector g is given by (4)

g =










‖p− p̃1‖2 − ‖p− p̃2‖2

‖p− p̃1‖2 − ‖p− p̃3‖2
...

‖p− p̃N−1‖2 − ‖p− p̃N‖2










. (5)

To wit, maximizing (3) is equivalent to minimizing (6)

p̂ = argmin
p

(∆d̂− g)TC−1(∆d̂− g)
︸ ︷︷ ︸

J : cost function

. (6)

In order to determine p, we opt for using a gradient approach where an initial position estimate

is iteratively updated until a near-optimal solution is obtained. To this purpose, the gradient of

J with respect to p, i.e. ∇pJ is computed and the position is updated iteratively. Thus, in the

case of SGD, the estimated location at iteration k is expressed by

p̂(k+1) = p̂(k) − µ∇(k)
p
J, (7)

where µ is the learning rate and ∇(k)
p J is given by

∇(k)
p
J = −2ǫ(k)











p
(k)−p̃1

‖p(k)−p̃1‖2
− p

(k)−p̃2

‖p(k)−p̃2‖2
p
(k)−p̃1

‖p(k)−p̃1‖2
− p

(k)−p̃3

‖p(k)−p̃3‖2
...

p
(k)−p̃N−1

‖p(k)−p̃N−1‖2
− p

(k)−p̃N

‖p(k)−p̃N‖2











(8)

with ǫ
(k) = ∆d− g(k) denoting the estimation error vector at the k-th iteration.

IV. PROPOSED RMSPROP+AF

The proposed optimization approach based on RMSProp is described in great detail in Al-

gorithm 1. From Step 1 to Step 4, useful variables are initialized. For instance, the buffers bx

and by of size L are both emptied. In addition, the decaying factors thresholds contained in

ρ
(0) are predefined. Also, the canonical vectors for two dimensions, ux and uy are specified. In

Step 5a, an index k′ is computed to emulate the FIFO buffers bx and by. In Step 5b, the square

of the gradient is calculated and each of the resultant components is stored in the buffer it

corresponds to. Realize that the buffers will preserve the L most recent squared gradients, which

will be utilized in the upcoming processes. In Step 5c, two auxiliary vectors vmax and vmin are

computed. Each of these vectors will respectively contain the maximum and minimum values
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of bx and by, i.e. the maximum and minimum squared gradients per dimension among the most

recent L. These will be used for updating the decaying weighting factor at each iteration. As

can be observed there is a decaying factor per dimensions and each is independent. Finally, Step

5e and Step 5f are the update equations originally stated in RMSProp. To wit, Step 5e provides

a smoothed version of the squared gradient whereas Step 5f applies a power normalization. Step

6 gives the final estimation of the position.

V. SIMULATIONS

In this section, we evaluate two types of scenario. In the first case, the device—whose location

has to be estimated—is inside the convex hull defined by the N receivers. In the second scenario,

the device is located outside the convex hull. As it is known, the second scenario is more

challenging and therefore the estimation error is expected to be higher. For both scenarios, the

parameters of the algorithms have been specified in Table I.

Scenario 1: Consider that N = 4 receivers are located at positions p̃1 = [0 0]T , p̃2 = [10 60]T ,

p̃3 = [70 70]T and p̃4 = [60 10]T . In addition, the unknown position of the transmitter is

p = [40 80]T .

TABLE I: Simulation parameters

Algorithm Parameter Symbol Value

SGD Learning rate µ 0.01

SGD+M
Learning rate µ 0.01

Momentum term α 0.9

RMSProp

Learning rate µ 0.01

Decaying factor ρ 0.999

Smoothing term δ 0.000001

Adam

Learning rate µ 0.01

Decaying factor 1 ρ1 0.9

Decaying factor 2 ρ2 0.999

Smoothing term δ 0.000001

RMSProp+AF

Learning rate µ 0.01

Decaying factor threshold ρ 0.99

Smoothing term δ 0.000001
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Algorithm 1: Proposed RMSProp with Adaptive Decaying Factor (RMSProp+AF)

Input: The gradient ∇(k)
p J of cost function J

Output: The estimated position p̂

begin

Step 1:Initialize the FIFO buffers bx and by of size L.

Step 2:Initialize ρ
(0) = [0.99 0.99]T .

Step 3:Initialize r(0) = [0 0]T .

Step 4:Define the vectors ux = [1 0]T and uy = [0 1]T .

for k = 1 : K do

Step 5a:Compute the circular buffer index k′

k′ = k − L

⌊
k − 1

L

⌋

Step 5b:Store the square of gradient ∇(k)
p J at index k′ on each of the buffers

bx(k
′) = uT

x

(

∇(k)
p J ⊙∇(k)

p J
)

by(k
′) = uT

y

(

∇(k)
p J ⊙∇(k)

p J
)

Step 5c:Define the vectors vmax and vmin

vmax =




max{bx}

max{by}



 ,vmin




min{bx}

min{by}





Step 5d:Compute the adaptive decaying factor ρ(k)

γ
(k) = (vmax − vmin)⊘ (vmax + vmin + 12×1)

ρ
(k) =




max

{
uT
xρ

(0),uT
xγ

(k)
}

max
{
uT
y ρ

(0),uT
y γ

(k)
}





Step 5e:Accumulate the squared gradient

r(k) = ρ
(k) ⊙ r(k−1) + (12×1 − ρ

(k))⊙∇(k)
p J ⊙∇(k)

p J

Step 5f: Update the position

p(k+1) = p(k) − µ

δ+
√
r(k)

⊙∇pJ

Step 6:Output p̂ = p(K+1)
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Fig. 1: Iterative process for position estimation

The described scenario is depicted in Fig. 1. We have considered a covariance matrix with

diagonal and off-diagonal elements equal to 0.4 and 0.1, respectively. For this reason, the true

position may not be found correctly and all the approaches will converge to a slightly shifted

solution. In Fig. 1 we observe that the proposed approach RMSProp+AF exhibits large steps

at the beginning while progressively reduces the step-size as the process advances. This is a

consequence of performing adaptation of the decaying factor. We also observe that SGD+M

exhibits consistent step-sizes and has higher convergence rate than other competing algorithms.

Based on Fig. 2, we can realize that RMSProp+AF can—within a few iterations—attain a

near-optimal solution compared to other approaches. For instance, the estimation error after

50 iterations is approximately 3 meters. SGD+M requires as much as twice iterations to reach

stability and comparable error as RMSProp+AF. On the other hand, RMSProp requires more than

300 iterations to reach a similar estimation error. Both SGD and Adam exhibit slow convergence

and are outperformed by the previously mentioned algorithms. Counterintuitively, the highly-

elaborated Adam is outperformed by the simplistic SGD. This might be due to ineffective biased

correction and the extra parameters that do not work harmoniously.

Scenario 2: Consider that N = 4 receivers are located at positions p̃1 = [0 0]T , p̃2 = [10 60]T ,

p̃3 = [70 70]T and p̃4 = [60 10]T . In addition, the unknown position of the transmitter is

p = [75 65]T .

We observe in Fig. 3 that RMSProp+AF is the best-performing among all the assessed

algorithms. RMSProp is capable of attaining similar error performance as RMSProp+AF within

150 iterations. However, RMSProp+AF does not exhibit oscillations and it is therefore more
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Fig. 2: Scenario 1 - Convergence of algorithms
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Fig. 3: Scenario 2 - Convergence of algorithms

stable. Because the transmitter in not located inside the convex hull, the estimation error is

higher compared to the first case; approximately 6 meters when using RMSProp+AF. The error

floor using RMSProp is 9 meters. The remaining three algorithms exhibit very slow convergence

although the hyper-parameters have been tuned the fairest possible.

VI. CONCLUSION

In this work we have presented a comparison of different optimization techniques—commonly

used in the machine learning realm—to solve TDOA-based localization. We can conclude that

most of the approaches can be successfully applied and can outperform classical methods

such as stochastic gradient descent. In addition, we presented an improved version named
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RMSProp+AF, which is capable of providing enhanced convergence in comparison to state–

of–the–art approaches. We showed through simulations, that the proposed scheme outperforms

other competing approaches in two types of scenarios, i.e. (i) when the transmitter is inside and

(ii) when it is outside the convex hull formed by the receivers.
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