
ar
X

iv
:1

80
8.

09
36

0v
1 

 [
cs

.I
T

] 
 2

8 
A

ug
 2

01
8

Polar Codes with Integrated Probabilistic Shaping

for 5G New Radio
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Abstract—A modification to 5G New Radio (NR) polar code
is proposed, which improves the error correction performance
with higher order modulation through probabilistic shaping.
The presented scheme mainly re-uses existing hardware at
the transmitter, and modifications at the receiver are small.
Simulation results show that the presented approach can improve
the performance by up to 1dB for 256-QAM on AWGN channels1.

I. INTRODUCTION

In order to approach the information theoretical limits, the

transmitted symbols need to have a capacity achieving proba-

bility distribution. For example, Gaussian distributed symbols

are required on AWGN channels and uniform signaling causes

the so-called shaping loss of up to 1.53dB [1]. The existing

2G, 3G and 4G systems all use uniformly distributed transmit

symbols, and therefore suffer from the shaping loss. Recently,

3GPP completed the first release of the fifth generation (5G)

new radio (NR) standard. This new release uses bit-interleaved

coded modulation (BICM) similar to 4G, but replaces the

existing error correction schemes with LDPC and polar codes

[2] for improved performances [3]. However, similar to the

legacy standards, uniformly distributed transmit symbols are

employed, leading again to a shaping loss. There are different

options to combat this loss, and probabilistic shaping (PS) is

a promising solution for this. The readers are referred to [4]

and the references therein for a detailed study.

PS for polar codes is recently studied in [5], where a

distribution matcher is used for signal shaping and a precoder

is employed for systematic polar encoding. With this approach,

the transmit symbols can have the optimal symbol distribution,

allowing to completely compensate for the shaping loss. The

receiver needs to run a multi-stage demapper/decoder and a

distribution dematcher to retrieve the transmitted message. In

this work, we propose a different approach for probabilistic

shaping for polar codes and show how it can be implemented

by modifying the existing 5G NR standard. Our proposal is

mainly related to transmitter, and allows re-using the existing

hardware for signal shaping. We start in Sec. II with the

achievable rates for BICM, and show that even if signal

shaping with a rough approximation of the optimal distribution

is employed, a large gain compared to uniform signaling can

be obtained. We then describe in Sec. III the coding and

1This work is accepted for publication at IEEE 88th Vehicular Technology
Conference (VTC 2018-Fall). Copyright IEEE 2018.
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Fig. 1. Achievable rates for Gray labeled 16-QAM (upper figure) and
256-QAM (lower figure) with uniform distribution and with non-uniform
distribution given in (2) with optimized p.

modulation steps of 5G NR control channels with polar codes,

and propose modifications in Sec. IV that allow the channel

input symbols to follow an approximate Gaussian distribution.

We conclude our work with simulation results and discussions

in Sec. V.

In this paper, x is a vector, X is a random variable rep-

resenting the elements in x and PX describes its probability

mass function. D denotes a set, and x[D] is a subvector of

x where D defines the indices of the elements from x. E(X)
and H(X) denote the expected value and the entropy of X. We

follow the notation in [3] for variable names when possible.

II. SYSTEM MODEL AND ACHIEVABLE RATES

Consider a BICM system, where the encoder generates the

length-E codeword e from the message vector a of length

A. Then, an interleaver reorders e to the vector b of the

same length and subsequently a symbol mapper maps b to x

containing the Gray labeled 2M -QAM symbols with complex

values consisting of real and imaginary parts from the set

{±1,±3, ...,±(2M/2 − 1)}. Here, M is the number of bit-

levels of the QAM symbol, e.g., 256-QAM has 8 bit-levels,

http://arxiv.org/abs/1808.09360v1


and bits with the indices Bj = {j, j + M, j + 2M, ...} in b

(denoted by b[Bj]) define the jth bit-level with j = {1, ...,M}.

We consider the complex valued AWGN channel r = x+w,

where w is the additive noise and r contains the received

samples after matched filtering. We define the signal-to-noise

ratio as γ = E(|X|2)/E(|W|2). If a receiver with bit-metric

decoding is considered, the (positive) rates

RBMD = H(X)−

M
∑

j=1

H(B[Bj ]|R) (1)

in bits/use are achievable [6]. Fig. 1 shows RBMD for uniformly

distributed QAM symbols for 16-QAM (M = 4) and 256-

QAM (M = 8). For both examples, we observe a certain gap

to the capacity, which is caused by two reasons. Firstly, the

channel input symbols do not have the capacity achieving dis-

tribution (shaping loss), and secondly the demapper does not

take the dependence between bit-levels into account (demap-

ping loss). It was shown in [6] that by using signal shaping

with Maxwell-Boltzmann (MB) distribution (PX(x) ∼ e−νx2

)
for non-continuous input alphabets, this gap vanishes for a

large range of rates on AWGN channels, even if independent

demapping is performed. However, obtaining transmit symbols

with an exact MB distribution in practice can be cumbersome,

since this target distribution in general cannot be formulated

as a product of individual bit-level distributions, and therefore

symbol level shaping encoders are required. By relaxing this

condition, approximations of MB distribution can be obtained

with bit-level shaping encoders [7]. In the following, we

consider an approximation of the MB distribution that is

generated by shaping one bit-level per complex dimension.

Consider a Gray symbol mapper, where the bit-level mr

determines whether the magnitude of real part of the QAM

symbol is larger than 2
M
2
−1 or not, i.e., the real part of the

QAM symbol has an amplitude larger than 2
M
2
−1, if the bit in

the bit-level mr is 1. Similarly, let the bit-level mi determine

the same property for the magnitude of the imaginary part of

the QAM symbol. If the transmitter can generate the vector b,

where the probability of bits being 1 in the subvectors b[Bmr ]

and b[Bmi
] is p ≤ 0.5, and the rest of the bits have equal

probability of being 1 or 0, then the resulting QAM symbols

have a piecewise constant probability distribution that can be

described as

PX(x) =



































(1− p)2

2M−2
, if

{

|Re(x)| < 2
M
2
−1

|Im(x)| < 2
M
2
−1

p2

2M−2
, if

{

|Re(x)| > 2
M
2
−1

|Im(x)| > 2
M
2
−1

p(1− p)

2M−2
, otherwise.

(2)

Accordingly, a coarse approximation of MB distribution can

be obtained for p < 0.5. An example is given in Fig. 2 for

p = 0.25. Obviously, the choice of p determines the achievable

rate RBMD, and there is a different optimal value of p that

maximizes RBMD for each γ. Fig. 1 also depicts the achievable

rates with (numerically) optimized p, and we observe that the

Fig. 2. Illustration of PX(x) for M = 8 and p = 0.25.

performance gets closer to the channel capacity. Note that for

p < 0.5, the first term in (1) gets smaller. However, the average

transmit power decreases as the symbols with high magnitudes

are transmitted less frequently, which results in an overall rate

increase in (1).

A key operation in obtaining the distribution in (2) is to gen-

erate codewords that have the certain probability distribution

of bits within the codeword. In [8] it was already shown that

such polar codewords can be generated by using a decoder as a

precoder. In the following, we first describe how polar coding

is employed in 5G NR control channels, and then we show

modifications that allow a shaping gain for 5G polar codes by

extending the ideas from [8].

III. CODING IN 5G NR CONTROL CHANNELS

Below we summarize coding and modulation steps for 5G

NR control channels [3]. For the sake of simplicity, we con-

sider a single transport block without code block segmentation.

1) CRC Attachment: L bits of CRC are appended to the

payload vector a, resulting in the vector c of length K = A+
L. The CRC bits are used by the receiver for error detection

and for selecting the correct codewords from the output of the

list decoder.

2) Polar Interleaving: The vector c is interleaved to c′ =
ΠP(c) according to Table 5.3.1.1-1 in [3], ensuring that

CRC bits are distributed within the codeword allowing early

termination.

3) Polar Encoding: In this step, first a vector u of length

N is generated (N ≤ 1024 being an integer power of two),

which serves as the input to the polar transform. c′ (and

optionally a few additional parity check bits generated from

c′) are mapped to the reliable indices in u according to the

polar sequence Q [3, Table 5.3.1.2-1], which is a set ordered

according to the reliabilities of the polar sub-channels. The rest

of u is filled with zeros that serve as frozen bits. Afterwards,

polar transform is performed on u to generate the codeword

d = uG, where G is the (log2 N)-th Kronecker power of

G2 = ( 1 0
1 1 ).

4) Sub-block Interleaving: The sub-block interleaver re-

orders the vector d to the vector y = ΠSB(d) according to

Table 5.4.1.1-1 in [3] with the aim of simple puncturing and

shortening.



5) Bit Selection: This step generates the rate matched

vector e = y[E] of length E where E is defined as

E =







{1, · · · , N, 1, 2, · · · }, if E > N
{N − E + 1, · · · , N}, else if K/E ≤ 7/16
{1, · · · , E}, otherwise.

(3)

If E is larger than N , repetition is performed. Otherwise,

depending on the rate K/E, either the first N − E bits are

punctured, or the last N − E bits are shortened.

6) Code-bits Interleaving: e is interleaved to f = ΠCB(e)
with a triangular interleaver according to [3, Sec. 5.4.1.3].

7) Scrambling: Scrambling is done to by an element-wise

modulo-2 sum of f with the user specific binary scrambling

vector v to obtain the length-E vector b = f ⊕ v.

8) QAM Mapping: b is mapped to channel input symbols

x according to Gray labeling, described in [9, Sec. 5.1]. Note

that for this constellation mr = 3 and mi = 4 for both 16-

QAM and 256-QAM.

Depending on the scenario, these steps can be operated with

different parameters, e.g., one uses only QPSK for downlink

and no code-bit interleaving is used, and some additional

parity check (PC) bits are appended before polar transform in

uplink. In the following, we will use these steps as a baseline

and modify the model slightly to show how signal shaping

can be integrated to 5G polar codes. For simplicity, we do

not consider the additional PC bits before polar transform,

although our proposal can also support PC bits. We do not

consider shortening and puncturing, such that E = N , and we

will assume that 16-QAM or 256-QAM is employed, as signal

shaping can only be beneficial with higher order modulation.

Note that the BICM system model described in Sec. II does

not contain a scrambling operation. Let us define a length-N
vector v̄ satisfying

v = ΠSB

(

[ΠCB(v̄)][E]

)

. (4)

We can show that scrambling with v after code-bit interleaving

is equivalent to scrambling with v̄ after polar encoding (on d).

Considering this equivalent model, steps 1) to 5) (including

scrambling with v̄) would correspond to encoding, step 6)

to interleaving and step 8) to the symbol mapping in Sec.

II. Therefore, the achievable rates described in the previous

section are also valid for this architecture.

IV. 5G NR POLAR CODING WITH INTEGRATED SIGNAL

SHAPING

We propose two modifications to the 5G NR polar codes that

allow the receiver to benefit from signal shaping gain. First, we

introduce a new block called the shaping bits insertion, which

extends c′ to c′′ by appending S shaping bits s. Those bits

force the bits at the indices D = {N −N/(M/2)+ 1, ..., N}
of the polar codeword d (the last N/(M/2) indices in d) to

have a certain property allowing non-uniform distribution of

the QAM symbols. Second, the Code-bit Interleaving step is

modified such that the bits in D are mapped to Bmr
and Bmi

,

allowing the distribution of QAM symbols given above. Fig. 3

depicts the block diagram.
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Fig. 3. Block diagram describing the coding and modulation operations for
5G control channels. The dashed block performs the additional operation for
signal shaping proposed in this work.

Note that the inserted shaping bits are treated by the

succeeding steps as information bits, and this operation is

transparent to these steps at the transmitter, which may ba-

sically assume that the CRC appended payload has the length

A+ L+ S, instead of A+ L.

A. Shaping Bits Insertion

In general, the probability of the bits being 1 or 0 within

a binary codeword d is usually equal, i.e., PD(1) = 0.5. In

[10], it was shown how to generate polar codewords that have

a biased distribution of bits, i.e., PD(1) 6= 0.5. The basic idea

is to use some of the reliable indices of the polar transform

input u to transmit shaping bits (in addition to information

bits), which are generated depending on the information and

frozen bits. The shaping bits do not carry any new information,

but force PD(1) to have a target value p.

In [8] it was further demonstrated that the problem of

obtaining shaping bits s can be formulated as a polar decoding

problem, i.e., a polar decoder (such as a successive cancel-

lation list (SCL) decoder [11]) can be used as a precoder to

generate the shaping bits from the information and frozen bits.

To accomplish this, first a set S of reliable indices is selected.

Then, a SCL decoder is used as a precoder, where the decoder

treats the information and frozen bits as known (frozen) bits

and seeks for bits s in S that produce a codeword with a

target PD(1) = p. After obtaining the shaping bits s, the polar

transform can be performed on the vector containing frozen,

information and shaping bits to generate the polar codeword

having the target probability distribution. Readers are referred

to [8] for a more detailed description.

Recall that in order to obtain the probability distribution

in (2), only the codeword bits corresponding to the bit-levels

mr and mi need to have a biased probability distribution.

Similar to [8], we exploit the idea that each polar codeword can

be described as smaller codewords that are further polarized,

which is depicted in Fig. 4 with four length N/4 codewords

and two additional polarization steps. Observe that the last

small polar codeword d′

[D] appears unchanged at the output

as d[D]. Therefore, it is enough to perform precoding only on



the last small polar codeword of length N/(M/2), which can

later be mapped to the correct bit-levels of the QAM symbols.

Note that the choice of S and resulting PD(1) = p are

related to each other, and asymptotically

S = ⌊N/(M/2)(1− h2(p))⌋ (5)

should hold [8], where h2(.) is the binary entropy function.

Moreover, the set S needs to be chosen from the reliable polar

sub-channels. In this work we assume that the most reliable S
indices from the polar sequence Q in [3] define S. We show

the relation between S and p for finite lengths in Sec. V-1.

Assuming the relation between S and p is known, we

perform the following steps to obtain the shaping bits:

Step A - Construct u′: First, we construct an auxiliary

empty vector u′ of length N . The most reliable S indices

of u′ according Q are left empty. From the remaining indices,

the most reliable indices are filled with c′, and the rest are

filled with zeros as frozen bits.

Step B - Obtain s: We extract the subvector û = u′

[D] of

length N/(M/2). We then use a polar SCL decoder of length

N/(M/2) where we treat the empty indices of û as the set of

non-frozen indices, and use the other elements in û as frozen

bits. We use the following LLR based decoder input

Λ = log

(

1− p

p

)

(−2 · v̄[D] + 1), (6)

where v̄ is defined in (4). The decoder output would contain

the shaping bits s, which can be appended to c′ to obtain c′′.

Note that one can also fill the empty indices of u′ with s to

obtain u, which can be fed to the polar transform of length N
to produce the codeword d as shown in Fig. 4. The generated

shaping bits ensure that the bits in vector d[D] ⊕ v̄[D] is 1
with probability p. The effect of the scrambler is taken into

the account by using v̄ to construct Λ, such that the sign of

the LLR values depend on the elements of v̄.

Note that the computational complexity of a length-N SCL

decoder with list size Ld is given as O(LdN log2 N) [11].

As the precoder uses an SCL decoder of length N/(M/2),
its complexity is approximately 45% and 20% of the decoder

complexity at the receiver for N = 1024 with 16-QAM and

256-QAM, respectively, i.e. the additional complexity due to

signal shaping is less than the decoding complexity at the

receiver.

B. Code-bit Interleaving

By generating the codeword d as described above, bits at

the indices D obtain the property that will cause the QAM

symbols to have the desired distribution, if those bits (after

interleaving and scrambling) are mapped to the bit-levels

mr and mi. To guarantee correct mapping, one should also

modify at least one of the interleavers. We leave the sub-block

interleaver untouched, and modify the code-bit interleaver

to accomplish this aim. To make the minimum change to

the existing triangular interleaver ΠCB(.), we only exchange

indices in the interleaver pattern, such that d[D] is mapped

to the correct bit-levels. We leave further optimization of the

code-bit interleaver as future work.
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d
′

[D]
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Fig. 4. Polar precoding example for M = 8, where the precoder generates
the shaping bits s by using a polar decoder of length N/4, which is then
used to construct u[D].

C. Modifications at the Receiver

The proposed signal shaping method is mainly transmitter-

related, and the modifications at the receiver are small. The

receiver needs to know the number of shaping bits S which

can be signaled without a large overhead. From S, the receiver

can deduct p (e.g. by using a look-up table) and calculate

PX, which should be taken into account during demapping.

The decoding can be performed assuming A+ S information

bits are transmitted, and the last S bits can be discarded after

decoding, as they do not carry any information. Optionally,

the receiver can generate an estimate of s from the decoded

information bits and cross-check its value with the received

shaping bits to perform an additional error detection.

V. NUMERICAL EVALUATION AND DISCUSSIONS

1) Relation between S and p: In this work, we build S by

using the most reliable S indices from Q in [3]. To obtain S
for given p, N and M , we propose the following steps, which

can be performed offline.

• Set the temporary variable Ŝ = 1.

• Randomly construct binary vectors c′ of length N − Ŝ.

• Perform Step A and Step B in Sec. IV-A to obtain the

shaping bits s and polar transform input vector u.

• Obtain d = uG for each realization and calculate the

average probability (pŝ) of 1s in dD.

• Increase Ŝ by one and repeat the previous steps, until the

maximum possible Ŝ is achieved.

• Set S = argminŝ{|pŝ − p|}.

Performing this procedure for N = 1024 and M = 4 and

M = 8 with a SCL decoder (list size 8), we obtain the relation

show in Fig. 5. We observe that by increasing the number of

S we obtain codewords with less ones on average. The same

figure also plots the asymptotic results given in (5). We observe

that asymptotically one can get the same distribution by using

less shaping bits. We can also see (5) as an approximation

of our numerical results. The difference between (5) and the

numerically obtained results differ on average 8 bits for M = 8
and 14 bits for M = 4.
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Fig. 6. Performance of A = 768 with 256-QAM on AWGN channels for
different choices of S in terms of required γ to obtain a target BLER 0.001.

2) The Optimal Number of Shaping Bits: In general, one

can obtain the optimal value of p (and hence S) and A
numerically by maximizing (1) at a given operating SNR.

Here, we restrict ourselves to the polar code construction

described in [3], and obtain the optimum value of S for a

given A with Monte-Carlo simulations.

As an example, we use A = 768 information bits, 24 CRC

bits (CRC24C from [3]) and choose N = E = 1024 to avoid

puncturing or shortening. We use a SCL decoder with list

size 8 both for precoder and for the decoder, and evaluate the

block error rate (BLER) performance with different number

of shaping bits S for 256-QAM (M = 8). Fig. 6 plots

the required SNR to achieve a BLER of 0.001 on AWGN

channels. Note that S = 0 corresponds to conventional

BICM. We observe that by using S = 64 shaping bits, the

performance is improved by almost 1dB. The curves for other

choices of A and M (not shown in this paper) look similar,

indicating an optimal value of S that is larger than 0.

3) BLER Performance for the Optimal Choice of S: We

use A = {512, 640, 768, 896} information bits and find the

optimal S as above, leaving other parameters the same. We

then evaluate the BLER performance on AWGN channels and

compare it with the conventional BICM (S = 0) for 16-

QAM and and 256-QAM, as shown in Fig. 7. We observe

{0.44, 0.49, 0.47, 0.25}dB gains compared to BICM without

shaping at the target BLER of 0.001 for 16-QAM. Note that

one could expect {0.36, 0.45, 0.45, 0.53}dB gains asymptoti-

cally, considering the achievable rates in Fig. 1. Similarly, we

observe {0.97, 0.94, 0.93, 0.46}dB gains for 256-QAM. The

asymptotically expected gains in this case according to Fig. 1

are {0.58, 0.86, 0.92, 0.82}dB. As an additional reference, we

also plot the BLER performance for S = 0 with an increased

decoder list size of 16. We observe that even in this case our

scheme outperforms the conventional BICM.

The presented scheme is attractive for two reasons. First, the

proposed scheme performs signal shaping by using a polar

decoder, which already exists in the transmission chain of

bi-directional communication systems (i.e., no new hardware
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Fig. 7. Upper figure: BLER performance with 16-QAM for A =
{512, 640, 768, 896} information bits, with S = {128, 96, 56, 16} shaping
bits (solid lines) and without shaping (dashed lines) with precoder and decoder
list sizes 8 and N = 1024. Dotted lines show the BLER performance without
shaping with list size 16. Lower figure shows the results for 256-QAM, where
the optimal number of shaping bits are S = {136, 120, 64, 48} for the same
choices of A and N .

is required). Second, the receiver treats the shaping bits as

information bits, which can be discarded after decoding, and

therefore there is no need for an additional shaping decoder

(unlike other PS schemes). As the additional computation is

performed at the transmitter, this method particularly suits

to downlink transmissions, where the transmitter (i.e., gNB)

usually have more computational power.
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