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Abstract—This paper presents a technology of sensing hidden
vehicles by exploiting multi-path vehicle-to-vehicle (V2V) com-
munication. This overcomes the limitation of existing RADAR
technologies that requires line-of-sight (LoS), thereby enabling
more intelligent manoeuvre in autonomous driving and improv-
ing its safety. The proposed technology relies on transmission
of orthogonal waveforms over different antennas at the target
(hidden) vehicle. Even without LoS, the resultant received signal
enables the sensing vehicle to detect the position, shape, and
driving direction of the hidden vehicle by jointly analyzing the
geometry (AoA/AoD/propagation distance) of individual propaga-
tion path. The accuracy of the proposed technique is validated by
realistic simulation including both highway and rural scenarios.

I. INTRODUCTION

Autonomous driving (auto-driving) is a disruptive technol-
ogy that will reduce car accidents, traffic congestion, and
greenhouse gas emissions by automating the transportation
process. One primary operation of auto-driving is vehicular
positioning, namely positioning nearby vehicles and even de-
tecting their shapes [1]. The positioning includes both absolute
and relative positioning and we focus on relative vehicular
positioning in this work. Among others (e.g., cameras and ul-
trasonic sensing), two existing technologies, namely RADAR
and LiDAR (Light Detection and Ranging), are capable of
accurate vehicular positioning. RADAR can localize objects
as well as estimate their velocities via sending a designed
waveform and analyzing its reflection by the objects. Recent
breakthroughs in millimeter-wave radar [2] or multiple-input
multiple-output (MIMO) radar [3] improves the positioning
accuracy substaintially. On the other hand, a LiDAR [4] steers
ultra-sharp laser beams to scan the surrounding environment
and generate a high resolution three-dimensional (3D) map for
navigation. However, RADAR and LiDAR share the common
drawback that positioning requires the target vehicles to be
visible with line-of-sight (LoS) since neither microwave nor
laser beams can penetrate a large solid object such as a truck.
Furthermore, hostile weather conditions also affect the effec-
tiveness of LiDAR as fog, snow or rain can severely attenuate
a laser beam. On the other hand, detecting hidden vehicles
with non-line-of-sight (NLoS) is important for intelligent auto-
driving (e.g., overtaking) and accidence avoidance in complex
scenarios such as Fig. 1.

The drawback of existing solutions motivates the current
work on developing a technology for sensing hidden vehi-
cles. It relies on V2V transmission to alleviate the severe
signal attenuation due to round-trip propagation for RADAR
and LiDAR. By designing hidden vehicle sensing, we aim
at tackling two main challenges: 1) the lack of LoS and
synchronization between sensing and hidden vehicles and 2)
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Figure 1: Hidden vehicle scenario with multi-path NLoS channels.

simultaneous detection of position, shape, and orientation of
driving direction of hidden vehicles.

While LiDAR research focuses on mapping, there exist
a rich set of signal processing techniques for positioning
using RADAR [5]. They can be largely separated into two
themes. The first is time-based ranging by estimating time-of-
arrival (ToA) or time-difference-of-arrival (TDoA) [6]. The
time-based ranging detects distances but not positions. Most
important, the techniques are effective only if there exist
LoS paths between sensing and target vehicles. The second
theme is positioning using multi-antenna arrays via detecting
angle-of-arrival (AoA) and angle-of-departure (AoD) [7].
In addition, there also exist hybrid designs such as jointly
using ToA/AoA/AoD [8]. The techniques make the strong
assumption that perfect synchronization between transmitters
and receivers, which limits their versatility in auto-driving.
Furthermore, neither time-based ranging nor array-based po-
sitioning is capable of additional geometric information on tar-
get vehicles such as their shapes and orientation. In summary,
prior designs are insufficient for tackling the said challenges
which is the objective of the current work.

The paper presents a technology for hidden vehicle sensing
by exploiting multi-path V2V transmission. The technology
requires a hidden vehicle to be provision with an array with
antennas distributed as multiple clusters over the vehicle
body. Furthermore, the vehicle transmits a set of orthogonal
waveforms over different antennas. Then by analyzing the
multi-path signal observed from a receive array, the geometry
(AoA/AoD/propagation distance) of individual path is esti-
mated at the sensing vehicle. Using optimization theory, novel
technique is proposed to infer from the multi-path geometric
information the position, shape, and orientation of the hidden
vehicles. Comprehensive simulation is performed based on
practical vehicular channel model including both highway and
rural scenarios. Simulation results show the effectiveness of
the proposed technology in sensing hidden vehicles.

ar
X

iv
:1

80
4.

03
54

1v
1 

 [
ee

ss
.S

P]
  1

0 
A

pr
 2

01
8



II. SYSTEM MODEL

We consider a two-vehicle system where a sensing vehicle
(SV) attempts to detect the position, shape, and orientation
of a hidden vehicle (HV) blocked by obstacles such as trucks
or buildings (see Fig. 1). For the task of only detecting the
position and orientation (see Section III), it is sufficient for
HV to have an array of collocated antennas (with negligible
half-wavelength spacing). On the other hand, for the task
of simultaneous detection of position, shape, and orientation
(see Section IV), the antennas at the HV are assumed to be
distributed as multiple clusters of collocated antennas over
HV body. For simplicity, we consider 4-cluster arrays with
clusters at the vertices of a rectangle. Then sensing reduces to
detect the positions and shape of the rectangle, thereby also
yields the orientation of HV. The relevant technique can be
easily extended to a general arrays topology. Last, the SV is
provisioned with a 1-cluster array.

A. Multi-Path NLoS Channel

The channel between the SV and HV contains NLoS and
multi-paths reflected by a set of scatterers. Following the
typical assumption for V2V channels, only the received signal
from paths with single-reflections is considered at the SV
while higher order reflections are neglected due to severe
attenuation [9]. Propagation is assumed to be constrained
within the horizontal plane to simplify exposition. Consider a
2D Cartesian coordinate system where the SV array is located
at the origin and the X-axis is aligned with the orientation of
SV. Consider a typical 1-cluster array at the HV. Each NLoS
signal path from the HV antenna cluster to the SV array is
characterized by the following five parameters (see Fig. 2):
the AoA at SV denoted by θ; the AoD at HV denoted by ϕ;
the orientation of the HV denoted by ω; and the propagation
distance denoted by d which includes the propagation distance
before refection, denoted by ν, and the remaining distance
d−ν. The AoD and AoA are defined as azimuth angles relative
to driving directions of HV and SV, respectively.

B. Hidden Vehicle Transmission

Each of 4-cluster arrays of HV has Mt antennas. The
HV is assigned four sets of Mt orthogonal waveforms for
transmission. Each set is transmitted using a corresponding
antennas cluster where each antenna transmits an orthogonal
waveform. It is assumed that by network coordinated wave-
form assignment, HV waveform sets are known at the SV that
can hence group the signal paths according their originating
antennas clusters arrays. Let sm(t) be the continuous-time
baseband waveform assigned to the m-th HV antenna with the
bandwidth Bs. Then the waveform orthogonality is specified
by
∫
sm1(t)s∗m2

(t)dt = δ(m1 −m2) with the delta function
δ(x) = 1 if x = 0 and 0 otherwise. The transmitted
waveform vector for the k-th array of HV antennas cluster
is s(k)(t) = [s

(k)
1 (t), · · · , s(k)Mt

(t)]T. With the knowledge of
{s(k)(t)}, the SV with Mr antennas scans and retrieves the
receive signal due to the HV transmission.

Consider a typical HV antennas cluster array. Based on the
far-field propagation model [10] , the cluster response vector
is represented as a function of AoD ϕ as

a(ϕ) = [exp(j2πfcα1(ϕ)), · · · , exp(j2πfcαMt
(ϕ))]T, (1)
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Figure 2: NLoS signal model.

where fc denotes the carrier frequency and αm(ϕ) refers to the
difference in propagation time to the corresponding scatterer
between the m-th HV antenna and the 1-st HV antenna in the
same cluster, i.e., α1(ϕ) = 0. Similarly, the response vector
of SV array is expressed in terms of AoA θ as

b(θ) = [exp(j2πfcβ1(θ)), · · · , exp(j2πfcβMr
(θ))]T, (2)

where βm(θ) refers to the difference of propagation time from
the scatterer to the m-th SV antenna than the 1-st SV antenna.
We assume that SV has prior knowledge of the response
functions a(ϕ) and b(θ). This is feasible by standardizing
the vehicular arrays’ topology. In addition, the Doppler effect
is ignored based on the assumption that the Doppler frequency
shift is much smaller than the waveform bandwidth and thus
does not affect waveform orthogonality.

Let k with 1 ≤ k ≤ 4 denote the index of HV arrays and
P (k) denote the number of received paths originating from the
k-th antennas cluster array. The total number of paths arriving
at SV is P =

∑4
k=1 P

(k). Represent the received signal vector
at SV as r(t) = [r1(t), · · · , rMr

(t)]T. It can be expressed in
terms of s(t), a(ϕ) and b(θ) as

r(t) =

4∑
k=1

P (k)∑
p=1

γ(k)p b
(
θ(k)p

)
aT
(
ϕ(k)
p

)
s
(
t− λ(k)p

)
+ n(t),

where γ
(k)
p and λ

(k)
p respectively denote the complex chan-

nel coefficient and ToA of path p originating from the k-
th HV array, and n(t) represents channel noise. Without
synchronization between HV and SV, SV has no information
of HV’s transmission timing. Therefore, λ(k)p differs from
the corresponding propagation delay, denoted by τ

(k)
p , due

unknown clock synchronization gap between HV and SV
denoted by Γ. Consequently, τ (k)p = λ

(k)
p − Γ.

C. Estimations of AoA, AoD, and ToA

The sensing techniques in the sequel assume that the SV
has the knowledge of AoA, AoD, and ToA of each receive
NLoS signal path, say path p, denoted by {θp, ϕp, λp} where
p ∈ P = {1, 2, · · · , P}. The knowledge can be acquired
by applying classical parametric estimation techniques briefly
sketched as follows. The estimation procedure comprises the
following three steps. 1) Sampling: The received analog
signal r(t) and the waveform vector s(t) are sampled at the
Nyquist rate 2Bs to give discrete-time signal vectors r[n]
and s [n], respectively. 2) Matched filtering: The sequence
of r[n] is matched-filtered using s [n]. The resultant Mr×Mt

coefficient matrix y[z] is given by y[z] =
∑

n r[n]s∗ [n− z].
The sequence of ToAs {λp} can be estimated by detecting
peaks of the norm of y[z], denoted by {zp}, which can be
converted into time by multiplying the time resolution 1

2Bs
. 3)



Estimations of AoA/AoD: Given {y[zp]}, AoAs and AoDs
are jointly estimated using a 2D-multiple signal classification
(MUSIC) algorithm [11]. The estimated AoA θp, AoD ϕp,
ToA λp jointly characterize the p-th NLoS path.

D. Hidden Vehicle Sensing Problem

The SV attempts to sense the HV’s position, shape, and
orientation. The position and shape of HV can be obtained by
using parameters of AoA θ, AoD ϕ, orientation ω, distances
d and ν, length and width of configuration of 4-cluster arrays
denoted by L and W , respectively. Noting the first two param-
eters are obtained based on the estimations in Section II-C and
the goal is to estimate the remaining five parameters.

III. SENSING HIDDEN VEHICLES WITH COLOCATED
ANTENNAS

Consider the case that the HV has an array with colocated
antennas (1-cluster array). SV is capable of detecting the
HV position, specified by the coordinate p = (x, y), and
orientation, specified ω in Fig. 2. The prior knowledge that
the SV has for sensing is the parameters of P NLoS paths
estimated as described in Section II-C. Each path, say path p,
is characterized by the parametric set {θp, ϕp, λp}. Then the
sensing problem in the current case can be represented as⋃

p∈P
{θp, ϕp, λp} ⇒ {p, ω}. (3)

The problem is solved in the following subsections.

A. Sensing Feasibility Condition

In this subsection, it is shown that for the sensing to be
feasible, there should exist at least four NLoS paths. To this
end, based on the path geometry (see Fig. 2), we can obtain
the following system of equations:

xp = νp cos(θp)− (dp − νp) cos(ϕp + ω)

= ν1 cos(θ1)− (d1 − ν1) cos(ϕ1 + ω),

yp = νp sin(θp)− (dp − νp) sin(ϕp + ω)

= ν1 sin(θ1)− (d1 − ν1) sin(ϕ1 + ω),

p ∈ P. (P1)

The number of equations in P1 is 2(P − 1), and the above
system of equations has a unique solution when the dimensions
of unknown variables are less than 2(P − 1). Since the AoAs
{θp} and AoDs {ϕp} are known, the number of unknowns is
(2P + 1) including the propagation distances {dp}, {νp}, and
orientation ω. To further reduce the number of unknowns, we
use the propagation time difference between signal paths also
known as TDoAs, denoted by {ρp}, which can be obtained
from the difference of ToAs as ρp = λp − λ1 where ρ1 = 0.
The propagation distance of signal path p, say dp, is then
expressed in terms of d1 and ρp as

dp = c(λp − Γ) = c(λ1 − Γ) + c(λp − λ1) = d1 + cρp, (4)

for p = {2, · · · , P}. Substituting the above (P − 1) equations
into P1 eliminates the unknowns {d2, · · · , dP } and hence
reduces the number of unknowns from (2P + 1) to (P + 2).
As a result, P1 has a unique solution when 2(P −1) ≥ P +2.

Proposition 1 (Sensing feasibility condition). To sense the
position and orientation of a HV with 1-cluster array, at least
four NLoS signal paths are required: P ≥ 4.

Remark 1 (Asynchronization and TDoA). Recall that one
sensing challenge is asynchronization between HV and SV
represented by Γ, which is a latent variable we cannot observe
explicitly. Considering TDoA helps solve the problem by
avoiding the need of considering Γ by exploiting the fact that
all NLoS paths experience the same synchronization gap.

B. Hidden Vehicle Sensing without Noise

Consider the case of a high receive signal-to-noise ratio
(SNR) where noise can be neglected. Then the sensing prob-
lem in (3) is translated to solve the system of equations in P1.
One challenge is that the unknown orientation ω introduces
nonlinear relations, namely cos(ϕp+ω) and sin(ϕp+ω), in the
equations. To overcome the difficulty, we adopt the following
two-step approach: 1) Estimate the correct orientation ω∗ via
its discriminant introduced in the sequel; 2) Given ω∗, the
equations becomes linear and thus can be solved via least-
square (LS) estimator, giving the position p∗. To this end, the
equations in P1 can be arranged in a matrix form as

A(ω)z = B(ω), (P2)

where z = (v, d1)T ∈ R(P+1)×1 and v = {ν1, · · · , νP }. For
matrix A(ω), we have

A(ω) =

[
A(cos)(ω)
A(sin)(ω)

]
∈ R2(P−1)×(P+1), (5)

where A(cos)(ω) is
a
(cos)
1 −a(cos)2 0 · · · 0 a

(cos)
1,2

a
(cos)
1 0 −a(cos)3 · · · 0 a

(cos)
1,3

...
...

...
. . .

...
...

a
(cos)
1 0 0 · · · −a(cos)P a

(cos)
1,P

 (6)

with a
(cos)
p = cos(θp) + cos(ϕp + ω) and a

(cos)
1,p = cos(ϕp +

ω)− cos(ϕ1 + ω), and A(sin)(ω) is obtained by replacing all
cos operations in (6) with sin operations. Next,

B(ω) =

[
B(cos)(ω)
B(sin)(ω)

]
∈ R2(P−1)×1, (7)

where

B(cos)(ω) =


cρ2 cos(ϕ2 + ω)
cρ3 cos(ϕ3 + ω)

...
cρP cos(ϕP + ω)

 , (8)

and B(sin)(ω) is obtained by replacing all cos in (8) with sin.
1) Computing ω∗: Note that P2 becomes an over-determined
linear system of equations if P ≥ 4 (see Proposition 1),
providing the following discriminant of orientation ω. Since
the equations in (5) are based on the geometry of multi-path
propagation and HV orientation as illustrated in Fig. 2, there
exists a unique solution for the equations. Then we can obtain
from (5) the following result useful for computing ω∗.

Proposition 2 (Discriminant of orientation). With P ≥ 4, a
unique ω∗ exists when B(ω∗) is orthogonal to the null column
space of A(ω∗) denoted by null(A(ω∗)T) ∈ R2(P−1)×(P−3):

null(A(ω∗)T)TB(ω∗) = 0. (9)
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Figure 3: Rectangular configuration of 4-cluster arrays at HV.

Given this discriminant, a simple 1D search can be per-
formed over the range [0, 2π] to find ω∗.
2) Computing p∗: Given the ω∗, P2 can be solved by

z∗ =
[
A(ω∗)TA(ω∗)

]−1
A(ω∗)TB(ω∗). (10)

Then the estimated HV position p∗ can be computed by
substituting (9) and (10) into (4) and P1.

C. Hidden Vehicle Sensing with Noise

In the presence of significant channel noise, the estimated
AoAs/AoDs/ToAs contain errors. Consequently, HV sensing is
based on the noisy versions of matrix A(ω) and B(ω), denoted
by Ã(ω) and B̃(ω), which do not satisfy the equations in P2
and (9). To overcome the difficulty, we develop a sensing tech-
nique by converting the equations into minimization problems
whose solutions are robust against noise.
1) Computing ω∗: Based on (9), we formulate the following
problem for finding the orientation ω:

ω∗ = arg min
ω

[
null(Ã(ω)T)TB̃(ω)

]
. (11)

Solving the problem relies on a 1D search over [0, 2π].
2) Computing p∗: Next, given ω∗, the optimal z∗ can be
derived by using the LS estimator that minimizes the squared
Euclidean distance as

z∗ = arg min
z
‖Ã(ω∗)z− B̃(ω∗)‖2

=
[
Ã(ω∗)TÃ(ω∗)

]−1
Ã(ω∗)TB̃(ω∗), (12)

which has the same structure as (10). Last, the origins of all
paths {(xp, yp)}p∈P can be computed using the parameters
{z∗, ω∗} as illustrated in P1. Averaging these origins gives
the estimate of the HV position p∗ = (x∗, y∗) with x∗ =
1
P

∑P
p=1 xp and y∗ = 1

P

∑P
p=1 yp.

IV. SENSING HIDDEN VEHICLES WITH MULTI-CLUSTER
ARRAYS

Consider the case that the HV arrays consists of four
antenna clusters located at the vertices of a rectangle with
length L and width W (see Fig. 3). The vertex locations are
represented as {p(k) = (x(k), y(k))T}4k=1. Recall that the SV
can differentiate the origin from which signal is transmitted
due to the usage of different orthogonal waveform set for each
array. Let each path be ordered based on HV arrays’ index
such that P = {P(1),P(2),P(3),P(4)} where P(k) represents
the set of received signals from the k-th array. Note that
the vertices determines the shape and their centroid of HV
location. Therefore, the sensing problem is represented as⋃4

k=1

⋃
p∈P(k)

{θp, ϕp, λp} ⇒ {{p(k)}4k=1, ω}. (13)

Next, we present a sensing technique exploiting prior knowl-
edge of the HV 4-cluster arrays’ configuration, which is
more efficient than separately estimating the four positions
{p(k)}4k=1 using the technique in the preceding section.

A. Sensing Feasibility Condition

Assume that P(1) is not empty and 1 ∈ P(1) without
loss of generality. Based on the rectangular configuration of
{p(k)}4k=1 (see Fig. 3), a system of equations is formed:
νp cos(θp)− (dp − νp) cos(ϕp + ω) + ηp(ω,L,W )

= ν1 cos(θ1)− (d1 − ν1) cos(ϕ1 + ω),

νp sin(θp)− (dp − νp) sin(ϕp + ω) + ζp(ω,L,W )

= ν1 sin(θ1)− (d1 − ν1) sin(ϕ1 + ω),

(P3)

where

ηp(ω,L,W ) =


0, p ∈ P(1)

L · cos(ω), p ∈ P(2)

L · cos(ω)−W · sin(ω), p ∈ P(3)

−W · sin(ω), p ∈ P(4)

(14)

and ζp(ω,L,W ) is obtained via replacing all cos and sin in
(14) with sin and − cos, respectively. Recall P = |P| =∑4

k=1 |P(k)|. Compared with P1, the number of equations in
P3 is the same as 2(P − 1) while the number of unknowns
increases from P + 2 to P + 4 because L and W are
also unknown. Consequently, P3 has a unique solution when
2(P − 1) ≥ P + 4.

Proposition 3 (Sensing feasibility condition). To sense the
position, shape, and orientation of a HV with 4-cluster arrays,
at least six paths are required: P ≥ 6.

Remark 2 (Advantage of array-configuration knowledge).
The separate positioning of individual HV 4-cluster arrays
requires at least 16 NLoS paths (see Proposition 1). On the
other hand, the prior knowledge of rectangular configuration of
antenna clusters leads to the relation between their locations,
reducing the number of required paths for sensing.

B. Hidden Vehicle Sensing

Consider the case that noise is neglected. P2 is rewritten to
the following matrix form:

Â(ω)ẑ = B(ω), (P4)

where ẑ = (v, d1, L,W )T ∈ R(P+3)×1 with v following the
index ordering of P , and B(ω) is given in (7). For matrix
Â(ω), we have

Â(ω) =
[
A(ω) L(ω) W(ω)

]
∈ R2(P−1)×(P+3). (15)

Here, A(ω) is specified in (5) and L(ω) ∈ R2(P−1)×1 is given
as [L(cos)(ω),L(sin)(ω)]T where

L(cos)(ω) = [0, · · · , 0︸ ︷︷ ︸
|P(1)|−1

,− cos(ω), · · · ,− cos(ω)︸ ︷︷ ︸
|P(2)|+|P(3)|

, 0, · · · , 0︸ ︷︷ ︸
|P(4)|

]T,

and L(sin)(ω) is obtained by replacing all cos(ω) in
L(cos)(ω) with sin(ω). Similarly, W(ω) is given as
[W(sin)(ω),W(cos)(ω)]T where

W(sin)(ω) = [ 0, · · · , 0︸ ︷︷ ︸
|P(1)|+|P(2)|−1

, sin(ω), · · · , sin(ω)︸ ︷︷ ︸
|P(3)|+|P(4)|

]T,
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Figure 4: Number of NLoS paths versus average positioning error.
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and W(cos)(ω) is obtained by replacing all sin in W(sin)(ω)
with − cos.
1) Computing ω∗: Noting that P4 is over-determined when
P ≥ 6, the resultant discriminant of the orientation ω is similar
to Proposition 2 and given as follows.

Proposition 4 (Discriminant of orientation). With P ≥ 6, the
unique ω∗ exists when B̂(ω∗) is orthogonal to the null column
space of Â(ω∗) denoted by null(Â(ω∗)T) ∈ R2(P−1)×(P+1):

null(Â(ω∗)T)TB̂(ω∗) = 0. (16)

Given this discriminant, a simple 1D search can be performed
over the range [0, 2π] to find ω∗.
2) Computing {p(k)}4k=1: Given the ω∗, P4 can be solved by

ẑ∗ =
[
Â(ω∗)TÂ(ω∗)

]−1
Â(ω∗)TB̂(ω∗). (17)

HV arrays’ positions {p(k)}4k=1 can be computed by substi-
tuting (16) and (17) into (4) and P3.

Extending the technique to the case with noise is omitted
for brevity because it is straightforward by modifying (16) to
a minimization problem as in Sec. III-C.

V. SIMULATION RESULTS

The performance of the proposed technique is validated via
realistic simulation. The performance metric for measuring
positioning accuracy is defined as the average Euclidean
squared distance of estimated arrays’ positions to their true
locations: 1

4

∑4
k=1 ‖p∗(k)−p(k)‖2, named average positioning

error. We adopt the geometry-based stochastic channel model
given in [12] for modelling the practical scatterers distribution
and V2V propagation channels, which has been validated by
real measurement data. Two scenarios, highway and rural, are
considered by following the settings in [12, Table 1]. We set
fc = 5.9 GHz, Bs = 100 MHz, Mr = Mt = 20, the per-
antenna transmission power is 23 dBm. The size of HV is
L×W = 3×6 m2 and distance between SV and HV is 50 m.

Fig. 4 shows the curves of average positioning error versus
the number of NLoS paths P received at SV. It is observed
that positioning via 1 and 4-cluster arrays are feasible when
the P ≥ 4 and P ≥ 6, respectively, and receiving more
paths can dramatically decrease the positioning error. The error

for the 4-cluster arrays is much larger. This is because more
clusters results in more noise, which leads to noisy estimations
of AoA/AoD/ToAs within signal detection procedure. Also,
compared with 1-cluster array, two more unknown parameters
need to be jointly estimated in the case of 4-cluster arrays,
which impacts the positioning performance. Moreover, the
positioning accuracy in the rural scenario is better than that
in highway scenario. The reason is that the signal propagation
loss in highway scenario is higher than that in rural scenario
since the distance between vehicle and scatterers can be large,
which adds the difficulty for signal detections.

In Fig. 5, the distance between SV and HV versus average
positioning error is plotted. It is shown that the positioning
error increases when SV-HV distance keeps increasing because
the accuracy of signal detection reduces when SV-HV distance
becomes larger since higher signal propagation loss. The
positioning accuracy in rural scenario is higher than that in
highway. The reason is that more paths can be received at SV
in rural case due to the denser scatterers exists, resulting in
higher positioning accuracy as Fig. 4 displays. Moreover, the
error gap between highway and rural cases increases with SV-
HV distance. This is because, as the SV-HV distance increases,
the power of received signals in highway is weaker than those
in rural due to larger propagation loss, leading to inaccurate
signal detections.

VI. CONCLUSION REMARKS

A novel and efficient technique has been proposed for sens-
ing hidden vehicles. Presently, we are extending the technique
to the case where the SV has no knowledge of waveform
assignments to different HV arrays, and to 3D propagation.
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